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Introduction 

 

Development of new classes of drugs requires the knowledge of the 

properties of all components of a pharmaceutical product. It is also 

necessary to understand the chemical and physical interactions between 

these components, respectively the interactions that occur when they are 

prepared and also the evolution in time of the components included in the 

final product. This research can not be achieved only by classical 

methods, specific to a single field of science, such as pharmaceuticals. It 

requires various investigation techniques, performed with modern 

physical methods, to study all the pharmaceutical compounds that are 

used in the final product and also their evolution in time in different 

conditions of temperature and humidity.  

In this study we examined the physical properties of some 

polymeric gels that include an active component in their matrix, by 

rheological, spectroscopic and electrical investigations. The polymers 

used are: PEO poly(ethylene oxide), with two molecular weights, and 

Carbopol (polyacrylic acid). As active drug substance we used 

clotrimazole (1- [( 2 - clorofenil) difenilmetil] – 1H-imidazol). The final 

product is a local pharmaceutical antimycotic, applicable on skin or 

mucosal tissues. The final product must be biocompatible, stable in time 

and without aggression on the tissue, allowing the controlled release of 

the active substance. 

The chose of these substances is not accidental, since these 

polymers are among the most used in the pharmaceutical industry and 

many aspects of their interaction with other drugs and biological systems 

are already known.  
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In the first part of the work we analyzed the general theoretical 

issues related to polymeric gels. The second part will detail the 

experimental results achieved through electrical, spectroscopic and 

rheological investigations. This paper ends with the conclusions arising 

from this study and with the annexes for each type of investigation. 

 

Polymeric Gels 

In general, a gel is formed by interconnecting polymeric chains 

together, through nodes or points of cross-linking and has an appreciable 

lifetime [1]. Interconnecting chains can be achieved by physical or 

chemical processes and the final properties of the obtained network 

depend essentially on the production and type of such cross-linking 

points. 

 

1. Temporary gels. They are formed by systems with a high concentration 

of polymeric segments, by simple topological rearrangement caused by 

the formation of temporary and mechanical nodes, between polymeric 

chains.  

 

2. Covalent gels (chemical gels) are formed by reticulation of free 

covalents of the preexistent chains in sample or by polymerization of 

monomers, of which at least some have a greater functionality or at least 

equal to two.  

 

3. Physical gels are systems that fall between the two above. Consist of 

physical chains (nodes), interconnected between them. These links are 

characterized by low energy, comparable to thermical energy kT and may 

have limited or very long life.  
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4. Gels of pharmaceutical interest: Gels in this category are only those 

polymeric systems that have the following characteristics: have a good 

chemical and physical stability, are not toxic to the body, have a good 

biocompatibility with tissues that come into contact, can easily be 

eliminated from the body, not chemically interact with drug substance 

and dissolve in organic solvents that are well tolerated by living 

organisms, preferably in water.  

 

II. Rheological and electrical study of PEO and Carbopol matrices 

 

2.1 Rheological study of PEO and Carbopol polymeric matrices 

 

For medical applications, some properties of these products are of 

great importance, namely: good flexibility, controlled disposal [5.6]. 

These properties should be investigated in the standard human body 

temperature and temperature limitations incurred by living cells from 

different tissues. It is important to study these systems in terms of thermal 

shock and mechanical stress. Quantitative description of these properties 

is based on measurement of rheological parameters, including viscosity, 

which plays an important role [7].  

 

2.1.1.Materials and equipment used 

 

The samples investigated were poly(ethylene oxide) PEO1105 

PEO750 with molecular weight 75,000 g / mol, respectively 110 500 

g/mol pure and polyacrylic acid Carbopol 940 and 980 with two 

molecular weights 104 400 g/mol, respectively 1 021 317 g/mol. All 

these polymeric gels were obtained with concentrations between 0.5% 

and 10% by mixing them with double distilled water. 
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Viscosity of these samples was measured at different shear rates 

between 0 and 200 rpm with a Brookfield DV-II Pro+ viscosimeter. 

Measurements were performed in the temperature range 26-55° C. 

 

2.1.2. Effect of concentration.  

 

The first report was intended with the behavior of viscosity of non-

thermal treated aqueous PEO gels depending on temperature and 

polymeric concentration. It was proposed and tested a mathematical 

algorithm to analyze the data, based on specific law of Newtonian 

behavior and on Power law, specific to non-Newtonian behavior. 

After analyzing the experimental data, is observed that the fluid 

passes from non-Newtonian behavior, n = 1.32 shear-thickening (n > 1)  

to concentration of 3% to Newtonian behavior, n ≈ 1 at concentration of 

5% and temperature 55° C, then to the non-Newtonian behavior (shear-

thinning), n < 1 for concentrations higher than 5% Figure 2.2. Both  

temperature and concentration affect the value of viscosity, but 

Fig. 2.2. Viscosity Vs. shear rate, for PEO 750 with 5% 
concentration sample at different temperatures. 
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concentration’s influence is dominant. Increasing concentration facilitates 

the production of connections between the chains and the gel state 

extension to higher domains in the sample. Rheological behavior of the 

sample is described by a power model. 

 

2.1.3 Influence of molecular weight on the rheological behavior of PEO  

 

Further, is studied the behavior of polymeric matrix of PEO 1105 

with molecular weight 105,000 g/mol. It is noted that the transition effect 

of flow from Newtonian behavior to the Non-Newtonian behavior 

appears when concentration is 3% instead of 5%, as the PEO 750 sample 

was. Figure 2.8. 

 

The decrease of viscosity depending on temperature was observed 

for all samples of PEO, regardless of molecular weight. Changes in 

viscosity depending on shear rate shows different types of flow, shear-

Fig. 2.8. Viscosity Vs. shear rate, for PEO 1105 with 3% 
concentration, sample at different temperatures. 
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thinning (n < 1), shear-thickening (n > 1) and Newtonian, depending on 

temperature and polymer concentration. 

Transition from shear-thinning (n < 1) to shear-thickening (n > 1) 

is mainly determined by polymer concentration. Newtonian flow type 

was observed for both samples, but this behavior occurs at low 

concentration of high molecular weight sample, compared with low 

molecular weight sample. To the non-Newtonian regime, rheological 

behavior of samples is described by a power law.  

 

2.1.4. Influence of thermal treatment on polymeric matrices.  

 

Thermal treatment was performed by immersion in liquid nitrogen, and 

then the sample was left 24 hours to return to the initial temperature. 

Thermal treatment processes were performed on aqueous gels of PEO  

Fig. 2.13.Viscosity Vs. shear rate, for PEO 750 with 5% 
concentration, thermally treated, sample at different temperatures. 
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750 and Carbopol. The concentrations of samples were the same as in the  

previous study.  

It is noted that the effect of transition of the flow from the 

Newtonian behavior to the non-Newtonian occurs at concentration of 5%, 

as it was observed for PEO 750 non-thermally treated sample, but at a 

higher temperature, of 55° C, compared to untreated system in which the 

transition takes place around the temperature of 37 ° C, Figure 2.13. The 

values of parameters are presented in Table 2.4.  

 

Aqueous dispersions of Carbopol  

From the analysis of the results on samples of Carbopol, it is noted 

that these samples shows a slight decrease in viscosity after thermal 

treatment.  

Table 2.4. Experimental and calculated values for PEO 750 gel’s rheological parameters, 

thermally and non thermally treated, with concentrations 3%, 5%, 7% and 9%. 
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2
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Carbopol gels are observed in all domains of temperature and 

concentration that n, x and xav show a decrease in thermally-treated 

systems compared to non-thermally treated systems, Table 2.5.  

Power exponent n decreases with increasing polymeric 

concentration from n = 0.34 to 0.5% to n = 0.17 to 1.5%. The samples 

are characterized by a non-Newtonian type of flow (shear-thinning), n < 

1 [7, 8].  

 

2.2. Mathematical analysis of flow curves.  

 

As it was shown in previous results, η depends on the concentration 

(noted by Ф), T and γ& . These dependences were analyzed separately, 

without using a single equation. In this study, we are attempting to focus 

Table 2.5. Experimental and calculated values for Carbopol gel’s rheological parameters, thermally and 

non thermally treated, with concentrations 0,5%, 1% and 1,5%. 
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their dependencies into a single expression. A first step of this exercise is 

to determine the Ea of the process flow.  

For a broad range of viscous fluids this dependence is exponential, 

expressed by the equation:  









=

RT

E
A aexpη        (2.6.) 

where aE  represents the activation energy of flow process at constant 

shear rate, A is the pre-exponential factor, T is absolute temperature and R 

is the universal gas constant.  

Because previous results showed a dependence of viscosity Vs. 

shear rate, it was also tested the possibility of dependence of aE  Vs. γ& . 

Therefore viscosity determination was performed at different shear rates, 

but constant speed, respectively 50, 100 and 150 rpm. Regardless of shear 

rate for all concentrations observed linear dependence of logarithm of 

viscosity depending on the inverse temperature, Figure 2.22.  

Fig. 2.22. Activation energy performed for PEO 750 gels with 
concentrations 6%, 7% şi 9% at shear rate 50, 100 şi 150 rot/min 
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Changing concentration leads only to a slight variation of these 

slopes, indicating a small variation of aE  depending on the concentration. 

This increase of activation energy with concentration can be explained by 

increasing number of temporary connections in the gel structure which 

implies a higher energy flow. This behavior indicates an Arrhenius 

dependence and allows calculating the activation energy from the slope of 

the linear representation.  

To better characterize the rheological behavior of polymeric gels 

investigated in this study implies a mathematical analysis that combines 

the two models presented in the previous paragraphs. 

The previous paragraphs show that both PEO gels and Carbopol 

aqueous dispersions presented similar changes of the viscosity depending 

on shear rate and settled that the best approximation of experimental data 

is given by power law model [17]. The equation describing this 

dependence is  
1n)(a −⋅= γη &         (2.7) 

Where η  is viscosity, γ&  is shear rate, n is the exponent power.  

At a constant shear rate, the term ( ) constB
n

==
−1

γ& , becomes 

constant and viscosity variation is expressed only by the function of 

a(T,φ). 

( ) B,Ta ⋅= φη         (2.8) 

Typically, the temperature dependence of viscosity is expressed by 

the experimental law type [29]:  

( ) B
RT

E
expC a ⋅








⋅= φη       (2.9)  

Ea is the flow activation energy, R is the universal gas constant and 

( )φC  is a proportionality factor, which contains contribution of 
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concentration. Combining equations (2.8) and (2.9) we obtain the explicit 

expression of the a(T,φ). 

( ) ( ) 







=

RT

E
expC,Ta aφφ       (2.10)  

For each concentration were used the corresponding average values 

of Ea, in equation 2.10, in order to describe the temperature dependence 

of the function ( )φ,Ta . Combining the two temperature-dependences 

(equation 2.10), and shear rate (equation 2.7), we can write a new 

equation for viscosity .  

( ) ( )
( )

( ) 1na

RT

E
expC,T,

−
⋅







⋅= γ

φ
φγφη &&      (2.11)  

This equation combines the dependence of viscosity on the 

temperature, concentration and shear rate. Using equation 2.11 we obtain 

a better characterization of flow curves than the results obtained by 

applying a power law, equation 2.5, because mathematical analysis using 

equation 2.11. expresses viscosity by a concentration , temperature and 

shear rate dependence. This result can be seen in Figure 2.28, where with 

Fig. 2.28. Mathematical analyses for PEO 750 samples with 9% 
concentration, using Law Power equation, A curves and  mathematical 
analyses for the same sample using 2.11 equation and B curves. 
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A is noted the curve resulting from the mathematical analysis based on a 

power law, and with B is noted curve resulting from the analysis using 

equation 2.11.  

Good correlation between experimental and theoretical data and the 

fact that ( )φC  is constant for all temperatures, confirms the validity of this 

equation for aqueous PEO gels.  

 

2.3. Investigation of PEO polymer and Carbopol systems by electrical 

methods.  

Measurements to determine dielectric constant were performed 

using Q-meter Tesla BM 409G, with frequency between 15 -300 MHz . 

The dielectric constant values obtained for all samples investigated were 

in the range 2 to 10 pF/m  

Effect of concentration.  

PEO aqueous gels were prepared for following concentrations 

0.5%, 2% and 4%. The results show an increase of dielectric constant 

with increasing concentration, Figure 2.29.  

Fig. 2.29. Dielectric constant Vs. frequencies for  PEO 750 
gels with concentrations 0,5%, 2% and 4%. 
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Effect of molecular weight  

The result of this study show that dielectric constant decreases with 

increasing molecular weight material, Figure 2.31.  

Effect of thermal treatment  

Still have the same set of measurements performed for 750 samples 

Fig. 2.31. Dielectric constant Vs. frequencies for  PEO 750 and 
PEO 1105 gels with concentration 5%. 
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of PEO, concentration of 0.5%  non-thermally treated and for thermally 

treated system. 

After analyzing the experimental results, we observe that the 

dielectric constant of these systems decrease after thermal treatment, in 

this frequency range, Figure 3.32. 

 

III. Vibration study performed by PEO and Carbopol matrices 

 

The stability physical and chemical properties of polymeric 

materials are determined by the dynamic processes occurring at molecular 

and macromolecular level. These processes are strongly influenced by the 

action of external physical and chemical agents, repeated mechanical 

stress, heating-cooling cycles, the repeated action of solvents, UV action, 

γ, etc. 

In our study we were interested by the following effects:  

- Effect of molecular weight  

- Solvent action  

- Effect of concentration  

- Effects that occur in repeated drying and rehydration processes  

- The effect of γ radiation.  

 

3.1. Materials and equipment used  

 

Spectroscopic investigations were carried out using a confocal 

Raman microscope, model: R. Alpha300. Investigated samples were 

irradiated with a laser (He-Ne) with 633 nm wavelength and a frequency-

doubled NdYAD laser wavelength 532 nm. The samples investigated 

were poly(ethylene oxide) PEO 750 and PEO 1105, with molecular 

weight 75 000 g/mol, respectively 110 500 g/mol in powder state and 
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polyacrylic acid Carbopol 940 and 980 with two molecular weights 104 

400 g/mol, respectively 1 021 317 g/mol [4]. 

 

3.2.1. Raman spectroscopy investigation of poly(ethylene oxide) gels  

 

Effect of molecular weight.  

 

We investigated the samples PEO750 and PEO1105 powder with 

different molecular weight. Raman spectra of these samples are identical 

(Fig. 3.6).  

 

Aqueous dispersions.   

Was monitorized and compared the behavior of aqueous 

dispersions and of solid samples of PEO. In aqueous solution, an 

important change appears in the spectrum 200-600 cm-1 where the 

Fig. 3.6. Raman spectra of the PEO 750 (A) and PEO 1105 (B) 
samples in solid state. 
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spectrum is not resolved, due to the diffusion of light that occurs due the 

conglomeration polymer gel in areas with heterogeneous polymer 

concentration, which leads to Rayleigh is split, a situation common in 

colloidal suspensions [25]. In 1000-1500 cm-1 range, aqueous solution 

spectrum contains approximately the same vibrational modes as the solid 

sample spectrum, but the lines are wider, Figure 3.7. 

 

Effect of concentration  

Changing the polymer concentration in this domain (5% -10%) 

does not change substantially the vicinity of polymeric chains. As a 

result, local vibrations of the chain are less affected and Raman spectra 

remain unchanged.  

 

System PEO-clotrimazole  

Analysis by optical microscopy indicates a colloidal suspension of 

clotrimazole in the polymeric matrix, the spectra obtained from regions 

Fig. 3.7. Comparison between the Raman spectrum of  PEO 750 
sample in powder state (A) and disolved in water (B) 
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with different optical appearance being different. For example, curve A in 

Figure 3.9. is PEO gel spectrum and curve B of Fig. 3.9. is clotrimazole 

spectrum, included in gel.  

On the other hand, if we compare the spectrum of pure 

clotrimazole powder, with the spectrum of a single clotrimazole granule 

included in gel, we find that they are identical. Therefore, PEO 750 

matrix did not influence the specific vibrational modes of clotrimazole, 

Figure 3.10. Both spectra are identical. This result is very important for 

medical applications, as the active substance (clotrimazole) does not 

undergo any change in its properties when introduced into polymer 

matrix.  

Raman spectroscopy method for investigation of clotrimazole 

granules can be optimized, to identify the exact area they occupy in the 

polymeric matrix, Raman imagery method.  

Fig. 3.9. Raman spectra of Clotrimazole (A) and PEO 750 gel (B) 
collected from two different areas on the sample. 
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Since there are no other distinct areas of interface between 

clotrimazole and the gel polymer, it can be said that the two distinct 

components of this system do not interact chemically with each other.  

 

3.2.2. Drying effect upon PEO matrix.  

 

Experimental procedure for monitorizing the effects of repeated 

hydration-drying, was performed under continuous monitorizing of 

concentration, respectively after each drying process, water in amount of 

that lost during drying was added and was mixed until a homogeneous 

mass of polymer gel was obtained. In Figure 3.14 is shown Raman 

spectrum of PEO 750 gel concentration of 5% after the first drying, 

compared to the PEO 750 powder spectrum.  

AFM technique could reveal the effect of PEO 750 concentration 

for dried gels and the effect of repeated hydration and drying of these 

gels. Increasing the concentration of PEO 750 gel’s leads to an increased 

Fig. 3.10. Raman spectra of pure Clotrimazol (B) and Clotrimazol 
granule embedded in PEO 750 gel matrix (A). 
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surface roughness and by increasing the number of repeated hydration 

and drying decreases the surface roughness of these gels. Results from the 

AFM technique can be correlated with rheometrical measurements 

presented in the previous paragraphs, in order to establish an optimal 

recipe for a final drug product.  

 

 

3.2.3 Raman spectroscopy investigation of gels of Carbopol  

 

Carbopol 940 and 980 samples with different molecular masses are 

characterized by similar Raman spectra (Fig. 3.20.). Therefore, it can be 

said that polymer’s chain length and extremity movements have very 

little influence on local structure of the monomer [19].  

 

 

Fig. 3.14. Raman spectra of pure PEO 750 (A) and PEO 750 gels with 
5% concentration after water evaporation (B). 
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Carbopol System - clotrimazole  

 

In this polymeric matrix is introduced clotrimazole, achieving a 

colloidal suspension. Raman spectra were raised in different parts of the 

Fig. 3.23. Raman spectra of Clotrimazole samples in powder state (A) 
and embedded in stabilized gel (B) and the Raman spectrum of the 
stabilized gel (C). 
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Fig. 3.20. Raman spectra of Carbopole with molecular weights 
(Carbopol 940, curve A and Carbopole 980, curve B). 
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stabilized gel containing clotrimazole and were compared with its pure 

spectrum. In some areas of the sample, Raman spectrum is broad and 

without a well defined structure, similar to the spectrum consisting of 

Carbopol 940 aqueous dispersion and water (curve C, Fig. 3.23.).  

 

 

3.2.4 Drying effect upon Carbopol matrix  

 

Next, we tried an analysis of a dry Carbopol gel by Raman imagery 

method. This method was used under the same conditions and were 

followed the same analytical steps as for PEO 750 gel. In Figure 3.25 was 

obtained a map representing a combination of Raman band at 1454 cm-1 

and Carbopol gel band at 1045 cm-1 specific clotrimazole embedded in 

polymer gel, specific bands of both phases were extracted from that 

Raman spectrum, Figure 3.24. In Figure 3.25 the green area, noted with A 

we find Raman spectra of clotrimazole and red zone marked with B is a 

map of specific Raman spectrum of Carbopol gel.  

In Figure 3.25, in the left side there is a microscopic image of the 

area 10x10 µm, where the scan of the map was Raman performed .  

AFM image analysis shows that the increasing concentration of 

polymer, Carbopol gel has a surface the dishevelment increase. This is 

presented like a heterogeneous form in polymeric gel, where polymer 

concentration is higher. Increasing polymer concentration, increases the 

size of the inhomogeneous domains, leading to increase the dishevelment 

highlighted by AFM technique.  
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3.2.5 Irradiation effect upon polymer matrix  

 

As a source of γ radiation was used radioelement Co60 with a dose 

of 930.8 Gy on exposure. 

Fig. 3.25. Optical image of the sample (left) and combined Raman map obtained by 
reconstructing the spatial distribution of the 1450 cm-1 (Carbopole - zone A) and 1045 
cm-1 (Clotrimazole - zone B) bands intensities. 
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Fig. 3.24. Raman spectra collected from two specific spots on the sample. 
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After irradiation of P0 gel, significant changes of vibrational modes 

can be observed (Fig. 3.29), particularly in range 1100-1450 cm-1. For 

bands that are not included in this range do not appear significant changes 

of vibrational modes of bands.  

Stretching vibration band link specific to C-O and rocking 

vibration band attributed to CH2 radical at 1144 cm-1 after irradiation, 

widens. Also, specific band vibration twisting of the CH2 group moves 

from 1234 to 1249 cm-1. Another important shift occurs in specific 

vibrational mode of twisting vibration of CH2 radical from 1282 to 1294 

cm-1.  After sample irradiation of Carbopol 940 with γ radiation at a dose 

of 930.88 Gy, important changes are observed in Raman spectrum, Figure 

3.30. In a careful analysis of spectra is observed that only intense band at 

1105 cm-1 remains exactly at the same wavenumber after irradiation. This 

band is attributed by Dong et al, to stretching vibration of two carbon 

atoms of chain, which are neighbors in polyacrylic acid. Intense band at 

1683 cm-1 disappears after irradiation, this band is attributed to stretching 

Fig. 3.29. Raman spectrum of pure, unirradiate, dry PEO 750 (curve B) 
and Raman spectrum of dry P0 irradiate with 930,88 Gy dose (curve A). 
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vibration of the cross link between C = O of the carboxyl group. This 

band disappeared after irradiation or decreased greatly in intensity, due to 

destabilization of the carboxyl group.  

Raman spectrum of clotrimazole, after irradiation do not show 

significant changes, all the bands are found in the same wavenumber, 

after irradiation with a dose of 814.52 Gy, Figure 3.34.  

Fig. 3.34. Raman spectrum of Clt0 and Raman spectrum of pure, 
unirradiated Clotrimazole. 
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Fig. 3.30. Raman spectrum of pure, unirradiated Carbopol 940 (curve 
A) and Raman spectrum of Carbopol 940 after irradiation with 930,88 
Gy dose. 
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VI. General conclusions 

 

Changes in viscosity of aqueous PEO gels non-thermally treated, 

depending on temperature and concentration, show a shift from non-

Newtonian behavior to the Newtonian one. Polymer gel passes in first 

stage, from a shear-thickening flow type (n > 1) to Newtonian flow and 

then to shear-thinning flow type (n < 1).  

Viscosity depending on temperature decrease was observed in 

samples thermally treated PEO 750. The transition from non-Newtonian 

behavior to the Newtonian one occurs at a higher temperature, at 55 ° C 

for samples thermally treated, and compared with 37-55 ° C untreated 

samples.  

Carbopol samples thermally treated show a decrease of viscosity. 

Also, these tests highlighted an increase in viscosity with temperature and 

decrease in viscosity with increasing shear rate. This behavior reveals a 

non-Newtonian flow type shear-thinning (n < 1).  

The results obtained by AFM technique and electrical 

measurements can be correlated with the rheometrical ones, presented in 

the previous paragraphs, in order to determine an optimum recipe for a 

final drug product.  

A colloidal suspension is obtained by introducing clotrimazole in 

the PEO and Carbopol gels. Analysis by optical microscopy shows no 

dissolution of clotrimazole in the PEO or Carbopol gels [29]. This is 

confirmed by Raman spectroscopy and Raman imagery.  

Raman spectrum of clotrimazole, appearing after radiation  γ  

exposure is influenced by bands` movements, at 1460 and 1510 cm-1, but 

this dose of irradiation does not present a significant destabilization of the 

molecule, but has a weak effect of ionization. However, the use of 



Rheological and spectroscopical  study of some polymeric systems of pharmaceutical interest 

 27 

clotrimazole in pharmaceutical applications is not recommended after 

prolonged exposure to γ radiation.   

Polymeric matrix composed of γ Carbopol gels presents chemical 

instability after radiation exposure exceeding 698.16 Gy dose, as 

evidenced in particular by breaking the link C = O of carboxyl group and 

other inherent changes that occur in the polymeric chain due to this split.  
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