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Introduction

The geometric theory of complex variable functions was set as a separately branch of
complex analysis in the XX-th century when the first important papers appeared in this
domain, owed to P. Koebe [58], I.W. Alexander [2], L. Bieberbach [16].

The univalent function notion occupy a central role in geometric theory of analytic
functions, first paper dating from 1907 owed to P. Koebe [58]. The study of univalent
functions was continued by Plemelj [92], Gronwall [48] and Faber [31].

These days are many treaty and monographs dedicated to univalent functions study,
of which we remember those of P. Montel [80], Z. Nehari [81], L.V. Ahlfors [1], Ch. Pom-
merenke [95], A.W. Goodman [39], P.L. Duren [30], D.J. Hallenbeck, T.H. MacGregor [50],
S.S. Miller, P.T. Mocanu [75] and P.T. Mocanu, T. Bulboacă, Gr. Şt. Sălăgean [79].

The problem of results extension from the geometric theory of the functions of one to
several complex variables was formulated first time by H. Cartan in the Appendix in the
book of P. Montel published in 1933 [22].

The extension of the geometric properties of biholomorphic mappings was started in
the 1960-1980 by the japanese mathematicians I. Ono [83], T. Higuchi [54], K. Kikuchi [57]
and it was resumed in the last 20 years by J.A. Pfaltzgraff, T.J. Suffridge, C. FitzGerald,
S. Gong, I. Graham, G. Kohr, H. Hamada, P. Liczberski, P. Curt.

In this thesis I introduced new classes of univalent functions respectively univalent
mappings which I studied by using different methods.

In the following, in each chapter I selected the most relevant results, with the emphasis
on my original contributions. The results from the first chapters are renumbered. Finally,
full bibliography is included.
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Chapter 1

Univalent functions of one
complex variable

In this chapter are presented notions and elementary results from the geometric the-
ory of univalent functions of one complex variable. Are treated some classes of univalent
functions, the differential subordinations and superordinations methods, Loewner chains
method and integral operators by Sălăgean type.

1.1 Elementary results in the theory of univalent functions

1.2 Analytic functions with positive real part

Analytic functions with positive real part have an important role in characterizing
some special classes of univalent functions.

Definition 1.2.1 By Charathèodory’s functions class we understand:

P = {p ∈ H(U) : p(0) = 1, Re p(z) > 0, z ∈ U}.

1.3 Subordination. Subordination principle

Definition 1.3.1 Let f, g ∈ H(U). We say that the function f is subordinate to g and
we write f ≺ g or f(z) ≺ g(z) if there exists a function w ∈ H(U), with w(0) = 0 and
|w(z)| < 1, z ∈ U such that f(z) = g(w(z)), z ∈ U .

1.4 Starlike functions. Convex functions

The notion of starlike function was introduced by J. Alexander [2] ı̂n 1915.

Definition 1.4.1 Let f : U → C be a holomorphic function with f(0) = 0. We say that
f is starlike in U with respect to zero (or, in brief, starlike) if the function f is univalent
in U and f(U) is a starlike domain with respect to zero, meaning that for each z ∈ U the
segment between the origin and f(z) lies in f(U).
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Theorem 1.4.2 [79] Let the function f ∈ H(U) with f(0) = 0. The function f is starlike
if and only if f ′(0) 6= 0 and

(1.4.1) Re
zf ′(z)

f(z)
> 0, z ∈ U.

Definition 1.4.3 [79] We denote with S∗ the class of functions f ∈ A which are starlike
in the unit disk

S∗ =

{
f ∈ A : Re

zf ′(z)

f(z)
> 0, z ∈ U

}
.

The notion of convex function was introduced by E. Study [110] ı̂n 1913.

Definition 1.4.4 The function f is called convex in U (or, in brief convex) if the function
f is univalent in U and f(U) is a convex domain.

Theorem 1.4.5 [79] Let the function f ∈ H(U). Then f is convex if and only if f ′(0) 6= 0
and

(1.4.2) Re
zf ′′(z)

f ′(z)
+ 1 > 0, z ∈ U.

Definition 1.4.6 We denote with K the class of functions f ∈ A which are convex in the
unit disk

K =

{
f ∈ A : Re

zf ′′(z)

f ′(z)
+ 1 > 0, z ∈ U

}
.

1.5 Functions whose derivative has a positive real part

1.6 Differential subordinations

The differential subordinations method (or admissible functions method) is one of the
newest method used in the geometric theory of analytical functions. The bases of this
theory where made by S.S. Miller şi P.T. Mocanu in the papers [73], [74].

Definition 1.6.1 We denote by Q the set of functions q that are analytic and injective
on U \ E(q), where

E(q) =

{
ζ ∈ ∂U : lim

z→ζ
q(z) =∞

}
,

and are such q′(ζ) 6= 0 for ζ ∈ ∂U \ E(q).

Lemma 1.6.2 [56],[73] (I.S. Jack, S.S. Miller, P.T. Mocanu) Let z0 = r0e
iθ0 with 0 <

r0 < 1 and let f(z) = anz
n + an+1z

n+1 + · · · a continuous function on U r0 and analytic
on Ur0 ∪ {z0} with f(z) 6≡ 0 and n ≥ 1. If

|f(z0)| = max{|f(z)| : z ∈ U r0}

then there exists a real number m, m ≥ n, such that

(i)
z0f
′(z0)

f(z0)
= m
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(ii) Re
z0f
′′(z0)

f ′(z0)
+ 1 ≥ m.

Theorem 1.6.3 [51] (D.J. Hallenbeck and St. Ruschweyh) Let h be a convex function
with h(0) = a and let γ ∈ C∗ such that Re γ ≥ 0. If p ∈ H[a, n] and

p(z) +
1

γ
zp′(z) ≺ h(z)

then
p(z) ≺ q(z) ≺ h(z)

where

q(z) =
γ

nz
γ
n

∫ z

0
h(t)t

γ
n
−1dt.

The function q is convex and it is the best (a, n) dominant.

1.7 Differential superordinations

The dual problem of differential subordinations, that of subordinations determination
for differential superordinations was initiated in 2003 by S.S. Miller and P.T. Mocanu [76].

Theorem 1.7.1 [76] Let h be a convex function in U , with h(0) = a, γ 6= 0, Reγ ≥ 0

and p ∈ H[a, n] ∩Q. If p(z) +
zp′(z)

γ
is univalent in U ,

h(z) ≺ p(z) +
zp′(z)

γ

then
q(z) ≺ p(z),

where

q(z) =
γ

nz
γ
n

∫ z

0
h(t)t

γ
n
−1dt.

The function q is convex and it is the best subordinant.

Theorem 1.7.2 [76] Let q be a convex function in U and h is defined by

h(z) = q(z) +
zq′(z)

γ
, z ∈ U

with γ 6= 0, Reγ ≥ 0. If p ∈ H[a, n] ∩Q, and p(z) + zp′(z)
γ is univalent function in U with

h(z) ≺ p(z) +
zp′(z)

γ
, z ∈ U

then
q(z) ≺ p(z),

where

q(z) =
γ

nz
γ
n

∫ n

0
h(t)t

γ
n
−1dt.

The function q is the best subordinant.
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1.8 Subordination chains. The Loewner differential equa-
tion

The subordination chains method or Loewner chains was introduced in 1923 by
Loewner [70] and developed by P.P. Kufarev [66] 1943, Ch. Pommerenke [96] 1965, G.S.
Goodman [38] 1968.

Definition 1.8.1 The function f : U × [0,∞)→ C, with f(z, t) of the form

f(z, t) = etz + a2(t)z
2 + · · · , |z| < 1

is called subordination chain (or Loewner chain) if f(·, t) is holomorphic and univalent on
U , for all t ∈ [0,∞) and

(1.8.1) f(z, s) ≺ f(z, t)

for 0 ≤ s ≤ t <∞.

Theorem 1.8.2 [96] A family of functions {f(z, t)}t≥0 with f(0, t) = 0, f ′(0, t) = et is
a Loewner chain if and only if the following conditions holds:

(i) There exist r ∈ (0, 1) and a constant M ≥ 0 such that f(·, t) is holomorphic on Ur
for each t ≥ 0, locally absolutely continuous in t ≥ 0, locally uniformly with respect
to z ∈ Ur, and

|f(z, t)| ≤Met, |z| ≤ r, t ≥ 0.

(ii) There exist a function p(z, t) such that p(·, t) ∈ P for each t ≥ 0, p(z, ·) is measurable
on [0,∞) for each z ∈ U , for all z ∈ Ur,

(1.8.2)
∂f

∂t
(z, t) = zf ′(z, t)p(z, t), a.p.t. t ≥ 0.

(iii) For each t ≥ 0, f(·, t) is the analytic continuation of f(·, t) |Ur to U , and furthermore
this analytic continuation exists under the assumptions (i) and (ii).

1.9 Integral operators

Gr. Şt. Sălăgean [104] defined, in 1983, two operators based on which were obtained
over time remarkable results in the geometric univalent functions theory. We define the
integral operator.

Definition 1.9.1 Let f ∈ H(U), f(0) = 0. We define the integral operator Im, m ∈ N,
by

(i) I0f(z) = f(z)

(ii) I1f(z) = If(z) =
∫ z
0 f(t)t−1dt

(iii) Imf(z) = I(Im−1f(z)).
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Chapter 2

Univalent functions of several
complex variables

This chapter is dedicated to presenting results from the geometric theory of univa-
lent functions of several complex variables and are treated some biholomorphic mappings
classes, the automorphisms of the Euclidean unit ball, the Loewner chains method, gen-
eralizations of Roper-Suffridge extension operator, respectively Pfaltzgraff-Suffridge. Gen-
erally are presented just results obtained on the Euclidean unit ball from Cn.

2.1 Holomorphic functions in Cn. Biholomorphic mappings

2.2 The automorphisms of the Euclidean unit ball

2.3 Generalizations of functions with positive real part

Let Cn be the space of n-complex variables with respect to a given norm ‖ · ‖. For each
z ∈ Cn \ {0}, let

T (z) = {lz ∈ L(Cn,C) : lz(z) = ‖z‖, ‖lz‖ = 1}.

In the case of the Euclidean norm ‖ · ‖, if z ∈ Cn \ {0} and lz ∈ T (z), then

lz(w) =

〈
w,

z

‖z‖

〉
, w ∈ Cn.

The following families play a key role in our discussion:

N0 = {w : Bn → Cn, w ∈ H(Bn), w(0) = 0, Re 〈w(z), z〉 ≥ 0, z ∈ Bn}
N = {w : Bn → Cn, w ∈ H(Bn), w(0) = 0, Re 〈w(z), z〉 > 0, z ∈ Bn \ {0}}
M = {w ∈ N : Dw(0) = In}.

2.4 Starlike mappings. Convex mappings

In this section are presented starlike mappings and convex mappings on the Euclidean
unit ball, but the results are valid and in the case of arbitrary norm [36], [44].
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Definition 2.4.1 Let f : Bn → Cn be a holomorphic mapping. We say that f is starlike if
f is biholomorphic, f(0) = 0 and f(Bn) is a starlike domain with respect to zero (tf(z) ⊆
f(Bn) for all z ∈ Bn and t ∈ [0, 1]).

Let S∗(Bn) be the class of normalized starlike mappings on Bn.
The analytical characterization theorem of starlike mappings is given in 1955 by Mat-

suno [72]. The theorem was generalized to the unit ball of Cn with respect to an arbitrary
norm and respectively to the unit ball of a complex Banach space by Suffridge [112], [113].

Theorem 2.4.2 Let f : Bn → Cn be a locally biholomorphic mapping such that f(0) = 0.
Then f is starlike on Bn if and only if there is h ∈M such that

f(z) = Df(z)h(z), z ∈ Bn

i.e.
Re 〈[Df(z)]−1f(z), z〉 > 0, z ∈ Bn \ {0}.

Definition 2.4.3 We say that the mapping f : Bn → Cn is convex if f is biholomorphic
on Bn and f(Bn) is a convex domain ((1 − t)f(z) + tf(w) ∈ f(Bn) for z, w ∈ Bn and
t ∈ [0, 1]).

Let K(Bn) be the set of normalized convex mappings on the unit ball Bn.
The analytical characterization theorem of convexity in the case of locally biholomor-

phic mappings was obtained by Kikuchi in 1973 [57] and by Gong, Wang, Yu [37] in
1993.

Theorem 2.4.4 Let f : Bn → Cn be a locally biholomorphic mapping. Then f is convex
if and only if

1− Re 〈[Df(z)]−1D2f(z)(v, v), z〉 > 0,

for all z ∈ Bn such that ‖v‖ = 1 and Re 〈z, v〉 = 0.

2.5 Loewner chains and the Loewner differential equation
in Cn

Pfaltzgraff [89] generalized Loewner chains to higher dimensions in 1974. Later contri-
butions permitting generalizations to the unit ball of a complex Banach space by Poreda
[99]. Some best-possible result concerning the Loewner chains in several complex variables
were obtained by Graham, Hamada, Kohr [40], Graham, Kohr, Kohr [45], Graham, Kohr
[44].

Definition 2.5.1 A mapping f : Bn × [0,∞) → Cn is called a subordination chain if it
satisfies the following conditions (i) f(·, t) ∈ H(Bn) and Df(0, t) = ϕ(t)In, t ≥ 0, where
ϕ : [0,∞) → C is a continuous function on [0,∞) such that ϕ(t) 6= 0, t ≥ 0, |ϕ(·)| is
strictly increasing on [0,∞), and |ϕ(t)| → ∞ as t→∞;

(ii) f(·, s) ≺ f(·, t), whenever 0 ≤ s ≤ t < ∞, there exists a Schwarz map-
ping vs,t(·) = v(·, s, t), called the transition mapping associated to f(z, t), such that
f(z, s) = f(v(z, s, t), t), 0 ≤ s ≤ t <∞, z ∈ Bn.
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A subordination chain is called a univalent subordination chain (or a Loewner chain)
if in addition f(·, t) is univalent on Bn for all t ≥ 0. We say that f(z, t) is a normalize
Loewner chain if Df(0, t) = etIn.

Theorem 2.5.2 Let f(z, t) be a Loewner chain. Then there is a mapping h = h(z, t) such
that h(·, t) ∈ M for each t ≥ 0, h(z, t) is measurable in t for each z ∈ Bn, and for a.e.
t ≥ 0,

(2.5.1)
∂f

∂t
(z, t) = Df(z, t)h(z, t), ∀ z ∈ Bn.

(there is a null set E ⊂ (0,∞) such that for all t ∈ [0,∞) \ E,
∂f

∂t
(·, t) exist and is

holomorphic on Bn). For t ∈ [0,∞) \ E and z ∈ Bn, (2.5.1) holds.
Moreover, if there exists a sequence {tm}m∈N such that tm > 0, tm →∞ and

(2.5.2) lim
m→∞

e−tmf(z, tm) = F (z)

locally uniformly on Bn, then

f(z, s) = lim
t→∞

etw(z, s, t)

locally uniformly on Bn for each s ≥ 0, where w(t) = w(z, s, t) is the solution of the initial
value problem

∂w

∂t
= −h(w, t), a.p.t. t ≥ s, w(s) = z

for all z ∈ Bn.

As a consequence of the Theorem 2.5.2 we have the transition mappings which gener-
ates the Loewner chains.

Corollary 2.5.3 [28], [40], [44] Let f : Bn × [0,∞) → Cn be a Loewner chain and
v = v(z, s, t) the transition mapping associated to f(z, t). We suppose that {e−tf(z, t)}t≥0
is a normal family. Then for each s ≥ 0, the limit

f(z, s) = lim
t→∞

etv(z, s, t)

exist locally uniformly on Bn.

Corollary 2.5.4 [28], [40], [46] Let f(z, t) be a Loewner chain such that {e−tf(z, t)}t≥0
is a normal family on Bn. Then

(2.5.3)
‖z‖

(1 + ‖z‖)2
≤ ‖e−tf(z, t)‖ ≤ ‖z‖

(1− ‖z‖)2
, z ∈ Bn, t ≥ 0.

In particular, if f(z) = f(z, 0) then

‖z‖
(1 + ‖z‖)2

≤ ‖f(z)‖ ≤ ‖z‖
(1− ‖z‖)2

, z ∈ Bn.

Theorem 2.5.5 [46] Every sequence of Loewner chains {fk(z, t)}k∈N, such that
{e−tfk(z, t)}t≥0 is a normal family on Bn for each k ∈ N, contains a subsequence that
converges locally uniformly on Bn for each fixed t ≥ 0 to a Loewner chain f(z, t) such that
{e−tf(z, t)}t≥0 is normal family on Bn.
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2.6 Spirallike mappings

For a linear operator A ∈ L(Cn,Cn) we introduce the notation

m(A) = min{Re 〈A(z), z〉 : ‖z‖ = 1}.

Definition 2.6.1 Let f : Bn → Cn be a normalized univalent mapping on Bn. Let A ∈
L(Cn,Cn) such that m(A) > 0. We say that f is spirallike relative to A if e−tAf(Bn) ⊆
f(Bn) for all t ≥ 0, where

(2.6.1) e−tA =

∞∑
k=0

(−1)k

k!
tkAk.

Theorem 2.6.2 Let A ∈ L(Cn,Cn) such that m(A) > 0 and let f : Bn → Cn be a
normalized locally biholomorphic mapping. Then f is spirallike relative to A if and only if

[Df(z)]−1Af(z) ∈ N .

In particular A = e−iαIn for α ∈
(
−π

2
,
π

2

)
, Hamada and Kohr [52] have studied a

class of spirallike mappings of type α.
In this case the condition (2.6.1) is

(2.6.2) e−iα[Df(z)]−1f(z) ∈ N .

If A = e−iα, α ∈ (π/2, π/2) from Definition 2.6.1 we deduce the usual notion of
spirallikeness of type α in the unit disk.The notion was introduced in 1932 by L. Špaček
[107].

The next theorem given by Pommerenke [95] present a necessary and sufficient condi-
tion of spirallikeness of type α for holomorphic functions.

Theorem 2.6.3 Assume f is a normalized holomorphic function on U,α ∈ (−π
2 ,

π
2 ) and

a = tanα. Then f is a spirallike of type α if and only if

F (z, t) = e(1−ia)tf(eiatz), z ∈ U, t ≥ 0,

is a Loewner chain. In particular, f is starlike if and only if F (z, t) = etf(z) is a Loewner
chain.

Hamada şi Kohr [52] shows that spirallike mappings of type α can be embedded in
Loewner chains.

Theorem 2.6.4 Assume f is a normalized locally biholomorphic mapping on Bn, α ∈
(−π

2 ,
π
2 ), a = tanα. Then f is a spirallike mapping of type α if and only if

F (z, t) = e(1−ia)tf(eiatz), z ∈ Bn, t ≥ 0,

is a Loewner chain. In particular, f is a starlike mapping if and only if F (z, t) = etf(z)
is a Loewner chain.
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2.7 Almost starlike mappings of order α

Another notion that will be used in the forthcoming sections is that of almost starlike-
ness of order α, where α ∈ [0, 1). The following definition was introduced by G. Kohr [59],
[62] in the case of unit Euclidean ball for α = 1

2 and by Feng [32] in the case α ∈ [0, 1) and
on the unit ball in a complex Banach space X. For our purpose, we present this notion
only on the Euclidean setting.

Definition 2.7.1 Suppose 0 ≤ α < 1. A normalized locally biholomorphic mapping f :
Bn → Cn is said to be almost starlike of order α if

(2.7.1) Re〈[Df(z)]−1f(z), z〉 > α‖z‖2, z ∈ Bn \ {0}.

In the case of one complex variable, the inequality (2.7.1) reduces to the following:

Re
f(z)

zf ′(z)
> α, z ∈ U.

Q.H. Xu and T.S. Liu [68] proved the following characterization of almost starlikeness
of order α in terms of Loewner chains.

Theorem 2.7.2 Suppose f is a normalized holomorphic function in U and 0 ≤ α < 1.
Then f is an almost starlike function of order α if and only if

F (z, t) = e
t

1−α f(e
α
α−1

tz), z ∈ U, t ≥ 0,

is a Loewner chain. In particular, f is a starlike function (i.e., α = 0) if and only if
F (z, t) = etf(z) is a Loewner chain.

The next result, again due to Q-H. Xu and T-S. Liu [68] is the generalization of
Theorem 2.7.2 to the n-dimensional case. Note that this result was originally obtained on
the unit ball of Cn with respect to an arbitrary norm.

Theorem 2.7.3 Suppose f is a normalized locally biholomorphic mapping in Bn and
0 ≤ α < 1. Then f is almost starlike of order α if and only if

F (z, t) = e
1

1−α tf(e
α
α−1

tz), z ∈ Bn, t ≥ 0,

is a Loewner chain. In particular, f is a starlike mapping (i.e., α = 0) if and only if
F (z, t) = etf(z) is a Loewner chain.

2.8 Generalizations of the Roper-Suffridge extension oper-
ator. The Pfaltzgraff-Suffridge operator

In the euclidean n-dimensional space Cn, let z̃ = (z2, · · · , zn) such that z = (z1, z̃).
The Roper-Suffridge extension operator is defined for normalized locally univalent

functions on the unit disk U , by

(2.8.1) Φn(f)(z) = F (z) =
(
f(z1),

√
f ′(z1)z̃

)
.
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The branch of the square root is chosen such that
√
f ′(0) = 1.

This operator was introduced in 1995 by Roper and Suffridge in purpose to extend an
arbitrary convex function from the unit disk U to an convex mapping from the Euclidean
unit ball of Cn.

I. Graham, G. Kohr, M. Kohr [45] have generalized this operator to

(2.8.2) Φn,γ(f)(z) =
(
f(z1),

(
f ′(z1)

)γ
z̃
)
,

where γ ∈ [0, 12) and the branch of the power function is chosen such that (f ′(z))γ |z1=0= 1.

Theorem 2.8.1 [45] Suppose that f ∈ S and γ ∈ [0, 12 ], then Φn,γ(f) can be embedded in
a Loewner chain, where

Φn,γ(f)(z) =
(
f(z1),

(
f ′(z1)

)γ
z̃
)
, z = (z1, z̃) ∈ Bn

and z1 ∈ U , z̃ = (z2, · · · , zn) ∈ Cn−1. The branch of the power function is chosen such
that (

f ′(z1)
)γ |z1=0= 1.

In [42] I. Graham şi G. Kohr have introduced another Roper-Suffridge extension op-
erator.

(2.8.3) Φn,β(f)(z) =

(
f(z1),

(
f(z1)

z1

)β
z̃

)
,

where β ∈ [0, 1]. The power function is chosen such that
(
f(z1)
z1

)β
|z1=0= 1.

Theorem 2.8.2 [43] Suppose that f ∈ S and β ∈ [0, 1], then Φn,α(f) can be embedded in
a Loewner chain, where

Φn,β(f)(z) =

(
f(z1),

(
f(z1)

z1

)β
z̃

)
, z ∈ (z1, z̃) ∈ Bn,

and z1 ∈ U , z̃ = (z2, · · · , zn) ∈ Cn−1. The branch of the power function is chosen such

that
(
f(z1)
z1

)β
|z1=0= 1.

In 2002, I. Graham, H. Hamada, G. Kohr and T. Suffridge [41] have given another
generalization of Roper-Suffridge extension operator by type

(2.8.4) Φn,β,γ(f)(z) =

(
f(z1),

(
f(z1)

z1

)β
(f ′(z1))

γ z̃

)
,

where β ∈ [0, 1] and γ ∈ [0, 12 ] such that β+ γ ≤ 1.The branches of the power function are

chosen such that
(
f(z1)
z1

)β
|z1=0= 1 şi (f ′(z1))

γ |z1=0= 1.

Theorem 2.8.3 [41] Assume that f ∈ S and β ∈ [0, 1], γ ∈ [0, 12 ] with γ + β ≤ 1, then

Φn,β,γ(f)(z) =

(
f(z1),

(
f(z1)

z1

)β
(f ′(z1))

γ z̃

)
, z = (z1, z̃) ∈ Bn,

and z1 ∈ U, z̃ = (z2, · · · , zn) ∈ Cn−1. The branches of the power functions are chosen

such that
(
f(z1)
z1

)β
|z1=0= 1 and (f ′(z1))

γ |z1=0= 1.

14



For n ≥ 1, the set z′ = (z1, · · · , zn) ∈ Cn and z = (z′, zn+1) ∈ Cn+1.
Another operator which extend univalent (locally) mappings from Bn to univalent

(locally) mappings from Bn+1 is the operator introduced by Pfaltzgraf and Suffridge [91].

Definition 2.8.4 The Pfaltzgraff-Suffridge extension operator Ψn : LSn → LSn+1 is de-
fined by

(2.8.5) Ψn(f)(z) =
(
f(z′), zn+1[J(z′)]

1
n+1

)
, z = (z′, zn+1) ∈ Bn+1.

The branches of the power functions are chosen such that

[Jf (z′)]
1

n+1 |z′=0= 1.
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Chapter 3

Applications of differential
subordinations and
superordinations methods

In this chapter are defined classes of univalent functions on the unit disk U of the
complex plane. For defining some classes we use the integral operator Imf presented in
the paragraph 1.9. Using the differential subordinations and superordinations method
are highlighted the properties of this classes and also are presented concrete examples of
differential subordinants.

The results of this chapter are original and are included in the papers [4], [5], [6], [7],
[8], [9], [10], [13].

3.1 Differential subordinations defined by integral operator

In this paragraph is defined a new class of univalent functions, using the integral
operator Imf . Using the differential subordinations method are highlighted the properties
of this class.

Definition 3.1.1 If 0 ≤ α < 1 and m ∈ N, let Imn (α) denote the class of functions f ∈ An
which satisfy the inequality:

Re[Imf(z)]′ > α.

Remark 3.1.2 For m = 0, we obtain

Ref ′(z) > α, z ∈ U.

When f ∈ A we obtain the next definition.

Definition 3.1.3 If 0 ≤ α < 1 and m ∈ N, let Im(α) denote the class of functions f ∈ A
which satisfy the inequality:

Re[Imf(z)]′ > α.

If m = 0 then I0(α) is the class of functions with boundary rotation.

16



Theorem 3.1.4 [10] If 0 ≤ α < 1 and m,n ∈ N, then we have

Imn (α) ⊂ Im+1
n (δ),

where

δ(α, n) = 2α− 1 + 2(1− α)
1

n
β(

1

n
)

and

β(x) =

∫ 1

0

tx−1

1 + t
dt.

The result is sharp.

For the class Im(α)we obtain the next result.

Corollary 3.1.5 [4] If 0 ≤ α < 1 and m ∈ N, then we have

Im(α) ⊂ Im+1(δ),

where
δ = δ(α) = 2α− 1 + 2(1− α) ln 2

and this result is sharp.

Theorem 3.1.6 [10] Let q be a convex function, q(0) = 1 and let h be a function such
that

h(z) = q(z) + nzq′(z), z ∈ U.

If f ∈ An and verifies the differential subordination

(3.1.1) [Imf(z)]′ ≺ h(z)

then [
Im+1f(z)

]′ ≺ q(z), z ∈ U
and this result is sharp.

Theorem 3.1.7 [10] Let h ∈ H(U), with h(0) = 1, h′(0) 6= 0, which verifies the inequality

Re

[
1 +

zh′′(z)

h′(z)

]
> − 1

2n
, z ∈ U, n ∈ N∗.

If f ∈ An and verifies the differential subordination

(3.1.2) [Imf(z)]′ ≺ h(z),

then [
Im+1f(z)

]′ ≺ q(z), z ∈ U
where

q(z) =
1

nz
1
n

∫ z

0
h(t)t

1
n
−1dt, z ∈ U.

The function q is convex and is the best dominant.
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Theorem 3.1.8 [10] Let q be a convex function, q(0) = 1, and

h(z) = q(z) + nzq(z).

If f ∈ An and verifies the differential subordination

(3.1.3) [Imf(z)]′ ≺ h(z)

then
Imf(z)

z
≺ q(z), z ∈ U, z 6= 0.

The result is sharp.

Theorem 3.1.9 [10] Let h ∈ H(U), h(0) = 0, h′(0) 6= 0 which satisfy the inequality

Re

[
1 +

zh′′(z)

h′(z)

]
> − 1

2n
, z ∈ U.

If f ∈ An and verifies the differential subordination

(3.1.4) [Imf(z)]′ ≺ h(z)

then
Imf(z)

z
≺ q(z), z ∈ U, z 6= 0,

where

q(z) =
1

nz
1
n

∫ z

0
h(t)t

1
n
−1dt, z ∈ U.

The function q is convex and is the best dominant.

Remark 3.1.10 In the particular case n = 1 this theorems were studied in [4] and are
included in the thesis as corollaries.

Remark 3.1.11 For the differential operator similar results were obtained in the papers
[85], [86], [88].

3.2 A class of univalent functions obtained using the inte-
gral operator applied to meromorphic functions

For k ≥ 0, we denote by Σk the class of meromorphic functions defined on U̇ by form

f(z) =
1

z
+

∞∑
n=k

anz
n.

Definition 3.2.1 If 0 ≤ α < 1, k ∈ Z+ and m ∈ N, let Σk(α,m) denote the class of
function f ∈ Σk which satisfy the inequality

(3.2.1) Re
[
Im(z2f(z))

]′
> α, z ∈ U̇ .
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Theorem 3.2.2 [6] If 0 ≤ α < 1, k ∈ Z+ and m ∈ N then

(3.2.2) Σk(α,m) ⊂ Σk(δ,m+ 1),

where

δ = δ(α,m) = 2α− 1 + 2(1− α)
1

k + 1
β

(
1

k + 1

)
and

β(x) =

∫ z

0

tx−1

1 + t
dt.

Theorem 3.2.3 [6] Let q be a convex function, q(0) = 1 and let h be a function such that

h(z) = q(z) + z(k + 1)q′(z), z ∈ U.

If f ∈ Σk(α,m) and verifies the differential subordination

(3.2.3)
[
Im(z2f(z))

]′ ≺ h(z), z ∈ U̇

then [
Im+1(z2f(z))

]′ ≺ q(z), z ∈ U̇
and this result is sharp.

Theorem 3.2.4 [6] Let q be a convex function with q(0) = 1 and

h(z) = q(z) + z(k + 1)q′(z), z ∈ U.

If f ∈ Σk(α, n) and verifies the differential subordination

(3.2.4)
[
Im(z2f(z))

]′ ≺ h(z), z ∈ U̇

then
Im(z2f(z))

z
≺ q(z), z ∈ U̇

and this result is sharp.

Theorem 3.2.5 [6] Let h ∈ H(U), with h(0) = 1, and h′(0) 6= 0 which verifies the
inequality

Re

[
1 +

zh′′(z)

h′(z)

]
> −1

2
, z ∈ U.

If f ∈ Σk(α,m) and verifies the differential subordination

(3.2.5)
[
Im(z2f(z))

]′ ≺ h(z), z ∈ U̇

then [
Im+1(z2f(z)

]′ ≺ q(z), z ∈ U̇
where

(3.2.6) q(z) =
1

(k + 1)z
1
k+1

∫ z

0
h(t)t

1
k+1
−1dt, z ∈ U.

The function q is convex and it is the best (1, k + 1) dominant.
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Theorem 3.2.6 [6] Let h ∈ H(U) with h(0) = 1, h′(0) 6= 0, which verifies the inequality

Re

[
1 +

zh′′(z)

h′(z)

]
> −1

2
, z ∈ U.

If f ∈ Σk(α,m) and verifies the differential subordination

(3.2.7)
[
Im(z2f(z))

]′ ≺ h(z), z ∈ U̇

then
Im(z2f(z))

z
≺ q(z), z ∈ U̇

where

q(z) =
1

(k + 1)z
1
k+1

∫ z

0
h(t)t

1
k+1
−1dt, z ∈ U.

The function q is convex and is the best (1, k + 1) dominant.

3.3 A class of starlike functions of order α

Definition 3.3.1 Let 0 ≤ α < 1 and f ∈ An such that

f(z)f ′(z)

z
6= 0, 1 +

zf ′(z)

f(z)
6= 0, z ∈ U.

We say that the function f is in the class Mn
β , β ∈ R, if the function F : U → C given

by

g(z) = f(z)

[
1

2

zf ′(z)

f(z)

(
1 +

zf ′(z)

f(z)

)]β
is starlike of order α.

Remark 3.3.2 If β =
1

2
in Definition 3.3.1 we obtain the class Mn(α)(see [84]).

Remark 3.3.3 If β = 0 then g(z) = f(z) and Mn
β (α) = S∗.

Theorem 3.3.4 [13] For each α, β ∈ R with α ∈ [0, 1) and β > 0 we have the following
inclusion

Mn
β (α) ⊂ S∗(α).

For the particular case of β =
1

2
we obtain the next corollary.

Corollary 3.3.5 [84] For each real number 0 ≤ α < 1 and we have the following inclusion

Mn(α) ⊂ S∗(α).
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3.4 Differential superordinations defined by integral opera-
tor

The results of this paragraph are obtained with the differential superordinations
method.

Theorem 3.4.1 [9] Let h ∈ H(U) be a convex function in U , with h(0) = 1 and f ∈ An,
n ∈ N∗.

Assume that [Imf(z)]′ is univalent with [Im+1f(z)] ∈ H[1, n] ∩Q.
If

(3.4.1) h(z) ≺ [Imf(z)]′, z ∈ U

then

(3.4.2) q(z) ≺ [Im+1f(z)]′, z ∈ U

where

q(z) =
1

nz
1
n

∫ z

0
h(t)t

1
n
−1dt.

The function q is convex and is the best subordinant.

Theorem 3.4.2 [9] Let h ∈ H(U) be a convex function in U , with h(0) = 1 and f ∈ An.

Assume that [Imf(z)]′ is univalent with Imf(z)
z ∈ H[1, n] ∩Q.

If

(3.4.3) h(z) ≺ [Imf(z)]′, z ∈ U

then

(3.4.4) q(z) ≺ Imf(z)

z
, z ∈ U

where

q(z) =
1

nz
1
n

∫ z

0
h(t)t

1
n
−1dt.

The function q is convex and is the best subordinant.

Theorem 3.4.3 [9] Let q be a convex function in U and h defined by

h(z) = q(z) + zq′(z), z ∈ U.

If f ∈ An, [Im+1]′ is univalent in U , [Im+1f(z)]′ ∈ H[1, n] ∩Q and

(3.4.5) h(z) ≺ [Im+1f(z)]′

then

(3.4.6) q(z) ≺ [Im+1f(z)]′

where

q(z) =
1

nz
1
n

∫ z

0
h(t)t

1
n
−1dt.

The function q is the best subordinant.
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Theorem 3.4.4 [9] Let q a convex function in U and h defined by

h(z) = q(z) + zq′(z).

If f ∈ An, [Imf(z)]′ is univalent in U , Imf(z)
z ∈ H[1, n] ∩Q and

(3.4.7) h(z) ≺ [Imf(z)]′

then

(3.4.8) q(z) ≺ Imf(z)

z

where

q(z) =
1

nz
1
n

∫ z

0
h(t)t

1
n
−1dt.

The function q is convex and is the best subordinant.

Remark 3.4.5 In the particular case n = 1 this theorems are included in the thesis as
corollaries.

3.5 Subordinants of some differential superordinations

In this section are set some differential superordinations using the integral operator by
type Sălăgean and concrete examples of convex functions.

Theorem 3.5.1 [8] Let R ∈ (0, 1] and let h be convex in U , defined by

(3.5.1) h(z) = 1 +Rz +
Rz

2 +Rz

with h(0) = 1.
Let f ∈ An and suppose that [Imf(z)]′ is univalent and [Im+1f(z)]′ ∈ H[1, n] ∩Q.
If

(3.5.2) h(z) ≺ [Imf(z)]′, z ∈ U

then

(3.5.3) q(z) ≺ [Im+1f(z)]′, z ∈ U,

where

(3.5.4) q(z) =
1

nz
1
n

∫ z

0

(
1 +Rt+

Rt

2 +Rt

)
t
1
n
−1dt,

q(z) = 1 +
Rz

n+ 1
+R

1

n
M(z)

1

z
1
n

and

M(z) =

∫ z

0

t
1
n

2 +Rt
dt.

The function q is convex and is the best subordinant.
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If n = 1, from Theorem 3.5.1 we obtain the next corollary.

Corollary 3.5.2 [8] Let R ∈ (0, 1] and let h be convex in U , defined by

h(z) = 1 +Rz +
Rz

2 +Rz

with h(0) = 1.
Let f ∈ A and suppose that [Imf(z)]′ is univalent and [Im+1f(z)]′ ∈ H[1, 1] ∩Q.
If

h(z) ≺ [Imf(z)]′, z ∈ U

then
q(z) ≺ [Im+1f(z)]′, z ∈ U,

where

q(z) =
1

z

∫ z

0

(
1 +Rt+

Rt

2 +Rt

)
dt,

q(z) = 1 +
Rz

2
+RM(z)

1

z

and

M(z) =
z

R
− 2

R2
ln(2 +Rz) +

2

R
ln 2, z ∈ U.

The function q is convex and is the best subordinant.

If R = 1, the Theorem 3.5.1 becomes:

Corollary 3.5.3 [5] Let h be convex in U , defined by

(3.5.5) h(z) = 1 + z +
z

2 + z

with h(0) = 1.
Let f ∈ An and suppose that [Imf(z)]′ is univalent and [Im+1f(z)]′ ∈ H[1, n] ∩Q.
If

(3.5.6) h(z) ≺ [Imf(z)]′, z ∈ U

then

(3.5.7) q(z) ≺ [Im+1f(z)]′, z ∈ U,

where

(3.5.8) q(z) =
1

nz
1
n

∫ z

0

(
1 + t+

t

2 + t

)
t
1
n
−1dt,

q(z) = 1 +
z

n+ 1
+

1

n
M(z)

1

z
1
n

and

M(z) =

∫ z

0

t
1
n

2 + t
dt.

The function q is convex and it is the best subordinant.
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For n = 1 and R = 1 we have the next corollary.

Corollary 3.5.4 [5] Let h be convex in U , defined by

h(z) = 1 + z +
z

2 + z

with h(0) = 1.
Let f ∈ A and suppose that [Imf(z)]′ is univalent and [Im+1f(z)]′ ∈ H[1, 1] ∩Q.
If

h(z) ≺ [Imf(z)]′, z ∈ U

then
q(z) ≺ [Im+1f(z)]′, z ∈ U,

where

q(z) =
1

z

∫ z

0

(
1 + t+

t

2 + t

)
dt,

q(z) = 1 +
z

2
+M(z)

1

z

and
M(z) = z − 2 ln(2 + z) + ln 2, z ∈ U.

The function q is convex and it is the best subordinant.

Theorem 3.5.5 [8] Let R ∈ (0, 1] and let h be convex in U , defined by

h(z) = 1 +Rz +
Rz

2 +Rz

with h(0) = 1. Let f ∈ An and suppose that [Imf(z)]′ is univalent and
Imf(z)

z
∈ H[1, n]∩

Q.
If

(3.5.9) h(z) ≺ [Imf(z)]′, z ∈ U,

then

(3.5.10) q(z) ≺ Imf(z)

z
, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

(
1 +Rt+

Rt

2 +Rt

)
t
1
n
−1dt =

= 1 +
Rz

n+ 1
+R

1

n
M(z)

1

z
1
n

and

M(z) =

∫ z

0

t
1
n

2 +Rt
dt, z ∈ U.

The function q is convex and it is the best subordinant.

24



By customizing for n = 1 and R = 1 we obtain the next corollaries.

Corollary 3.5.6 [8] Let R ∈ (0, 1] and let h be convex in U , defined by

h(z) = 1 +Rz +
Rz

2 +Rz

with h(0) = 1. Let f ∈ A and suppose that [Imf(z)]′ is univalent and
Imf(z)

z
∈ H[1, 1]∩Q.

If
h(z) ≺ [Imf(z)]′, z ∈ U,

then

q(z) ≺ Imf(z)

z
, z ∈ U,

where

q(z) =
1

z

∫ z

0

(
1 +Rt+

Rt

2 +Rt

)
dt =

= 1 +
Rz

2
+RM(z)

1

z

and

M(z) =
z

R
− 2

R2
ln(2 +Rz) +

2

R
ln 2, z ∈ U.

The function q is convex and it is the best subordinant.

Corollary 3.5.7 [5] Let h be convex in U , defined by

h(z) = 1 + z +
z

2 + z

with h(0) = 1. Let f ∈ An and suppose that [Imf(z)]′ is univalent and Imf(z)
z ∈ H[1, n]∩Q.

If

(3.5.11) h(z) ≺ [Imf(z)]′, z ∈ U,

then

(3.5.12) q(z) ≺ Imf(z)

z
, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

(
1 + t+

t

2 + t

)
t
1
n
−1dt =

= 1 +
z

n+ 1
+

1

n
M(z)

1

z
1
n

and

M(z) =

∫ z

0

t
1
n

2 + t
dt, z ∈ U.

The function q is convex and it is the best subordinant.
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Corollary 3.5.8 [5] Let h be convex in U , defined by

h(z) = 1 + z +
z

2 + z

with h(0) = 1. Let f ∈ A and suppose that [Imf(z)]′ is univalent and Imf(z)
z ∈ H[1, 1]∩Q.

If
h(z) ≺ [Imf(z)]′, z ∈ U,

then

q(z) ≺ Imf(z)

z
, z ∈ U,

where

q(z) =
1

z

∫ z

0

(
1 + t+

t

2 + t

)
dt =

= 1 +
z

2
+M(z)

1

z

and
M(z) = z − 2 ln(2 + z) + 2 ln 2, z ∈ U.

The function q is convex and it is the best subordinant.

Remark 3.5.9 In the case of Sălăgean differential operator, similar results for the func-
tion

h(z) = 1 +Rz +
Rz

2 +Rz

were obtained by A. Cătaş in [24].

Theorem 3.5.10 [7] Let

h(z) =
1 + (2α− 1)z

1 + z
, z ∈ U.

be a convex function in U , with h(0) = 1.
Let f ∈ Im(α), and suppose that [Imf(z)]′ is univalent and[

Im+1f(z)
]′ ∈ H[1, 1] ∩Q.

If

(3.5.13) h(z) ≺ [Imf(z)]′, z ∈ U,

then
q(z) ≺ [Im+1f(z)]′, z ∈ U,

where

(3.5.14) q(z) = 2α− 1 + 2(1− α)
log(1 + z)

z
.

The function q is convex and it is the best subordinant.
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Theorem 3.5.11 [7] Let

h(z) =
1 + (2α− 1)z

1 + z
.

be convex. Let f ∈ Im(α), and suppose that [Imf(z)]′ is univalent and

Imf(z)

z
∈ H[1, 1] ∩Q.

If

(3.5.15) h(z) ≺ [Imf(z)]′, z ∈ U

then

q(z) ≺ Imf(z)

z
, z ∈

·
U

where

q(z) = 2α− 1 + 2(1− α)
log(1 + z)

z
.

The function q is convex and it is the best subordinant.
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Chapter 4

Almost starlikeness of complex
order λ

In this chapter is approached the notion by almost starlikeness of complex order λ in Cn
and in C. Are presented characterization theorems for almost starlikeness of complex order
λ with the help of Loewner chains, sufficient conditions for almost starlikeness of complex
order λ, results of compactness, concrete example and results regarding the preservations
of almost starlikeness of complex order λ by generalizing the Roper-Suffridge extension
operator, respectively Pfaltzgraff-Suffridge.

The results are original and are contained in the papers [11], [12], [14], [15].

4.1 Almost starlike functions and mappings of complex or-
der λ. Characterization by Loewner chains

Definition 4.1.1 Let λ ∈ C with Reλ ≤ 0. A normalized locally biholomorphic mapping
f : Bn → Cn is said to be almost starlike of complex order λ if

(4.1.1) Re
{

(1− λ)〈[Df(z)]−1f(z), z〉
}
> −Reλ‖z‖2, z ∈ Bn \ {0}.

It is easy to see that in the case of one variable, the above relation becomes

(4.1.2) Re

[
(1− λ)

f(z)

zf ′(z)

]
> −Reλ, z ∈ U.

We denote by S∗λ(Bn) the set of almost starlike mappings of complex order λ.

Example 4.1.2 Let λ ∈ C be such that Reλ ≤ 0, and let f : U → C given by f(z) =

z(1 + 1+λ
1−λz)

− 2
1+λ , z ∈ U , the branch of the power function is chosen such that

(
1 +

1 + λ

1− λ
z

)− 2
1+λ

|z=0= 1.

Then f is almost starlike of complex order λ on U .
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Example 4.1.3 (i) Let fj be an almost starlike function of complex order λ on the unit
disc U for j = 1, . . . , n. Then f : Bn → Cn given by f(z) = (f1(z1), . . . , fn(zn)) is almost
starlike of complex order λ on Bn.

(ii) In particular, if fj(zj) is given by Example 4.1.2 for j = 1, . . . , n, then f(z) =
(f1(z1), . . . , fn(zn)) is almost starlike of complex order λ on Bn.

The following result provides a necessary and sufficient condition for almost starlikeness
of complex order λ on U in terms of Loewner chains.

Theorem 4.1.4 [14] Let f : U → C be a normalized holomorphic function and let λ ∈ C
be such that Reλ ≤ 0. Then f is almost starlike of complex order λ if and only if

F (z, t) = e(1−λ)tf(eλtz), z ∈ U, t ≥ 0,

is a Loewner chain. In particular, f is a starlike function (i. e. λ = 0) if and only if
F (z, t) = etf(z) is a Loewner chain.

Remark 4.1.5 In view of Theorem 4.1.1 we obtain Theorem 2.6.3 in the case of λ =
i tanα, α ∈ (−π

2 ,
π
2 ). Also, if λ = α/(α − 1), where α ∈ [0, 1), Theorem 4.1.1 reduces to

Theorem 2.7.2.

Corollary 4.1.6 [14] Let f(z) be an almost starlike function of complex order λ. Then

|z|
(1 + |z|)2

≤ |e−λtf(eλtz)| ≤ |z|
(1− |z|)2

, z ∈ U, t ≥ 0.

In particular, if t = 0 then

|z|
(1 + |z|)2

≤ |f(z)| ≤ |z|
(1− |z|)2

, z ∈ U.

Theorem 4.1.7 [14] Let f : Bn → Cn be a normalized holomorphic mapping and let
λ ∈ C be such that Reλ ≤ 0. Then f is almost starlike mapping of complex order λ if and
only if

F (z, t) = e(1−λ)tf(eλtz), z ∈ Bn, t ≥ 0,

is a Loewner chain. In particular, f is a starlike mapping (i. e. λ = 0) if and only if
F (z, t) = etf(z) is a Loewner chain.

Remark 4.1.8 In view of Theorem 4.1.7, we obtain Theorem 2.6.4 for λ = i tanα and
α ∈ (−π

2 ,
π
2 ). Also, if λ = α/(α− 1), where α ∈ [0, 1), Theorem 4.1.7 reduces to Theorem

2.7.3. Of course, if λ = 0 in Theorem 4.1.7, we obtain the usual characterization of
starlikeness in terms of Loewner chains.

From Theorem 4.1.7 and the growth result for the class of all Loewner chains F (z, t)
such that {e−tF (·, t)}t≥0 is a normal family on Bn (see [45]), we obtain the following
corollary.

Corollary 4.1.9 [14] Let f : Bn → Cn be an almost starlike mapping of complex order
λ. Then

‖z‖
(1 + ‖z‖)2

≤ ‖f(z)‖ ≤ ‖z‖
(1− ‖z‖)2

, z ∈ Bn.

Theorem 4.1.10 [11] The set S∗λ(Bn) is compact.
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4.2 Applications with generalizations of the Roper-
Suffridge extension operator

In this section we obtain various results related to the preservation of the notion
of almost starlikeness of complex order λ by the generalized Roper-Suffridge extension
operators. These results also provide concrete examples of almost starlike mappings of
complex order λ on the unit ball in Cn.

Theorem 4.2.1 [14] Assume that f is an almost starlike function of complex order λ on
U and Fγ(z) = Φn,γ(f)(z) is defined as in Theorem 2.8.1. Then Fγ is an almost starlike
mapping of complex order λ on Bn.

Theorem 4.2.2 [14] Let f be an almost starlike function of complex order λ on U , and let
Fβ(z) = Φn,β(f)(z) be given as in Theorem 2.8.2. Then Fβ is an almost starlike mapping
of complex order λ on Bn.

Theorem 4.2.3 [14] Assume that f is an almost starlike function of complex order λ on
U , and Fβ,γ(z) = Φn,β,γ(f)(z) is defined as in Theorem 2.8.3. Then Fβ,γ is an almost
starlike mapping of complex order λ on Bn.

We present a different method for preservation of almost starlikeness of complex order λ
by generalizations of Roper-Suffridge extension operator. For this we present two classical
results.

Lemma 4.2.4 [30] Let f be a holomorphic function on the unit disc U . Then Ref(z) ≥
0, ∀z ∈ U , if and only if there exists an increasing function, µ, on [0, 2π], which satisfies
µ(2π)− µ(0) = Ref(0), such that

f(z) =

∫ 2

0
π

1 + ze−iθ

1− ze−iθ
dµ(θ) + iImf(0), z ∈ U.

Lemma 4.2.5 [68],[106] Suppose w ∈ C, then we have

1. Re(1− w2)(1− w)2 = (1− |w|2)|1− w|2;

2. Re(1 + 2w − w2)(1− w)2 = (1− |w|2)2 − 2|w|2|1− w|2.

Theorem 4.2.6 [15] If f is an almost starlike function of complex order λ on the unit
disc U , then

F (z) = Φn,β,γ(f)(z) =

(
f(z1),

(
f(z1)

z1

)β
(f ′(z1))

γz′

)
is an almost starlike mapping of complex order λ on Bn, where z = (z1, z

′) ∈ Bn, z1 ∈ U ,
z′ = (z2, · · · , zn)′ ∈ Cn−1, β ∈ [0, 1], and γ ∈

[
0, 12
]

such that β + γ ≤ 1, f(z1) 6= 0 when

z1 ∈ U \{0} and
(
f(z1)
z1

)β
, (f ′(z1))

γ satisfy
(
f(z1)
z1

)β
|z1=0= 1, respectively (f ′(z1))

γ |z1=0=

1.

If λ = 0, then the Theorem 4.2.6 is the result of starlike mappings.
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Corollary 4.2.7 [41] If f is a starlike function on the unit disc U , then

F (z) = Φn,β,γ(f)(z) =

(
f(z1),

(
f(z1)

z1

)β
(f ′(z1))

γz′

)

is a starlike mapping on Bn, where z = (z1, z
′) ∈ Bn, z1 ∈ U , z′ = (z2, · · · , zn)′ ∈ Cn−1,

β ∈ [0, 1], and γ ∈
[
0, 12
]

such that β + γ ≤ 1, f(z1) 6= 0 when z1 ∈ U \ {0} and
(
f(z1)
z1

)β
,

(f ′(z1))
γ satisfy

(
f(z1)
z1

)β
|z1=0= 1, respectively (f ′(z1))

γ |z1=0= 1.

For β = 0, we obtain the next corollary.

Corollary 4.2.8 [15] If f is an almost starlike function of complex order λ, λ ∈ C,
Reλ ≤ 0 on the unit disc U , then

F (z) = Φn,γ(f)(z) = (f(z1), (f
′(z1))

γz′)

is an almost starlike mapping of complex order λ on Bn, where γ ∈
[
0, 12
]
, and (f ′(z1))

γ

satisfies (f ′(z1))
γ |z1=0= 1.

If γ = 0, from Theorem 4.2.6 we obtain the next corollary.

Corollary 4.2.9 [15] If f is an almost starlike function of complex order λ, Reλ ≤ 0,
λ ∈ C on the unit disc U , then

F (z) = Φn,β(f)(z) =

(
f(z1),

(
f(z1)

z1

)β
z′

)

is an almost starlike mapping of complex order λ on Bn, β ∈ [0, 1],
(
f(z1)
z1

)β
|z1=0= 1.

4.3 Almost starlikeness of complex order λ and
the Pfaltzgraff-Suffridge extension operator

In the next theorem is proved that the Pfaltzgraff-Suffridge extension operator preserve
the almost starlikeness of complex order λ.

Theorem 4.3.1 [11] Assume f is an almost starlike mapping of complex order λ on Bn.
Then F = Ψn(f) is also an almost starlike mapping of complex order λ on Bn+1.

In particular, if λ = i tanα in Theorem 4.3.1, we obtain the following result.

Corollary 4.3.2 [11] Assume f is a spirallike mapping of type α on Bn. Then F = Ψn(f)
is a spirallike mapping of type α on Bn+1.

Next, if we consider λ =
α

α− 1
in the proof of Theorem 4.3.1, we obtain the following

particular case.

Corollary 4.3.3 [11] Assume f is an almost starlike mapping of order α on Bn. Then
F = Ψn(f) is an almost starlike mapping of order α on Bn+1.
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Another consequence of Theorem 4.3.1 is given in the following result due to Gra-
ham, Kohr and Pfaltzgraff [47]. This result provides a positive answer to the question of
Pfaltzgraff and Suffridge regarding the preservation of starlikeness under the operator Φn.

Corollary 4.3.4 Assume that f ∈ S∗(Bn). Then F = Ψn(f) ∈ S∗(Bn+1).

Example 4.3.5 Let fj , j = 1, . . . , n be almost starlike functions of complex order λ. It is
not difficult to deduce that the mapping f : Bn → Cn given by f(z′) = (f1(z1), . . . , fn(zn))
is almost starlike mapping of complex order λ on Bn. By Theorem 4.3.1, F : Bn+1 → Cn+1

given by

F (z) =
(
f1(z1), . . . , fn(zn), zn+1

n∏
j=1

[f ′j(zj)]
1

n+1

)
, z = (z′, zn+1) ∈ Bn

is almost starlike of complex order λ on Bn+1. For example, the mapping

F (z) =
(
z1

(
1 +

1 + λ

1− λ
z1

)− 2
1+λ

, . . . , zn

(
1 +

1 + λ

1− λ
zn

)− 2
1+λ

,

zn+1

n∏
j=1

[
(1− zj)

(
1 +

1 + λ

1− λ
zj

)]− 3+λ
(1+n)(1+λ)

)
is almost starlike of complex order λ on Bn+1.

Theorem 4.3.6 [11] The set Ψn[S∗λ(Bn)] is compact.

4.4 Sufficient conditions for almost starlikeness of complex
order λ

In this paragraph are presented sufficient conditions of almost stalikeness of complex
order λ in the unit disk U and in the Euclidean unit ball Bn, conditions obtained with
Lemma 1.6.2 (Jack-Miller and Mocanu) also by the similar result for n-dimensional case
give by P. Liczberski in the case of Euclidean unit ball [62], [67].

Lemma 4.4.1 Let f ∈ H(Bn) with f(0) = 0. If

‖f(z0)‖ = max{‖f(z)‖ : ‖z‖ ≤ ‖z0‖}, z0 ∈ Bn,

then there are some real numbers m, s, s ≥ m ≥ 1, such that the following relations holds

(4.4.1) 〈Df(z0)(z0), z0〉 = m‖f(z0)‖2,

(4.4.2) ‖Df(z0)(z0)‖ = s‖f(z0)‖

and

(4.4.3) Re〈D2f(z0)(z0, z0), z0〉 ≥ m(m− 1)‖f(z0)‖2.

Moreover, for n > 1, m = s if and only if

Df(z0)(z0) = mf(z0).
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Theorem 4.4.2 [12] Let f : U → C normalized holomorphic function and λ ∈ C with
Reλ ≤ 0, such that ∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ < 1

1 + |1− λ|
, z ∈ U.

Then f is an almost starlike function of complex order λ.

In the case λ = 0, we obtain the next sufficient condition of starlikeness in the unit
disk U .

Corollary 4.4.3 Let f : U → C a holomorphic function, with f(0) = f ′(0)− 1 = 0, such
that ∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ < 1

2
, z ∈ U.

Then f is a starlike function.

The n-dimensional version of Theorem 4.4.2 is given by the next result.

Theorem 4.4.4 [12] Let f : Bn → Cn normalized locally biholomorphic mapping and
λ ∈ C with Reλ ≤ 0, such that

‖[Df(z)(z)]−1D2f(z)(z, ·)‖ < 1

1 + |1− λ|
, z ∈ Bn.

Then f is an almost starlike mapping of complex order λ.

For particular values of λ from Theorem 4.4.4 are obtained some interesting results.
If λ = 0 from Theorem 3.5.5 we obtain the next corollary.

Corollary 4.4.5 Let f : Bn → Cn normalized locally biholomorphic mapping such that

‖[Df(z)(z)]−1D2f(z)(z, ·)‖ < 1

2
, z ∈ Bn.

Then f is a starlike mapping.

In the particular case λ = −1 we obtain the following result for almost starlikeness of
order 1/2.

Corollary 4.4.6 Let f : Bn → Cn normalized locally biholomorphic mapping such that

‖[Df(z)(z)]−1D2f(z)(z, ·)‖ < 1

3
, z ∈ Bn.

Then f is a starlike mapping of order 1/2.

For λ = i tanα we obtain a sufficient conditions for spirallikeness of type α, α ∈(
−π

2 ,
π
2

)
.

Corollary 4.4.7 Let f : Bn → Cn normalized locally biholomorphic mapping such that

‖[Df(z)(z)]−1D2f(z)(z, ·)‖ < 1

2
, z ∈ Bn.

Then f is a spirallike mapping of type α, α ∈
(
−π

2 ,
π
2

)
.
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[17] L. Bieberbach, Über einige Extremalprobleme im Gebiete der Konformen Abbildung,
Math. Ann., 77(1916), 153-172.
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[23] Gh. Călugăreanu, Sur la condition nécessaire et suffisante pour l’univalence d’une fonc-
tion holomorphe dans un cercle, C.R. Acad. Sci. Paris, 193(1931), 1150-1153.
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[70] K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises,
Math. Ann., 89(1923), 103-121.

[71] T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math.
Soc., 104(1962), 532-537.

[72] T. Matsuno, Star-like theorems and convex-like theorems in the complex space, Sci. Rep.
Tokyo Kyoiku Daigaku, Sect. A, 5(1955), 88-95.

[73] S.S. Miller, P.T. Mocanu, Second order differential inequalities in the complex plane, J.
Math. Anal. Appl., 65(1978), 289-305.

[74] S.S. Miller, P.T. Mocanu, Differential subordinations and univalent functions, Michig.
Math. J., 28(1981), 157-171.

[75] S.S. Miller, P.T. Mocanu, Differential Subordinations. Theory and Applications, Marcel
Dekker, Inc., New York, Basel, 2000.

37



[76] S.S. Miller, P.T. Mocanu, Subordinants of differential superordinations, Complex Vari-
ables, 48, 10(2003), 815-826.

[77] S.S. Miller, P.T. Mocanu, Briot-Bouquet differential superordination and sandwich the-
orems, J. Math. Anal. Appl., 329, 1(2007), 327-335.
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