
BABEŞ-BOLYAI UNIVERSITY OF CLUJ-NAPOCA

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

Doina Logofătu

Evolutionary Algorithms in VLSI-CAD
PhD Thesis Summary

Advisor: D. Dumitrescu

Scientific committee:

Prof. Henri Luchian, Al. I. Cuza University of Iaşi

Prof. Gabriela Czibula, Babeş-Bolyai University of Cluj-Napoca

Conf. Marcel Cremene, Technical University of Cluj-Napoca

2010

Index of contents

INDEX OF CONTENTS .. 3

STRUCTURE, INDEX TERMS, ORIGINAL CONTRIBUTIONS ... 5

1.1 THESIS’S STRUCTURE .. 5
1.2 INDEX TERMS .. 7
1.3 ORIGINAL CONTRIBUTIONS AND PUBLICATIONS ... 7

MAPREDUCE ... 12

2.1 MAPREDUCE PARADIGM ... 12
2.2 ADVANTAGES OF USING APACHE HADOOP ... 12

CUPRINS 4

DATA ORDERING PROBLEM ... 14

3.1 DESCRIPTIONS OF DOP AND DOPI ... 14
3.2 PREVIOUS RESEARCH .. 16
3.3 THE ALGORITHMS RAN, EX AND LB FOR DOP AND DOPI ... 17
3.4 THE ALGORITHM GREEDY MIN SIMPLIFIED (GMS) .. 17
3.5 THE ALGORITHMS MUT AND GA FOR DOP AND DOPI ... 17
3.6 THE PARALLEL DISTRIBUTED ALGORITHM MRPGA FOR DOP AND DOPI 18
3.7 NUMERICAL EXPERIMENTS AND STATISTICAL TESTS ... 20
3.8 CONCLUSIONS AND FUTURE WORK ... 21

DATA COMPACTION PROBLEM ... 22

4.1 PROBLEM DESCRIPTION TCP ... 22
4.2 OPTIMAL ALGORITHM FOR TCP .. 23
4.3 GREEDY ALGORITHMS GRNV AND GRBT FOR TCP .. 23
4.4 EVOLUTIONARY ALGORITHM GATC FOR TCP ... 24
4.5 DISTRIBUTED EVOLUTIONARY ALGORITHM MRPEA FOR TCP .. 24
4.6 EXPERIMENTAL RESULTS AND STATISTICAL TESTS .. 26
4.7 CONCLUSIONS AND FUTURE WORK ... 28

BIBLIOGRAPHY ... 29

1

Structure, index terms,

original contributions

1.1 Thesis’s structure

The dissertation comprises theoretical and experimental aspects of two actual optimization problems

from Very Large Scale Integration (VLSI) domain, specifically regarding the data ordering and

compaction. Data Ordering Problem (DOP), Data Ordering Problem with Inversion (DOPI) and Data

Compaction Problem (DCP) are NP-hard.

After the first introductory chapter, the next two chapters contain basis aspects regarding the

optimization problems and the evolutionary computation.

The fourth chapter comprises aspects, methods and numerical experiments for Data Ordering Problem

with and without Inversion. An important aim of circuit design is the reduction of the power

dissipation. Power consumption of digital circuits is closely related to switching activity. Due to the

STRUCTURE, INDEX TERMS, ORIGINAL CONTRIBUTIONS 6

increase in the usage of battery driven devices (e.g. PDAs, laptops), the low power aspect became one

of the main issues in circuit design in recent years. In this context, the Data Ordering Problem with

and without Inversion is very important. Data words have to be ordered and (eventually) negated in

order to minimize the total number of bit transitions. These problems have several applications, like

instruction scheduling, compiler optimization, sequencing of test patterns, or cache write-back. Useful

applications of the problems are found also in computational biology. The author proposes some new

efficient approaches, among them also three evolutionary ones and new genetic operators. There are

proposed: an efficient greedy algorithms Greedy Min Simplified – GMS_DOPI [Log06c, Log08d,

Log09a], two evolutionary algorithms MUT_DOPI (evolutionary algorithm with mutation) and

GA_DOPI (hybrid genetic algorithm) [Log06a], a parallel genetic algorithm using the new technology

MapReduce – Map Reduce Parallel Genetic Algorithm – MRPGA_DOPI [Log10c]. The new

proposed genetic operators – Simple Cycle Inversion Operator (SCIM), Cycle PMX (CPMX) and

Cycle OX (COX) [Log06a] – are used in the algorithms MUT_DOPI and GA_DOPI. The third

approach is distributed using the MapReduce paradigm and it is the most efficient one regarding the

quality of the results. Additionally, it is capable to work with large input data. There are offered also

the results from series of various experiments, as tables, graphics and statistical tests, which compare

the proposed methods with the present ones and certify their efficiency. The author offers also a

research Open Source project, available on: http://dopisolver.sourceforge.net/.

The fifth chapter presents algorithms and results regarding the Data Compaction Problem. In this

chapter are proposed some original algorithms for solving this problem, specifically the Test

Compaction Problem (TCP). This is also NP-hard. Beside issues like the low power dissipation and

the increase of defect coverage, test compaction is an important requirement regarding large scale

integration (LSI) testing. The overall cost of a VLSI circuit’s testing depends on the length of its test

sequence; therefore the reduction of this sequence, keeping the coverage, will lead to a reduction of

used resources in the testing process. In this paper we study test vectors over a five-valued logic. The

problem of finding minimal test sets is NP-complete. Consequently, an optimal algorithm has limited

practical use and is only applicable to small problem instances. The proposed algorithms are two

greedy ones, Greedy Naive Algorithm (GRNV_TCP) and Greedy Binary Tree Algorithm

(GRBT_TCP) [Log08a, Log08e], an evolutionary one Genetic Algorithm Test Compaction (GA_TCP)

[Log08b, Log09c] and a distributed evolutionary algorithm using the new technology MapReduce

MapReduce Parallel Evolutionary Algorithm (MRPEA_TCP) [Log10b]. There is also offered a

research Open Source project, available on: http://dcpsolver.sourceforge.net/.

7 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

The sixth and the last chapter of this dissertation contain conclusions and directions for future work,

followed by a bibliographical list. This list comprises over 130 sources used in the thesis elaboration.

The thesis is ending with four appendixes which contain instructions referring to the use of the Open

Source projects, as well as some larger sets of experiments for the both problems DOPI and TCP.

1.2 Index terms

Index terms used in thesis: NP-hard problems, digital circuit design, Very Large Scale Integration

(VLSI), Computer Aided Design (CAD), Backtracking, Greedy, graph theory, complexity,

evolutionary computation, Traveling Salesman Problem (TSP), Set Covering Problem (SCP), low

power, transition, total number of transitions, Greedy Min (GM), Greedy Min Simplified (GMS),

genetic algorithms, evolutionary algorithms, distributed algorithms, distributed genetic algorithms,

genetic operators, mutation operators, crossover operators, search operators, evaluation function,

fitness, selection, MapReduce technology, Map and Reduce functions, Apache Hadoop, Open Source

projects, Data Ordering Problem (DOP), Data Ordering Problem with Inversion (DOPI), Test

Compaction Problem (TCP), computational biology, deoxyribonucleic acid (DNA), random

algorithms, exact algorithm, optimal algorithms, optimization, statistical tests, student-t, H0

hypothesis, numerical experiments, lower bound, Partially Mapped Crossover (PMX), Cycle PMX

(CPMX), Ordered Crossover (OX), Cycle OX (COX), Don’t Care symbol, bus-invert paradigm,

compaction factor, compaction rate, dopiSolver, dcpSolver.

1.3 Original contributions and publications

DOP and DOPI refer to an important aspect regarding the optimization of the energy dissipation in the

integrated circuits, DCP the optimization of testing process. For the both problems are offered various

algorithms, also some ideas for future work. Among the proposed approaches there are also efficient

distributed algorithms using the MapReduce technology. The analyzed problems are interdisciplinary

extended to the computational biology domain, for example regarding the ordering and compaction of

DNA molecules. Suggestive results regarding this domain sustained graphically and by specific notes

are presented in two papers for the international conference BICS 2008. Extended versions for them

are published in the American Institute of Physics journal.

These results were presented among international conferences like EvoHOT 2006, ROSYCS 2006,

ISMVL 2006, DAS 2008 and BICS 2008. Original contributions exposed in thesis:

STRUCTURE, INDEX TERMS, ORIGINAL CONTRIBUTIONS 8

• Formalization of specific problems from VLSI-CAD: DOP, DOPI and DCP (4.2, 4.3, 5.2,

5.3);

• GMS_DOPI: a new greedy algorithm [Log06c] – (local search) for DOPI, with better results

than the used one in the industry – Greedy Min (4.5.4);

• MUT_DOPI: a simple evolutionary algorithm with mutation for DOP/DOPI, which leads to

enhancements towards all greedy methods, using a new mutation operator SCIM [Log06a]

(4.6.1);

• GA_DOPI: an efficient genetic algorithm for DOP/DOPI, using two new crossover operators

Cycle PMX and Cycle OX [Log06a] (4.6.2);

• MRPGA_DOPI: a distributed genetic algorithm for DOP/DOPI using the MapReduce

technology [Log10c] (4.6.3);

• experimental results for validate the enhancements brought by the grade of freedom of DOPI

regarding DOP. The DOPI greedy methods vs. DOPI ones, the greedy methods vs. GA_DOPI

and MRPGA_DOPI algorithms [Log06a, Log06c, Log08d, Log09a, Log10c] (4.6.3);

• statistical tests for comparing the greedy methods against evolutionary ones for DOP/DOPI

[Log06a] (4.7);

• GRNV_DCP and GRBT_DCP: two greedy algorithms for DCP [Log08a, Log08e, Log09b]

(5.7);

• GA_DCP: an efficient genetic algorithm for DCP [Log08b, Log09c] (5.8);

• MRPGA_DCP: a parallel genetic algorithm for DCP using MapReduce [Log10b] (5.9);

• experiments and charts for comparing the proposed approaches in pairs [Log08a, Log08b,

Log09b, Log09c, Log10b] (5.10);

• statistical tests for comparing greedy methods against the evolutionary ones for [Log10b,

Log10c] (5.10);

• dopiSolver and dcpSolver: research frameworks for DOP/DOPI and DCP, for

executing/extending the various algorithms: http://dopisolver.sourceforce.net and

http://dcpsolver.sourceforce.net;

• future work and new research directions for both problems (4.9, 5.11).

A list with publications explicitly referring the two optimization problems is give below.

Books:

Logofătu, D.: Algorithmen und Problemlösungen mit C++, pp. 402-411, Vieweg+Teubner-Verlag,

2010 (Germany).

9 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

Logofătu, D.: Eine praktische Einführung in C, pp. 207-208, entwickler.press, München, Germany,

2008 (Germany).

Logofătu, D.: Grundlegende Algorithmen mit Java, pp. 65-98:205-214, Vieweg-Verlag, Germany,

2008 (Germany).

Logofătu, D.: Algoritmi fundamentali in C++. Aplicaţii, pp. 127-154:265-273,Editura Polirom, Iaşi,

2007.

Logofătu, D.: Algoritmi fundamentali in Java. Aplicaţii, pp. 125-158:269-277, Editura Polirom, Iaşi,

2007.

Papers for international conferences:

Logofătu, D., Dumitrescu, D.: Distributed Genetic Algorithm for Data Ordering Problem with

Inversion Using MapReduce, 11th International Conference on Parallel Problem Solving from Nature,

PPSN, submitted, April 2010.

Logofătu, D., Dumitrescu, D.: Parallel Evolutionary Approach of Compaction Problem using

MapReduce, 11th International Conference on Parallel Problem Solving from Nature, PPSN,

submitted, April 2010.

Logofătu, D.: On the Compaction of DNA Sequence Vectors, Proceedings Bio-Inspired

Computational Methods Used for Difficult Problems Solving. Development of Intelligent and Complex

Systems (BICS 2008), pp. 25-36, Târgu Mureş, Romania, 2008.

Logofătu, D., Gruber, M.: Efficient Approaches for DNA Sequences Ordering, Proceedings Bio-

Inspired Computational Methods Used for Difficult Problems Solving. Development of Intelligent and

Complex Systems (BICS 2008), pp. 59-69, Târgu Mureş, Romania, 2008.

Logofătu, D.: Efficient Evolutionary Approach for the Test Compaction Problem, Proceedings 9th

International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, pp. 144-148,

Suceava, Romania, May 22-24, 2008.

Logofătu, D., Drechsler, R.: Comparative Study by Solving the Test Compaction Problem,

Proceedings 38th International Symposium on Multiple-Valued Logic (ISMVL '08), Dallas, USA, pp.

44-49, 2008.

STRUCTURE, INDEX TERMS, ORIGINAL CONTRIBUTIONS 10

Logofătu, D.: Greedy Approaches for the Data Ordering Problem with Inversion, Proceedings of

ROSYCS - Romanian Symposium on Computer Science, pp. 65-80, Iaşi, 2006.

Logofătu, D., Drechsler, R..: Efficient Evolutionary Approaches for the Data Ordering Problem with

Inversion, 3rd European Workshop on Hardware Optimization Techniques (EvoHOT), LNCS 3907,

pp. 320-331, Springer, Berlin/Heidelberg, 2006.

Drechsler, R., Drechsler, N.: Minimization of Transitions by Complementation and Resequencing

using Evolutionary Algorithms, In Proceedings of 21st IASTED International Multi-Conference

Applied Informatics (AI 2003), Innsbruck, 2003.

Drechsler, N., Drechsler, R.: Exploiting don’t cares during data sequencing using genetic algorithms,

ASP Design Automation Conf., pp. 303-306, 1999.

Murgai, R., Fujita, M., Oliveira, A.: Using complementation and resequencing to minimize transitions,

Design Automation Conf., pp. 694-697, 1998.

Murgai, R., Fujita, M., Krishnan, S. C.: Data sequencing for minimum-transition transmission, IFIP

Int’l Conf. on VLSI, 1997.

Stan, M., Burleson, W.: Limited-weight codes for low-power I/O, Int’l Workshop on Low Power

Design, 1994.

Journals, magazines:

Logofătu, D.: Static Test Compaction for VLSI Tests: an Evolutionary Approach, Advances in

Electrical and Computer Engineering, Vol. 8, Nr. 2, pp. 49-53, Romanian Academy of Technical

Sciences, 2008.

Logofătu, D.: DNA Sequences and their Compaction, BICS 2008: Proceedings of the 1st International

Conference on Bio-Inspired Computational Methods Used for Difficult Problems Solving:

Development of Intelligent and Complex Systems. AIP Conference Proceedings, Vol. 1117, Nr. 1, pp.

29-39, American Institute of Physics, 2009.

Logofătu, D., Gruber, M.: DNA Sequences and their Ordering, BICS 2008: Proceedings of the 1st

International Conference on Bio-Inspired Computational Methods Used for Difficult Problems

11 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

Solving: Development of Intelligent and Complex Systems. AIP Conference Proceedings, Vol. 1117,

Nr. 1, pp. 3-11, American Institute of Physics, 2009.

For solving DOP/DOPI and DCP were realized Open Source projects, available on

http://dopiSolver.sourceforge.net and http://dcpSolver.sourceforge.net.

Fig. 1.1. http://dopisolver.sourceforge.net/

These frameworks are flexible and offer extension facilities with new approaches for the problems.

The appendixes contain the usage instructions for the projects dopiSolver and dcpSolver from the

server sourgeforce.net, as well as detailed sets of experiments.

STRUCTURE, INDEX TERMS, ORIGINAL CONTRIBUTIONS 12

Fig. 1.2. http://sourceforge.net/projects/dcpsolver/

2

MapReduce

2.1 MapReduce Paradigm

The MapReduce technology is a distributed programming model introduced by Google. With this

model the user specifies the calculation with help of two functions, Map and Reduce [Dea08, Eka08,

Jin08, Llo10].

Fig. 2.1. MapReduce dataflow

13 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

The MapReduce technology uses these two abstractions, Map and Reduce, for allowing the

development of large scale distributed applications, if these applications permit it. Conceptual, the

functions Map and Reduce offered by user must have the form:

Map(k1, v1)  List(k2, v2)

Reduce(k2, List(v2))  List(v3)

The Map calls are distributed among more machines by automated partitioning of the input data.

Subsets of input data are parallel processed on different machines. The Reduce calls are also

distributed by using a partitioning function.

2.2 Advantages of using Apache Hadoop

Hadoop MapReduce is a batch data processing system for running applications which process vast

amounts of data in parallel, in a reliable and fault-tolerant manner on large clusters of compute nodes,

eventually running on commodity hardware. It comes with status and monitoring tools and offers a

clean abstraction model for programming supporting automatic parallelization and distribution.

A MapReduce job splits the input data into independent chunks (splits) which are then processed by

the map tasks in a completely parallel manner. The framework sorts the maps’ outputs and forward

them as input to the reduce tasks.

Hadoop comes with a distributed file system (HDFS) that creates multiple replicas of data blocks

and distributes them on compute nodes throughout the cluster to enable reliable, extremely rapid

computations. The compute nodes and the storage nodes are typically the same. This allows the

framework to effectively schedule tasks on the nodes where data is already present, resulting in very

high aggregate rate across the cluster.

The MapReduce framework consists of a single master JobTracker and one slave TaskTracker per

compute node. The master is responsible for scheduling the tasks for the map- and reduce-operations

on the slaves, monitoring them and re-executing the failed tasks. The slaves execute the tasks, as

directed by the master.

The applications specify the input/output locations, supply map and reduce functions and eventually

invariant (contextual) data. These comprise the job configuration. The Hadoop job client then submits

the job (java byte code packed in jar-archive) and configuration to the JobTracker which then

distributes them to the slaves; schedules the map-/reduce- tasks and monitors them, providing status

and diagnostic information to the job client.

3

Data Ordering Problem

Besides some already existing approaches, the author proposed new algorithms for the both problems DOP

and DOPI, among them three evolutionary ones, as well as new genetic operators. There are proposed a new

efficient greedy algorithms – Greedy Min Simplified – GMS_DOPI [Log06c, Log08d, Log09a], two

undistributed evolutionary algorithms MUT_DOPI (evolutionary algorithm with mutation) and GA_DOPI

(hybrid genetic algorithm) [Log06a], a parallel genetic algorithms using the MapReduce paradigm – Map

Reduce Parallel Genetic Algorithm – MRPGA_DOPI [Log10c]. The new proposed genetic operators –

Simple Cycle Inversion Operator (SCIM), Cycle PMX (CPMX) and Cycle OX (COX) [Log06a] – are used in

the algorithms MUT_DOPI and GA_DOPI. The distributed genetic approach is the best one regarding the

quality of the results. In addition, it is capable to deal with large data inputs. There are also offered many-

sided experiments results, in form of tables, charts and statistical tests, which compare and certify their

efficiency. The author offers as well a research Open Source project, available at

http://dopisolver.sourceforge.net/.

3.1 The Description of the problems DOP and DOPI

Definition 3.1. A transition is the position of a bit which change, i.e. two binar sequences are different

on the same position.

Definition 3.2. We denote as the inversion (complementation) of a binary word the operation which

changes every bit with its negation (complementation - 0 → 1, 1 → 0). We denote with w the

inversed (complemented) word for w.

Definition 3.3. Number of transitions. If a word wr is transmitted immediately followed by ws, the

number of transitions is given by the number of bits that change. This is:

∑
=

⊕=
k

j
sjrjsr wwwwd

1
),((3.1)

Here, the wrj denotes the jth bit of wr, and ⊕ the XOR operation.

15 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

The number of transitions is, in fact, the Hamming distance between wr and ws. Word reordering can

change the number of transitions significantly.

Definition 3.4. Total number of transitions. The total number of transitions is the sum of number of

transitions needed for the transmission of all the words. It is denoted with NT. If σ is a permutation of

{1, 2, …, n}, than the total number of transitions will be:

),(
1

1
)1()(∑

−

=
+=

n

j
jjT wwdN σσ

. (3.2)

Examples: w = 10110001, w = 01001110 and 0100110110 = .

For the problem DOPI (DOP with Inversion) we allow that some words are inverted by receiver.

Definition 3.5. Phase-assignment. The phase-assignment (polarity) δ is a function defined on {1,…,

n} with values in {0, 1}, which specify if a word is sent normal or complemented (negated, inverted).

Definition 3.6. DOP. Find a permutation σ of the bit strings w1, w2, …, wn such that the total number

of transitions:

),(
1

1
)1()(∑

−

=
+=

n

j
jjT wwdN σσ

 (3.3)

is minimized.

Definition 3.7. DOPI. Find a permutation σ and a phase-assignation δ of the bit strings w1, w2, …, wn

such that the total number of transitions:

),(
1

1

)1(
)1(

)(
)(∑

−

=

+
+=

n

j

j
j

j
jT wwdN δ

σ
δ
σ .

 (3.4)

is minimized.

The problems DOP and DOPI are NP-hard. Generally, if there are considered sequences with the same

length, the Hamming distance for pairs of them gives the total number o dissimilarities. We denote the

generalizations of these problems also with DOP and DOPI. There is given a set of n sequences with

the same length k over an alphabet A. In the case of DOPI is given also a permutation of length k,

which denotes the inversion (complementation) function. It is asked to find a permutation of the words

(in the case of DOPI also an assignation of them) which minimizes the total number of dissimilarities

(transitions).

DATA ORDERING PROBLEM 16

3.2 Previous research

In the past few years some heuristics were developed for both DOP and DOPI (most of them in

relation with the TSP problem):

1. Double Spanning Tree (DST) [Gar79]

2. Spanning Tree/Minimum Matching (ST-MM) [Gar79]

3. Greedy Min (GM) [Mur97]

4. Greedy Simple (GS) [Dre97]

5. Evolutionary Heuristics [Dre03]

The most powerful polynomial heuristic known so far is Greedy Min and it can be applied to both

DOP/DOPI:

1) Computes the Hamming distance for all (distinct) pairs of given words and selects the pair with

a minimum cost.

2) Chooses the most convenient pair of words. The beginning sequence will contain these two

words.

3) Builds progressively the sequence, adding in every step of the most convenient word (that was

not yet added). This word can be added either at the beginning or at the end of the sequence,

depending where the Hamming distance is minimal.

The EAs are the best algorithms regarding the quality of results. Such evolutionary approaches provide

better results than the above-presented Greedy Min, but with significantly more time resources. EAs

which perform high-quality optimizations are presented in [Dre97], [Dre03]. In [Dre03] are presented

evolutionary algorithms for both DOP and DOPI. For DOPI the mutation and crossover operators are

applied in parallel for creating new individuals. This is also a hybrid EA, since the initial individuals

are preprocessed using greedy methods. The results provided by the EA are better than the Greedy Min

results, but the maximal number of words is 100.

In [Mur98] a graph theory related model for DOPI is introduced, together with a relevant graph

theoretic background. For a DOPI instance with n words, each of length k, a multigraph can be created

accordingly. The vertices are the words, if they are in the same phase-assignment (either both 0 or both

1), then the distance between them is the same. Also, if they are in different phase-assignment, the

distance remains the same. There are two edges between two vertices (one if the words are in the same

phase, one for the case if they are transmitted in different phases). In this manner DOPI is transformed

in the equivalent NP-complete problem of finding the Hamiltonian path with the minimum length.

17 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

3.3 The algorithms RAN, EX and LB for DOP and DOPI

RAN is the simplest heuristic for generating start solution candidates for such problems. The

algorithm random (RAN) for DOP generates a random permutation and return it, together with the

related cost. For DOPI it will be generated a permutation and a bit string representing the assignation

[Log06a, Log07c].

The simplest optimal algorithm for DOP/DOPI is based on the exhaustive search. It runs through all

the permutations (assignations) and retains the one with minimum cost. This algorithm can be

improved using dynamic programming variations, branch-and-bound or linear programming. For

testing some basis cases there are implemented variants using brute-force.

The exact algorithm for DOP, EX, generates all permutations and keeps the first with a minimum cost.

The one for DOPI generates all possible permutation-assignation pairs and retains the first with

minimum cost [Log06a, Log07c].

The lower-bound algorithm uses the minimal spanning tree und proves to be very useful for evaluating

the efficiency of the proposed greedy and evolutionary algorithms.

3.4 The algorithm Greedy Min Simplified (GMS)

The algorithm Greedy Min Simplified (GMS) [Log06c, Log08d, Log09a] works, as well as Greedy

Min [Mur97], for the both problems, DOP and DOPI. The distinction is that, at every step, adding a

new word is allowed only at an end of the sequence (with the possibility to complement some words).

The explanation is that one spares time by testing only one ending and the performances are very near

Greedy Min, even better for large data sets. For the transmission operation (by dynamic testing or

among Internet), the time is a very important factor.

3.5 The algorithms MUT and GA for DOP and DOPI

MUT_DOPI [Log06a] is a simple approach which operates only on one single individual (initialized

with Greedy Min). There is proposed a new mutation operator, Simple Cycle Inversion Mutation

(SCIM) [Log06a], which is applied together with Simple Inversion Mutation (SIM) [Hol75]. This

algorithm accomplishes enhancements in a short execution time.

GA_DOPI [Log06a] provides enhancements using the classical scheme of the hybrid genetic

algorithms. The genetic operators are synchronously applied for permutation and bit string, with the

scope to keep the good trait of the individuals. On the individuals from the current population are

applied the mutation and crossover operators with a given probability, and the best populationSize

individuals are kept in the selection phase. The total number of transitions from the formula (3.2) is

used to measure the objective function for an individual:

DATA ORDERING PROBLEM 18

),(),(
1

1

)1(
)1(

)(
)(∑

−

=

+
+=

n

j

j
j

j
j wwdeval δ

σ
δ
σδσ

(3.5)

The crossover operators used by the evolutionary algorithm and lead to the quality results are the

classical Partially-Mapped Crossover – PMX [Gol85], Ordered Crossover – OX [Dav85] and two

derived ones proposed by the author: Cycle PMX (CPMX) [Log06a] and Cycle OX (COX) [Log06a].

They are alike with the 2-opt move, with the difference that the sequence is inversed between the cut

points. As operators, there are used the operators SIM and SCIM. The parameter settings are chosen

by experiments. Because the genetic algorithm is applied for different data, from very small to very

large, it becomes necessary to adapt these parameters.

3.6 The distributed parallel algorithm MRPGA for DOP and DOPI

It is proposed a parallel distributed algorithm MRPGA_DOPI (MapReduce Parallel Genetic

Algorithm) [Log10c] which use the MapReduce technology, the distributed programming model

introduced by Google and presented in the previous chapter. We use MapReduce for applying the

roulette-wheel method in parallel for more different sets of individuals. Every individual is a pair

(permutation, assignation) related to the input data set. The number of the sets of individuals

(populations) is given by the total number of individuals divided by the given factor of reduction

(reductionFactor). This number represents also the number of Reduce-tasks ran by Hadoop in parallel.

In the Map function, for every sequence will be randomly chosen the set of individuals where the

selection is done. In the Reduce function, the input key represents the number of the selection set and

the input values are the pairs permutation/assignation which constitute the set. There is applied a

selection with the roulette-wheel selection and the individuals from the next generation are written as

output. After the job termination, the individuals from the new generation are read from their files

wrote by the reduction nodes and follow a new ordering step. The implementation MRPGA_DOPI is a

Hadoop application wrote in Java. The binary version and the dependent libraries are archived in the

file dopiSolver.jar. The driver attached with the archive records the application Hadoop with the name

dopi.

19 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

ALGORITHM_ MRPGA_DOPI

 Initialize(populationSize)

 Initialize(crossoverRate)

 Initialize(mutationRate)

 Initialize(reductionFactor)

 Initialise_GreedyMin_individuals()

Initialise_Greedy1_individuals()

Initialise_Random_individuals()

def MRPGA_MAP(initialIndex,pair<permutation, assignation>) = {

reductionSetIndex = random(0.. reductonFactor-1)

 context.write(reductionSetIndex, pair<permutation, assignation>)

}

def MRPGA_REDUCE

(reductionSetIndex,Iterable< pair<permutation, assignation>>)= {

 Apply_Crossover_operators(numCrossovers);

 Apply_Mutation_operators(numMutatios);

Calculate_fitness(allNewIndividuals);

Remove_WorstInviduals (numCrossovers+numMutations);

for (pair<new_perm, new_assign> : allNewIndividuals)

context.write

(reductionSetIndex,pair<new_perm, new_assign>)

}

for(i ← 1; i ≤ numGenerations; step 1) execute

job← NewJob(MRPGA_MAP, MRPGA_REDUCE)

job.configuration.set(populationHDSFPath)

job.configuration.set_crossoverRate)

job.configuration.set_mutationRate)

job.configuration.setNumReduceTasks(reductonFactor)

job.submit_and_wait

collect_new_population

end_for

 END_ALGORITHM_ MRPGA_DOPI
 Fig. 3.1. Pseudo code for MRPGA_DOPI.

DATA ORDERING PROBLEM 20

Fig. 3.2. Implementation MRPGA_DOPI with Java and Hadoop.

3.7 Numerical experiments and statistical tests

The numerical experiments are concentrated on DOPI variant, which leads to better results than the

DOP one (because the freedom grade in choosing the assignation). This freedom paradigm increases

considerably the complexity of the problem. The test program initializes random instances with a

uniform distribution for every given pair (n, k): n sequences, every of length k. For these instances are

applied the presented algorithms.

Fig. 3.3. Values RAN–EX, GMS–EX, GM–EX and LB–EX for the parameters n=9, k=500, 1000, ..., 10000.

r2

r1

21 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

3.4. Values GM─GMS (left) and execution times (sec., right) for 1000 experiments, n = 1000, 1500..7000, k = 50,

100..1000. The positive values left represent more efficient results for GMS. The execution time for GMS is considerably
smaller than the one for GM.

Fig. 3.5. Medians of all values GM_DOPI and MRPGA_DOPI and statistical student-t tests which certify the superiority
of the method MRPGA_DOPI against GM_DOPI with a probability 0.999. Used parameters: 50 runs, n=100, k=200 (left),

5000 (right).

The thesis contains numerous experiments and statistical tests for comparing the proposed algorithms

in pairs, the quality of their results, as well as the execution time.

3.8 Conclusions and future work

Beside other algorithms, we presented here two greedy approaches and three evolutionary ones. The

algorithms random, optimal and lower bound helped on framing the quality of the results. One of the

greedy approaches (GMS) is new and it proves to be very efficient, especially for large data inputs.

The evolutionary approaches are recommended when the focus is the quality of the results and the

time/space resources are irrelevant. One of the future work proposals could be the profitable

combination of these techniques and testing them on extended experiments scenarios, many-sided also

from the distribution of the input data point of view. The evolutionary algorithm MRPGA_DOPI is

the best with respect of the quality of the results. Due the use of the MapReduce technology, it can be

used also with large data sets, which is a real advantage for the applications in the industrial field.

GM-GMS

-500

-400

-300

-200

-100

0

100

200

300

400

1 49 97 145 193 241 289 337 385 433 481 529 577 625 673 721 769 817 865 913 961 1009 1057 1105 1153 1201

0

100

200

300

400

500

600

1 49 97 145 193 241 289 337 385 433 481 529 577 625 673 721 769 817 865 913 961 1009 1057 1105 1153 1201

time
GMS

time
GM

4

Data Compaction Problem

In this chapter the author proposes a set of original algorithms for solving the Test Compaction Problem

(TCP). This important problem is NP-hard and refers the activity of testing digital circuits, playing an

important role in their design. There are proposed two greedy algorithms Greedy Naive Algorithm

(GRNV_TCP) and Greedy Binary Tree Algorithm (GRBT_TCP) [Log08a, Log08e], an efficient evolutionary

algorithm Genetic Algorithm Test Compaction (GA_TCP) [Log08b, Log09c] and a distributed evolutionary

algorithm based on the new technology MapReduce – MapReduce Parallel Evolutionary Algorithm

(MRPEA_TCP) [Log10b]. Additionally, there is also offered a scientific project Open Source available on:

http://dcpsolver.sourceforge.net/.

4.1 Problem Description TCP

Definition 4.1. Compaction Set–CS. Every test is seen as a string which contains characters from the

set CS = {‘0’, ‘1’, ‘U’, ‘Z’, ‘X’}. ‘X’ is the “Don’t Care” characters.

Definition 4.2. Compatible characters and merge-operation. Two characters c1 and c2 are

compatible if they are the same or if one of them is ‘X’. We will denote this relation with ‘≅’ and its

negation with ‘≆’.

Definition 4.3. Compatible tests and merge operation. Two given tests are compatible if they have the

same length and all corresponding characters (the same position) in pairs are compatible. The merged

test is obtained by substituting every character sequentially with the merged character from the

corresponding position in the two given strings. We will denote this relation also with ‘≅’ and its

negation with ‘≆’.

23 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

Definition 4.4. Coverage Set. For two given sets of tests S1 = {t11, t12, .., t1i} and S2 = {t21, t22, …, t2j},

S2 is a coverage set of S1 if for every test t in S1 there is a compatible one in S2.

Definition 4.5. Test Compaction Problem (TCP): Given a set of tests S1 = {t11, t12, …, t1i}, every test

t1k, for k=1, .., i, has the same length. Find a coverage set S2 = {t21, t22, …, t2j} of S1, such that the

cardinality of S2 (number of elements) is minimal over all coverage sets of S1.

The DNA sequence compaction problem is the same as the one of VLSI circuit’s testing; only the

characters’ alphabet is different. We will name the general problem as the Data Compaction Problem

(DCP): Given n sequences of length k, each of them containing symbols from a given alphabet A and

a symbol ’X’ meaning „Don’t Care”, you need to find a set of compacted sequencences that covers the

initial one.

4.2 Optimal algorithm for TCP

The optimal algorithm uses backtracking. The merge operation is applied on pairs of compatible tests

and the algorithm is called recursively over all obtained vectors. The boolean variable compact verifies

if there are compatible pairs, otherwise remains set on true. Due to its exponential complexity, this

algorithm can be applied in practice only for small dimensions of the problem.

4.3 Greedy algorithms GRNV and GRBT for TCP

The author proposed GRNV and GRBT in [Log08a, Log08e, Log09b]. The transformation is done

over the set of tests and operates only with the processed set. On each step, the first two compatible

tests are substituted with the result of their fusion. If there are no more tests found, then current set of

tests constitutes the result. The complexity is polynomial O(n3). An important factor in the execution

of the greedy algorithm is the choice of the two compatible tests for fusion. This can influence

significantly the quality of the results. There are two possibilities. For the first one the tests are stored

in a one-dimensional vector structure and the algorithm fuses the first two compatible tests found. We

name this algorithm GRNV – Greedy Naive. For the second case it is used a binary search tree where

the tests are descending ordered after their number of ‘X ‘symbols. We name this algorithm GRBT -

Greedy Binary Search Tree.

DATA COMPACTION PROBLEM 24

4.4 Evolutionary algorithm GATC for TCP

This algorithm is based on the classical scheme of the genetic algorithms, with the difference that the

initial population contains clones of the start sequence. The mutations are applied on the current

population and the best individuals are kept for the next iteration. After a certain number of iterations,

we apply for every individual obtained the greedy algorithm GRBT previous described for obtaining

the covering set of compacted tests. The particularity of the algorithm is the initialization phase using

clones of the sequences and the final part that uses the greedy method. A candidate solution is a

covering for the start sequence. This implies a set of tests which at least a compatible test for each test

from the starting set of tests. A population is a set of such candidate solutions. The algorithm applies

successively the mutation operators on the population’s individuals, replacing two random compatible

tests with the result of their fusion. For the selection function it is used the total number of X symbols:

∑
=

=
n

i
inX testXtttN

1
21)(#),...,,(, (4.1)

where #X() is a function that returns the number of ‘X’ characters from the input test.

4.5 Distributed evolutionary algorithm MRPEA for TCP

The proposed parallel evolutionary algorithm is based on GATC [7] and uses Hadoop. This is the

OpenSource MapReduce [Dea08] framework implementation from Apache. A MapReduce job splits

the input data into independent chunks (splits) which are then processed by the map tasks in a

completely parallel manner. The framework sorts the maps’ outputs and forward them as input to the

reduce tasks.

The parallel evolutionary algorithm runs for a given number of generations. For each generation, it

generates a random number of permutations of the “current” set of sequences, splits the set of

permutations in several subsets (map operation) and executes GATC [Log08b, Log09c] on each of

them during the reduce operation. Afterwards, it collects the best individuals (permutations) resulted

on each Reducer node in the cluster and concatenate them. The result constitutes the new set of

sequences for the next generation. A MapReduce job splits the input data into independent chunks

(splits), which are then processed by the map tasks in a completely parallel manner. The framework

sorts the maps’ outputs and forwards them as input to the reduce tasks. The map operation associates

for each generated permutation a subset index between 0 and reductionFactor–1 randomly, as output

key. This index represents the partition for reduction. In the Shuffle & Sort phase, the sequences get

sorted after their indices, and each reducer node receives and executes GATC in one call over its

subset of sequences having the same index. The Hadoop application for DCP is available as the Open

Source project “dcpSolver” on sourceforge.net. The Java binary application and its dependent libraries

25 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

are archived in “dcpSolver.jar”. The archive's entry point (dcpsolver.DcpSolverDriver) is a Hadoop

program driver that registers the DcpSolver's application (dcpsolver.DcpSolverJob). The start

command is "hadoop jar dcpSolver.jar", and it gets the name of the DcpSolver's application: dcp.

ALGORITHM_MRPEA_DCP

 initialize(currentSequenceSet)

 initialize(mutationRate)

 initialize(reductionFactor)

 for (i ← 1; i ≤ numGenerations; step 1)

 population ← GenerateRandomPermutations(currentSequenceSet)

 def MRPGA_TCP_MAP(seqIndex, sequence) =

 context.write(random(0.. reductionFactor−1), sequence)

 def MRPGA_TCP_REDUCE(subsetIndex, Iterable<sequence>)= {

 // run GATC on subset

numMutations ← populationSize*mutationRate

apply_Mutation_Operators(numMutatios);

 calculate_Fitness(allNewIndividuals);

 remove_Worst_Inviduals (populationSize/2);

 complete_With_Copy_Individuals(populationSize/2)

 context.write(subsetIndex, best_element(individuals))

 }

 job← NewJob(MRPGA_TCP_MAP, MRPGA_TCP_REDUCE)

job.configuration.setNumReduceTasks (reductionFactor)

 job.submit_and_wait

 currentSequenceSet = concatenate_reducers_parts(job)

 endfor

 return currentSequenceSet

END_ ALGORITHM_MRPEA_DCP

DATA COMPACTION PROBLEM 26

4.6 Experimental results and statistical tests

Regarding the proposed algorithms for TCP there are offered many-sided experiments, which compare

their efficiency in pairs. For example, in over 600 tested cases, with n between 5 and 30 and k between

20 and 40, only in 10 cases had OPT better results as GRNV.

Other experiment compares the algorithms GRNV and GRBT, 100 ≤ n ≤ 1100, 25 ≤ k ≤ 1025 and

different compaction factors (13, 25, 38, 50, 62, 75, 88).

84%

11%
5%

Compaction Factor = 13
GRBT<GRNV GRBT=GRNV GRBT>GRNV

71%

16%

13%

Compaction Factor = 25
GRBT<GRNV GRBT=GRNV GRBT>GRNV

20%

27%
53%

Compaction Factor = 50
GRBT<GRNV GRBT=GRNV GRBT>GRNV

9%

47%

44%

Compaction Factor = 62
GRBT<GRNV GRBT=GRNV GRBT>GRNV

2%

60%

38%

Compaction Factor = 75
GRBT<GRNV GRBT=GRNV GRBT>GRNV

0%

71%

29%

Compaction Factor = 88
GRBT<GRNV GRBT=GRNV GRBT>GRNV

Fig. 4.1. Case numbers GRBT<GRNV, GRBT=GRNV and GRBT>GRNV with 100 ≤ n ≤ 1100, 25 ≤ k ≤ 1025,

compaction factor = 13, 25, 50, 62, 75 and 88 – 1000 runs for every compaction factor.

0

500

1000

1500

2000

2500

3000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

#c
as

es
 (G

RB
T?

GR
NV

)

compaction factor

GRBT vs. GRNV relativ to compaction factor for
n=100..1100, k=25..1025; 2583 cases

GRBT<GRNV

GRBT>GRNV

GRBT=GRNV

Fig. 4.2. Evolution of the difference GRBT─GRNV among 258319 experiments with

100 ≤ n ≤ 1100, 25 ≤ k ≤ 1025, compaction factor = 5, 10, 15... 95.

The previous 49077 experiments were globally statistic evaluated: difference (GRBT─GRNV) mean

is −0.79, execution time (time_GRBT−time_GRNV) mean is −0.52. These results confirm the

efficiency of the GRBT from both points of view, quality of results and execution time.

27 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

Fig. 4.3. Left: the distribution on intervals of difference GRBT─GRNV among 49077 experiments with 100 ≤ n ≤ 1100,
25 ≤ k ≤ 1025, compaction factor = 5, 10, 15... 95. Right: Distribution of the time difference among the 9915 tests for that

GRBT<GRNV and the execution time GRBT is smaller as the GRNV one, the reference are all tests where GRBT is better as
GRNV.

Fig. 4.4. Medians and student-t statistical tests confirming the superiority of the method MRPEA for TCP against GRBT
and GRNV with a probability of 0.95. Left: 50 runs, cf=20, n=1000, k=2000. Right: 150 runs, cf=40, n=100, k=200.

Fig. 4.5. Experimental results for sequence sets with n = 100 to 1000, step 100, k = 50 to 550, step 100, pf=3,

 (a) cr= 30, (b) cr = 40, (c) cr = 50, (d) cr = 60. Green (GRBT−MRPEA), red (GRNV−MRPEA).

DATA COMPACTION PROBLEM 28

4.7 Conclusions and future work

After a formal description of TCP, it is presented an optimal solution based on the backtracking

method. Its complexity is exponential. Therefore it can be used only on very small data sets.

Additionally, there are presented two greedy methods and an evolutionary one, applied on

representative data sets. The experiments show the very good quality of results provided by the

proposed methods, but also the differences (quality, execution time) between them related to different

parameters for the input data and the compaction factor. The term of compaction factor is introduced

here and proves to be a primal element in designing and choosing the algorithm for a specific data set.

In this chapter there are proposed also original algorithms for solving the test compaction problem

(TCP). This important problem is NP-hard. It refers to the testing activity for the integrated circuits as

plays a base role in designing them. The proposed algorithms are two greedy ones, Greedy Naive

Algorithm (GRNV_TCP) and Greedy Binary Tree Algorithm (GRBT_TCP) [Log08a, Log08e], an

efficient evolutionary one Genetic Algorithm Test Compaction (GA_TCP) [Log08b, Log09c] and a

distributed evolutionary algorithm using the MapReduce technology, MapReduce Parallel

Evolutionary Algorithm (MRPEA_TCP) [Log10b]. As well, it is offered a research open source

project available at:

http://dcpsolver.sourceforge.net/.

It comprises the implementations of the presented algorithms and data sets for testing; it can be used

for research purposes. The experiments show the data structure of binary tree is more efficient for the

greedy algorithm and a smaller than 50% compaction rate. The behavior of the proposed approaches

variates right with different parameters: number of tests, test length, compaction rate. The quality of

the provided results by the greedy algorithms could be improved by adapting the data structure to the

different parameters. Improvements could be done also by the implementation methods. Other

direction could be the classification of the sequences with more Don’t Cares on the same positions (or

other criteria) and the division of the input data in independent sets, which are solved with different

algorithms, then the combination step between these results. The presented algorithms could be refined

by adding some sophisticated techniques, like using Tabu-lists or improving the search tree with an A*

algorithm. Finding an efficient lower bound algorithm can enriched the future research in the field.

The transformation of a problem instance in another known problem instance, for example SAT, and

solving it with a specific solver could bring another useful insights.

Bibliography

 [Adl94] Adleman, L. M.: Molecular Computation of Solutions to Combinatorial Problems,

Science, vol. 266, pp. 1021-1024, 1994.

[Adl83]

Adleman, L.M., Promerance, C., Rumely, R.S.: On distinguishing prime numbers from

composite numbers, Annals of Mathematics 117 (1983), pp. 173-206, 1983.

[Agr04]

Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P, Annals of Mathematics 160

(2004), pp. 781-793, 2004.

[Alo06] Alon, N., Moshkovitz, D., Safra, M.: Algorithmic construction of sets for k-restrictions,

ACM Transactions on Algorithms (TALG), v. 2, n. 2, pp. 153-177, 2006.

[App03] Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman

problem, INFORMS Journal of Computing 15 (2003), pp. 82-92, 2003.

[App07]

Applegate, D.L., Bixby, R., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem:

A Computational Study, Princeton University Press, 2007.

[Aro98] Arora, S.: Polynomial Time Approximation Schemes for Euclidian Travelling Salesman

and Other Geometric Problems, Journal of the ACM, Vol. 45, No. 5, pp. 753-782, 1998.

[Bak87]

Baker, J.E.: Reducing bias and inefficiency in the selection algorithm, Proceedings of

the International Conference on Genetic Algorithms, vol. 2, pp. 14-21, 1987.

[Boo87]

Booker, L.: Improving Search in Genetic Algorithms, Genetic algoritms and simulated

annealing, Davis, L. (ed.), Morgan Kaufmann Publishers, pp. 61-73, 1987.

[Bli95]

Blicke, T., Thiele, L.: A Comparison of Selection Schemes used in Genetic Algorithms,

2. Ed., TIK Report No. 11, Computer Engineering and Communication Networks Lab

(TIK), Swiss Federal Institute of Technology (ETH), Zürich, 1995.

[Car06] Cardei, M., Wu, J.: Energy-efficient coverage problems in wireless ad-hoc sensor

networks, Computer Communications, v. 29, n. 4, pp. 415-420, 2006.

[Cha92] Chandrakasan, A. P., Potkonjak, M., Rabaey, J., Brodersen, R. W.: HYPER-LP: a

system for power minimization using architectural transformations, Int’l Conf on CAD,

pp. 300-303, 1992.

[Chr76]

Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman

problem, Technical Report 388, Graduate School of Industrial Administration,

Carnegie-Mellon University, Pittsburgh, 1976.

[Coo71] Cook, S. A., The complexity of theorem-proving procedures, Proceedings of the Third

Annual ACM Symposium on Theory of Computing, pp. 151-158, Shaker Heights, Ohio,

USA, 1971.

BIBLIOGRAPHY 30

[Cor01] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.: Introduction to Algorithms, 3rd

Edition, MIT Press, Boston, 2003.

[Dav85] Davis, L.: Applying adaptive algorithms to epistatic domains, Proceedings of IJCAI, pp.

162-164, 1985.

[Dav91] Davis, L.: Handbook of Genetic Algorithms, van Nostrand Reinhold, New York, 1991.

[Dav60]

Davis, M., Putnam, H., A Computing Procedure for Quantification Theory, Journal of

the ACM 7 (1), pp. 201-215, 1960.

[Dav62]

Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving,

Communications of ACM 5(7), pp. 394-397, 1962.

[Dea08]

Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters,

Commun. ACM, 51(1), pp. 107-113, 2008.

[Dev95] Devadas, S., Malik, S.: A survey of optimization techniques targeting low power VLSI

circuits, Design Automation Conf., pp. 242-247, 1995.

[Dor96] Dorigo, M., Gambardella, L.M.: Ant Colonies for the Traveling Salesman Problem,

Universitet Libre de Bruxelles, Belgium, 1996.

[Dre02] Drechsler, R., Drechsler, N.: Evolutionary Algorithms for Embedded System Design,

Kluwer Acadmeic Publisher, 2002.

[Dre03] Drechsler, R., Drechsler, N.: Minimization of Transitions by Complementation and

Resequencing using Evolutionary Algorithms, In Proceedings of 21st IASTED

International Multi-Conference Applied Informatics (AI 2003), IASTED International

Conference on Artificial Intelligence and Applications (AIA 2003), Innsbruck, 2003.

[Dre97] Drechsler, R., Göckel, N.: A genetic algorithm for data sequencing. Electronic Letters,

33(10), pp. 843-845, 1997.

[Dre98] Drechsler, R.: Evolutionary Algorithms for VLSI CAD, Kluwer Academis Publisher,

1998.

[Dre99] Drechsler, N., Drechsler, R.: Exploiting don’t cares during data sequencing using

genetic algorithms. In ASP Design Automation Conf., pp. 303-306, 1999.

[Dum00] Dumitrescu, D., Lazzerrini, B., Jain, L.C.: Evolutionary Computation, CRC Press, 2000.

[Dum06]

Dumitrescu, D.: Algoritmi genetici şi strategii evolutive - aplicaţii în Inteligenţa

Artificială şi în domenii conexe, reeditare, Editura Albastră, 2006.

[Edm65]

Edmonds, J.: Minimum partition of a matroid into independent subsets, Journal of

Research of the National Bureau of Standards B 69 (1965), pp. 67-72, 1965.

[Eka08] Ekanayake, J., Pallickara, S., Fox, G.: Mapreduce for data intensive scientific analyses,

ESCIENCE ’08: Proceedings of the 2008 Fourth IEEE International Conference on

eScience, IEEE Computer Society, pp. 277-284, Washington, DC, USA, 2008.

31 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

[Fei98] Feige, U.: A Threshold of Ln N for Approximating Set Cover, Journal of the ACM

(JACM), v. 45, n. 4, pp. 634-652, 1998.

[Fed95] Fredman, M. L., Johnson, D. S., McGeoch, L. A., Ostheimer, G.: Data Structures for

Travelling Salesmen, Journal of Algorithms 18, pp. 432-479, 1995.

[Fog66] Fogel, L.J., Owens, A.J., Walsh, M.J., Artificial Intelligence through Simulated

Evolution, Wiley, New York, 1966.

[Gar79] Garey, M. R., Johnson, D. S.: Computers and Intractability – A Guide to NP-

Completeness, Freeman, San Francisco, 1979.

[Gar97] Garzon, M., Deaton, R., Neathery, P., Murphy, R. C., Stevens Jr., S. E., Franceschetti,

D. R.: A new metric for DNA computing, Genetic Programming 1997, Proceedings of

the Second Annual Conference, Stanford University, pp. 479-490, AAAI, 1997.

[Gen00] Gen, M., Cheng, R.: Genetic Algorithms and Engineering Optimization, John Wiley

Sons Inc., USA, 2000.

[Ghe03] Ghemawat, S., Gobioff, H., Leung, S., -T: The google file system, SIGOPS Oper. Syst.

Rev., 37(5), pp. 29-43, 2003.

[Gol85] Goldberg, D. E., Lingle, R.: Alleles, loci, and the travelling salesman problem, Int’l

Conference on Genetic Algorithms, pp. 154-159, 1985.

[Guo01] Guo, R., Pomeranz, I., Reddy, S. M., On improving static test compaction for sequential

circuits, VLSI Design, Fourteenth International Conference, pp. 111-116, 2001.

[Hel70] Held, M., Karp, R. M.: The traveling-salesman problem and minimum spanning trees,

Operations Research 18, pp. 1138-1162, 1970.

[Hel71]

Held, M., Karp, R.M.: The travelling-salesman problem and minimum spanning trees,

part II. Mathematical Programming 1, pp. 6-25, 1971.

[Hel98] Helsgaun, K.: An Effective Implementation of the Lin-Kernighan Traveling Salesman

Heuristic/Roskilde University, Writings on Computer Science, 1998.

[Hel00]

Helsgaun, K.: An effective implementation of the Lin-Kernighan Traveling Salesman

Heuristic, European Journal of Operation Research 126, pp. 106-130, 2000.

[Hel06]

Helsgaun, K.: An Effective Implementation of K-opt Moves for the Lin-Kernighan TSP

Heuristic / Roskilde University, Writings on Computer Science, 2006.

[Hig06] Higami, Y., Kajihara, S., Pomeranz, I., Kobayashi, S., Takamatsu, Y.: On Finding Don’t

Cares in Test Sequences for Sequential Circuits, IEICE Transactions on Information

and Systems, v. E89, n. 11, 2006.

[Hoc98] Hochbaum, D., S., Pathria, A.: Analysis of the greedy approach in problems of

maximum k-coverage, Naval Research Logistics, v. 45, n. 6, pp. 615-627, 1998.

[Han95]

Hansen, N., Ostermeier, A., Gawelczyk, A.: On the Adaptation of Arbitrary Mutation

Distributions in Evolution Strategies: The Generating Set Adaptation, Proceedings of

BIBLIOGRAPHY 32

the Sixth International Conference on Genetic Algorithms, Morgan Kaufmann, pp. 57-

64, 1995.

[Hol75] Holland, J. H.: Adaption in Natural and Artificial Systems, The University of Michigan

Press, Ann Arbor, MI, 1975.

[Hur04]

Hurkens, C.A.J., Woeginger, G.J.: On the nearest neighbour rule for the traveling

salesman problem, Operations Research Letters 32 (2004), pp. 1-4, 2004.

[Ima94] Iman, S., Pedram, M.: Multilevel network optimization for low power, Int’l Conf. On

CAD, pp. 372-377, 1994.

[Jin08]

Jin, C., Vecchiola, C., Buyya, R.: MRPGA: An extension of mapreduce for parallelizing

genetic algorithms, eScience ’08, Proceedings of the 2008 Fourth IEEE International

Conference on eScience, pp. 214-221, 2008.

[Joh95] Johnson, D. S., McGeoch, L. A.: The Traveling Salesman Problem: A Case Study in

Local Optimization, 1995.

[Joh96]

Johnson, D. S., McGeoch, L. A., Rothberg, E. E.: Asymptotic Experimental Analysis for

the Held-Karp Traveling Salesman Bound, Proceedings of the Annual ACM-SIAM

Symposium on Discrete Algorithms (1996), pp. 341-350, 1996.

[Kar72] Karp, M. R.: Reductibility Among Combinatorial Problems, Complexity of Computer

Computations (Symposium Proceedings), Plenum Press, 1972.

[Knu97] Donald E. Knuth, The Art of Computer Programming, Volume I: Fundamental

Algorithms, Addison-Wesley Longman, Amsterdam; Ed. 3, 1997.

[Kre99] Donald L. Kreher, Douglas R. Stinson, Combinatorial algorithms. Generation,

Enumeration, and Search, CRC Press, 1999.

[Lad75]

Ladner, R.E.: On the structure of polynomial time reducibility, Journal of the ACM 22

(1975), pp. 155-171, 1975.

[Lan60]

Land, A.H., Doig, A.G.: An automatic method of solving discrete programming

problems, Econometrica 28 (1960), pp. 497-520, 1960.

[Lin93] Lin, S., Kernighan, B. W.: An Effective Heuristic Algorithm for the Travelling-

Salesman Problem, In Operations Research 21, pp. 498-516, 1973.

[Lit63]

Little, J.D.C., Murty, K.G., Sweeny, D.W., Karel, C.: An algorithm for the traveling

salesman problem, Operations Research 11 (1963), pp. 972-989, 1963.

[Llo10] Llora, X, Verma, A., Campbell, R. H., Goldberg, D., E.: When Huge is Routine: Scaling

Genetic Algorithms and Estimation on Distribution Algorithms via Data-Intensive

Computing, Parallel and Distributed Computational Intelligence, pp. 11-41, Springer,

2010.

[Log05]

Logofătu, D.: Programare dinamică: sume de puteri , GInfo 15/2, pp. 40-43, 2005.

33 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

[Log06a] Logofătu, D., Drechsler, R..: Efficient Evolutionary Approaches for the Data Ordering

Problem with Inversion, 3rd European Workshop on Hardware Optimization Techniques

(EvoHOT), LNCS 3907, pp. 320-331, Springer, Berlin/Heidelberg, 2006.

[Log06b] Logofătu, D.: Algorithmen und Problemlösungen mit C++, pp. 388-397, Vieweg-

Verlag, 2006.

[Log06c] Logofătu, D.: Greedy Approaches for the Data Ordering Problem with Inversion,

Proceedings of ROSYCS - Romanian Symposium on Computer Science, pp. 65-80, Iaşi,

2006.

[Log06d] Logofătu, D.: Problema ordonării datelor cu şi fără inversiune, GInfo 16/2, pp. 8-14,

2006.

[Log07a] Logofătu, D.: Algoritmi fundamentali in C++. Aplicaţii, pp. 127-154:265-273, Editura

Polirom, Iaşi, 2007.

[Log07b] Logofătu, D.: Algoritmi fundamentali in Java. Aplicaţii, pp. 125-158:269-277, Editura

Polirom, Iaşi, 2007.

[Log07c] Logofătu, D.: Grundlegende Algorithmen mit Java, pp. 65-98:205-214, Vieweg-Verlag,

Germany, 2008.

[Log08a] Logofătu, D., Drechsler, R.: Comparative Study by Solving the Test Compaction

Problem, Proceedings 38th International Symposium on Multiple-Valued Logic (ISMVL

'08), Dallas, USA, pp. 44-49, 2008.

[Log08b] Logofătu, D.: Efficient Evolutionary Approach for the Test Compaction Problem,

Proceedings 9th International Conference on DEVELOPMENT AND APPLICATION

SYSTEMS, pp. 144-148, Suceava, Romania, May 22-24, 2008.

[Log08c] Logofătu, D.: Eine praktische Einführung in C, pp. 207-208, entwickler.press,

München, Germania, 2008.

[Log08d] Logofătu, D., Gruber, M.: Efficient Approaches for DNA Sequences Ordering,

Proceedings Bio-Inspired Computational Methods Used for Difficult Problems Solving.

Development of Intelligent and Complex Systems (BICS 2008), pp. 59-69, Târgu Mureş,

România, 2008.

[Log08e] Logofătu, D.: On the compaction of DNA Sequence Vectors, Proceedings Bio-Inspired

Computational Methods Used for Difficult Problems Solving. Development of Intelligent

and Complex Systems (BICS 2008), pp. 25-36, Târgu Mureş, România, 2008.

[Log09a] Logofătu, D., Gruber, M.: DNA Sequences And Their Ordering, American Institute of

Physics, Vol. 1117, pp. 3-11, 2009.

[Log09b]

Logofătu, D.: DNA Sequences And Their Compaction, American Institute of Physics,

BIBLIOGRAPHY 34

 vol. 1117, pp. 29-39, 2009.

[Log09c]

Logofătu, D.: Static Test Compaction for VLSI Tests: an Evolutionary Approach,

Advances in Electrical and Computer Engineering, pp. 49-53, 2009.

[Log10a] Logofătu, D.: Algorithmen und Problemlösungen mit C++, pp. 402-411,

Vieweg+Teubner-Verlag, 2010.

[Log10b] Logofătu, D., Dumitrescu, D.: Parallel Evolutionary Approach of Compaction Problem

Using MapReduce, 11th International Conference on Parallel Problem Solving from

Nature, Cracovia, Polonia, 2010. (submited)

[Log10c] Logofătu, D., Dumitrescu, D.: Distributed Genetic Algorithm for Data Ordering

Problem with Inversion Using MapReduce, 11th International Conference on Parallel

Problem Solving from Nature, Cracovia, Polonia, 2010. (submited)

[Lou03] Lourenço, H. R., Martin, O. C., Stützle, T.: Iterated Local Search, In Glover, F. (Ed.),

Kochenberger, G. (Ed.): Handbook of Methaeuristics, Kluwer Academic Publishers, pp.

321-353, 2003.

[Lun94] Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems,

Journal of the ACM (JACM), v. 41 n. 5, pp. 960-981, 1994.

[Mat10]

Matthews, S. J., Williams, T. L.: MrsRF: an efficient MapReduce algorithm for

analyzing large collections of evolutionary trees, BMC Bioinformatics, 11(1), doi:

10.1186/1471-2105-11-S1-S15, 2010.

[Mal03] El-Maleh, A., Osais, Y.: Test vector decomposition based static compaction algorithms

for combinatorial circuits, ACM Trans. Des. Autom. Electron. Syst., vol. 8, pp. 430-459,

2003.

[Maz98] Mazumder, P., Rudnick, E.: Genetic Algorithms for VLSI Design, Layout & Test

Automation, Prentice Hall, 1998.

[Mic94] De Micheli, G.: Synthesis and Optimization of Digital Circuits, McGraw-Hill, Inc.,

1994.

[Mic96] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, Ed. 3rd,

Springer-Verlag, Berlin Heidelberg New York, 1996.

[Mic07]

Michiels, W., Aarts, E., Korst, J.: Theoretical Aspects of Local Search, Springer, Berlin,

2007.

[Mil05] Milenkovic, O., Kashyap, N.: DNA Codes that Avoid Secondary Structures,

Proceedings of IEEE International Symposium on Information Theory, Adelaide,

Australia, 2005.

[Mil06] Milenkovic, O., Kashyap, N.: On the Design of Codes for DNA Computing, Coding and

Cryptography (Lecture Notes in Computer Science 3969), pp. 100-119, Springer Verlag,

Berlin-Heidelberg, Germany, 2006.

35 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

[Mil04] Miltersen, P. B., MILP, ILP and TSP, Course Notes for Search and Optimization,

http://www.daimi.au.dk/dSoegOpt/ilp.pdf, Spring, 2004.

[Mur07] Murray, A., T., Kim, K., K., Davis, J., W., Machiraju, R., Parent, R.: Coverage

optimization to support security monitoring, Computers, Environment and Urban

Systems, vol. 31, n. 2, pp 133-147, 2007.

[Mur97] Murgai, R., Fujita, M., Krishnan, S. C.: Data sequencing for minimum-transition

transmission, IFIP Int’l Conf. on VLSI, 1997.

[Mur98] Murgai, R., Fujita, M., Oliveira, A.: Using complementation and resequencing to

minimize transitions, Design Automation Conf., pp. 694-697, 1998.

[Mur94] T. Murata, H. Ishibuchi, Performance evaluation of genetic algorithms for flow shop

scheduling problems, International Conference on Evolutionary Computation, pp. 812–

817, 1994.

[Müh94] Mühlenbein, H.: The Breeder Genetic Algorithm - a provable optimal search algorithm

and its application, Colloquium on Applications of Genetic Algorithms, IEEE 94/067,

London, 1994.

[Müh93]

Mühlenbein, H., Schilerkamp-Voosen, D.: Predictive Models for the Breeder Genetic

Algorithm, Continuous Parameter Optimization. Evolutionary Computation, 1 (1), pp.

25-49, 1993.

[Oli87] Oliver, I. M., Smith, D. J., Holland, J. R. C.: A study of permutation crossover operators

on the traveling salesman problem, Int’l Conference on Genetic Algorithms, pp. 224-

230, 1987.

[Ost93]

Ostermeier, A., Gawelczyk, A., Hansen, N.: A Derandomized Approach to Self

Adaptation of Evolution Strategies, Technical Report TR-93-003, TU Berlin, 1993.

[Pap82]

Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization; Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs, cap. 17-19, 1998.

[Pap06]

Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman

problem, Combinatorica 26 (2006), pp. 101-120, 2006.

[Pra75]

Pratt, V.: Every prime has a succinct certificate, SIAM Journal on Computing 4 (1975),

pp. 214-220, 1975.

[Rag07] Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating mapreduce for

multi-core and multiprocessor systems, Proceedings of the 2007 IEEE 13th International

Symposium on High Performance Computer Architecture, 2007.

[Rec73]

Rechenberg, I.: Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien

der biologischen Evolution, Fromman-Holzboog, Stuttgart, 1973.

[Rec73]

Schwefel, H.-P.: Numerical optimization of computer models, Wiley&Sons, Chichester,

1981.

BIBLIOGRAPHY 36

[Ros77]

Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M.: An analysis of several heuristics for the

traveling salesman problem, SIAM Journal on Computing 6 (1977), pp. 563-581, 1977.

[Rud96]

Rudolph, G.: Convergence of Evolutionary Algorithms in General Search Spaces,

International Conference on Evolutionary Computation, pp. 50-54, 1996.

[Sas07] Sastry, K., Goldberg, D., E., Llora, X.: Towards billion-bit optimization via a parallel

estimation of distribution algorithm, Proceedings of 9th annual conference on Genetic

and evolutionary computation GECCO ‘07, pp. 577-584, ACM, New York, 2007.

[Sel96]

Selman, B., Kautz, H., Cohen, B.: Local Search Strategies for Satisfiability Testing,

DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26,

AMS, 1996.

[Sel93]

Selman, B., Kautz, A.: Domain-Independent Extension to GSAT: Solving Large

Structured Satisfiability Problems, In Proceedings of the Thirteenth International Joint

Conference on Artificial Intelligence (IJCAI), pp. 290-295, 1993.

[She95] Shen, W.-Z., Lin, J.-Y., Wang, F.-W.: Transistor reordering rules for power reduction in

CMOS gates, ASP Design Automation Conf., pp. 1-6, 1995.

[Shm90]

Shmoys, D.B., Williamson, D.P.: Analyzing the Held-Karp TSP bound: a monotonicity

property with application, Information Processing Letters 35 (1990), pp. 281-285, 1990.

[Sle95]

Sleator, D. D., Tarjan, R. E.: Self-adjusting Binary Search Trees, Journal of the

Association for Computing Machinery, Vol. 32, pp. 652-686, 1985.

[Sta94] Stan, M., Burleson, W.: Limited-weight codes for low-power I/O, Int’l Workshop on

Low Power Design, 1994.

[Sys90] G. Syswerda, Schedule Optimization Using Genetic Algorithms, L. Davis, Editor,

Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1990.

[Tiw94] Tiwari, V., Malik, S., Wolfe, A., Lee, M.: Power analysis of embedded software: A first

step towards software power minimization, Int’l Conf. on CAD, pp. 384-390, 1994.

[Tiw96] Tiwari, V., Malik, S., Wolfe, A., Lee, M.: Instruction level power analysis and

optimization software, VLSI Design Conf., 1996.

[Tom81] Ioan Tomescu, Probleme de combinatorică şi teoria grafurilor, Editura Didactică şi

Pedagogică, Bucureşti, 1981.

[Tsu93] Tsui, C., Pedram, M., Despain, A. M.: Technology decomposition and mapping

targeting low power dissipation, Design Automation Conf., pp. 68-73, 1993.

[Tur36]

Turing, A.M.: On computable numbers, with an application to the

Entscheidungsproblem, Proceedings of the Londom Mathematical Society (2) 42 (1936),

pp. 230-265 şi 43 (1937), pp. 544-546, 1936-1937.

[Vai93] Vaishnav, H., Pedram, M.: PCUBE: A performance driven placement algorithm for low

power design, European Design Automation Conf., pp. 72-77, 1993.

37 EVOLUTIONARY ALGORITHMS IN VLSI-CAD (summary)

[Whi89] Whitley, D., Starkweather, T., Fuquay, D.: Scheduling problems and traveling salesman:

The genetic edge recombination operator, Int’l Conference on Genetic Algorithms, pp.

133-140, 1989.

[Wol80] Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound,

Mathematical Programming Study 13, pp. 121-134, 1980.

Resurse Web:

http://scipy.org/scipy/scikits/wiki/MILP

 [Mixed-Integer Linear Problems - MILP]

http://javailp.sourceforge.net/

 [Java ILP – Java Interface to ILP solvers]

http://dopisolver.sourceforge.net/

 [dopiSolver – framework Open Source pentru rezolvarea DOPI]

http://dcpsolver.sourceforge.net/

 [dcpSolver – framework Open Source pentru rezolvarea DCP]

http://hadoop.apache.org/

 [Apache Hadoop]

http://lsiwww.epfl.ch/LSI2001/teaching/webcourse/ch02/ch02.html#2.5

ftp://ftp.cs.cmu.edu/user/sleator/splaying/

 [implementări C şi Java pentru splay trees]

