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Introduction

One of the most used techniques to study the existence of solutions for non-
linear equations is given by continuation methods. These methods are based
on Leray-Schauder theorems, also named continuation theorems, and repre-
sents one of the most powerful methods in study of operatorial equations, in
particular of nonlinear functional-differential equations.

Shortly speaking, the continuation methods guarantees the existence of
one solution for an equation starting from the solution of another simpler
equation. If A and A are two sets, such that A C A, and F': A — A is an
application, in order to solve the fixed point equation

F(r) =z, (*)
we will associate to this equation another one, a ”simpler” one
G(z) = . (**)

Using an homotopy, namely an application H : A x [0,1] — A which makes
the connection between F' and G by equalities

H(-,0) =G and H(-,1) = F,

the continuation theorems contains conditions which guarantees that a so-
lution of the simpler equation (**) can be ”continued” to a solution of the
initial equation (*).

The first approaches to continuation methods where made by H. Poincaré
[64],[65] at the start of XX century for the study of existence of periodic
solutions for dynamical systems and in the same time, by S. Bernstein|[3]
in the study of existence of solutions for second order differential equations
using ”a priori” boundedness methods. The first abstract formulation of the
continuation principle was made by J. Leray and J. Schauder[37] in terms of
topological degree theory.

Theorem 1 [37] Let (X,|:|) a Banach space, U C X an open, bounded
subset, with 0 € U and H : U x [0,1] — X a completely continuous map.
Suppose that the following conditions are fulfilled:

(a) H(xz,\) # x for any x € OU and any X € |0, 1];

(b) VLS(J - H('a 0)7 U, O) 7é 0.
Then, there ezists at least one x € U such that H(x,1) = x. Moreover,

vis(J — H(-,0),U,0) = vps(J — H(-,1),U,0).



Here, we denote by J : X — X the identity map and by vps(F,U,0) we
understand the Leray-Schauder degree of map F' relative to set U and the
origin 0.

Later A. Granas|21], stated a new version of this principle without the
topological degree, known as Topological Transversality Principle. Instead
of condition (b) we ask for H(-,0) to be an essential map. We say that an
application F : U — C is essential if is fixed point free on the boundary 0U
and any other completely continuous map G : U — C equal to F on OU has

at least one fixed point in U.

Theorem 2 [21] Let (X,|-|) a Banach space, U C X an open, bounded
subset, with 0 € U and H : U x [0,1] — X a completely continuous map.
Suppose that the following conditions are fulfilled:

(a) H(z,\) # x for any x € OU and any t € [0, 1];

(b) H(-,0) is essential.
Then, there exists at least one x € U such that H(x,1) = x. Moreover,
H(-,1) is also essential.

The Leray-Schauder Principle and the Topological Transversality Princi-
ple are two powerful tools in case we want the localization of the solution in
a convex and closed set (usually a closed ball of a given R radius).

In case we want a better localization of the solution in a given shell, or we
want to prove the existence of multiple solutions, we can use another tool,
namely the Krasnoselskii Type Theorems on cones. Introduced for the first
time on 1960 by M. Krasnoselskii[35], these results guarantees the existence
of solution in a given shell for a wide number of nonlinear equations when
K is a cone of a normed linear space and the involved map F : K — K is

compressive
{ ||F(x)

or expansive type

As we can see above, the compressive-expansive type conditions are requested
for the map F' only on the boundary of shell K, g, while for the interior points
of shell we have only an invariance condition by map F'.



These results where extended by R. Precup[66](see also R. Precup[67]) to
a vectorial version of Krasnoselskii’s Theorem for systems of equations. The
use of this extension makes possible that the nonlinear therm of a system may
have different and independent behaviors both in components and variables.

The conventional technique, if we want to apply the Leray-Schauder type
principles, the Topological Transversality Theorem or the Krasnoselskii type
theorems for localization of ”a priori” bounded solutions, is to rewrite the
problem as an integral equation, usually with the help of a Green function.
Despite the fact that Green functions are specific to second order equations,
is possible to build such functions in case of first order equations of this form

This type of equations is very common (see [2], [7], [8], [19], [24], [25], [30],
[31], [32], [34], [38], [39], [43], [44], [45], [49], [50], [51], [52], [53], [63], [76], [77],
[79], [80], [81], [82], [85], [87], [89], [91], [90], [92]), different particular forms
of them modeling phenomenons from populations dynamic. The simplest
example in this sense is given by the logistic equation

70 =it (1- 55

equation which represents a common model for evolution in time of popula-
tions. Here

x(t) represents the number of persons from population at time ¢,

r(t) represents births rate( the number of newborns ) at time ¢,

K (t) represents the carrying capacity.
The same equation can be used for modeling the growth of tumors in medicine,
evolution of neuronal networks, evolution of autocatalytical reactions and
many other phenomenons.

In case of systems of equations, the logistic equation is involved in the
Lotka-Volterra model

- .Q?(t) -+ Oélg(t)
Ki(t)

_y(t) + o (2)
Ky(1)

Here



x(t),y(t) represents the number of persons from each population at time

r;(t) represents the growth rate of species ¢ at time ¢,
K;(t) represents the carrying capacity of the environment for species i,
«; j represents the effect of species j over species i.
According to the sign of coefficients a;; we have two cases:
a;; > 0, case in which we say we have a competition model(of pray-
predator type),
a;; < 0, case in which we say we have a mutualism model.

The purpose of this thesis is to study the existence of positive periodic
solutions for nonlinear first order functional-differential equations of type

’

(1) = a(t)z(t) = F(x)(t),

for second order equations like

1"

v (t) = a(t)z(t) — F(x)(t);

and also, for their corresponding systems of equations. We will rewrite these
equations, and systems, as fixed point problems, or as coincidence problems.
To these problems we will apply the fixed point theorems of Leray-Schauder
and Krasnoselskii or variants of these abstract results for coincidences.

This thesis is structured in 3 chapters and each chapter contains more
sections.

Chapter 1: Preliminaries.
In this chapter we present the two abstract results from fixed point theory
which are used in proofs from this thesis: the Leray-Schauder Principle and
the Krasnoselskii’s Theorem in cones. We also present different approaches
to these two results and some extensions.

Chapter 2: Periodic solutions for functional-differential equations.
In this chapter we present an unitary theory over the problem of existence of
positive periodic solutions for first order functional-differential equations. On
first section we present some existence results of positive solutions obtained
using the Leray-Schauder Principle; results taken from paper [58]. These
results will be the starting point for those presented in section 3.1
In the next two section we introduce the Green’s function and build the
equivalent fixed point problem. In the next section we localize the periodic
solutions by using the Krasnoselskii’s Theorem in cones. Also, we give some
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applications of these results, including to logistic equation. The personal
contributions in these sections are given in 4 lemmas and 5 theorems. These
results are also contained in paper V. Dincuta [14].

In section 4 we prove a version of Krasnoselskii’s Theorem for coinci-
dences. In the next section we apply this abstract result to the first order
equations which we studied in the previous sections. The conclusion is that
the results are similar no matter what method is used, which gives consis-
tency to our results. Our personal contributions in this section are given by
6 lemmas and Theorems 2.5.1, 2.6.1. The results are also contained in paper
V. Dincuta [11].

Capitolul 3: Periodic solutions for functional-differential systems of
equations. In this chapter we extend the results from chapter 2 to systems
of equations.

First, we study the existence of solutions using the Leray-Schauder Prin-
ciple. The results extends those obtained by D. O’'Regan and M. Meehan
in [58]. We give a general existence principle and we apply this result to an
integral operator with delays. Finally, we present some particular cases of
this operator and also we give an application to high order equations which
can be reduced to systems of first order equations. Our contributions in this
section are Theorems 3.1.1, 3.1.2 and other 5 forms of these results to some
particular cases. These results are contained in paper V. Dincuta [13].

In section 2 of this chapter we study the systems of first order equations
using the vectorial form of Krasnoselskii’s Theorem. The obtained results
naturally extend those presented in section 3 of chapter 2, and allows to
nonlinear therm to have different sublinear and superlinear behaviors. In the
end, we give some applications of these results, including to Lotka-Volterra
systems. Our contributions in this section are given by 8 lemmas and 3
theorems.

In section 3 we give some results which guarantee the existence of solu-
tions for systems of second order equations using the vectorial form of Kras-
noselskii’s Theorem. First, we seek for solutions in a given shell and next
we obtain an existence result under asymptotical conditions. These results
extend those obtained by D. O’'Regan and H. Wang [61]. Our contributions
in this section are given in 13 lemmas and Theorems 3.3.1, 3.3.2, 3.3.3. These
results are contained in paper V. Dincuta [16].

In section 4, we prove an abstract version of the vectorial version of Kras-
noselskii’s Theorem for coincidences, and in the next section we apply this



result to the systems of first order equations studied in the previous sections.
These results extend those obtained in sections 4 and 5 from chapter 2, and
we conclude again that no matter that we apply Krasnoselskii’s Theorem or
we see the problem like a coincidence problem, the obtained results are sim-
ilar. Our contributions in this section are given in 10 lemmas and Theorems
3.4.1, 3.5.1. These results are contained in paper V. Dincuta [12].



1 Preliminaries

This chapter contains the abstract results used in proofs from this thesis.

2 Periodic solutions for functional-differential
equations

The purpose of this chapter is to develop an unitary theory on the existence
of periodic solutions for functional-differential equations like

2 (t) = a(t)z(t) — F(x)(t), (2.1)

where a € Cp(R,Ry) is nonidentical zero and F' : Cr(R) — Cr(R) is a
continuous operator.

2.1 Periodic solutions via Leray-Schauder Principle

The results from this section are contained in paper[58] of M. Mechan and

D. O’Regan and represents the inspiration source for our results from section
3.1.
Consider the equation

z(t) = a(t)y(t) + N(y)(t),a.p.t. t € [0,T]. (2.2)

By a solution of this equation we understand a function y € AC[0,T] with
y(0) = y(T') and which satisfies the equation (2.2) almost everywhere on
0, 7.

Theorem 2.1.1 [58]] Suppose that
N : C[0,T] — L'0,T] is a continuous operator, (2.3)
for any constant A > 0 there exists hy € L'[0,T] such that
for any y € CI0,T] with [lyllo = sup |y(t)]| < A 2.4
te(0,7
we have ||[N(y)(t)|| < ha(t) a.p.t. t €[0,T],

and

T
—/ a(s)ds
a € L*0,T] such that e Jo # 1. (2.5)

7



Moreover, suppose that there exists a constant M independent of A\ with
\lylly # M for any solution y € AC[0,T] of the problem

{ ¥ (1) = alt)y(t) = AN(9)(t) ap.t. t € [0,T]
y(0) = y(T)

and any X\ € (0,1).
Then the equation (2.2) has at least one solution y € AC[0,T] such that
lllo < M.

Using this principle, we can obtain the following general existence result.

Theorem 2.1.2 [58]] Suppose that (2.3), (2.4) and (2.5) are fulfilled. More-

over, suppose that the following conditions are satisfied

{ there exists a continuous function v : [0,00) — (0,00) si ¢ € L0, T] with
IN(y) (@) < ¢(x)v(|yly) a.p-t. x € [0,T] and any y € C[0, T,

and c
S a0
where
_ 1 bT) [ Lo
o= a2 Lo J, O g [ et}
and

e /0 t o)

Then equation (2.2) has at least one solution in AC|0,T].

Next, we give an existence result of the solutions of equation

y (t) = N(y)(t) a.p.t. t €[0,T]
Lo =it 20
where the operator N is given by
N(y)(t) = (&) +y)g(t,y(t)) + hlt,y(t)) (2.7)

+ / ka(t, ) fu(s,y(s))ds

+/0 ka(t, s) fals, y(s))ds, ap.t. t € [0,T].



2.2 Green’s function for the periodic problem

Despite the fact that generally the Green’s function is specific to second order
differential equations, a such function can be build in case of the first order
equation (2.1).

In what follows, consider the Green’s function given by

G(t,s) = -
—/CL(T)dT
l—e 0
If we take
T
- [ a(r)dr
)=e 0 <1,

it is obvious that the Green’s function is bounded and satisfies the inequalities

1

o

T3 for any s € [t,t + 1. (2.8)

2.3 Reduction of the periodic problem to a fixed point
problem

Lemma 2.3.1 A function x € Cp(R) is solution for the problem

z'(t) = a(t)z(t) — f(t)
{ #(0) = () (29)
if and only if v
() = / G(t, 5) f(s)ds, (2.10)

t

where f € Cp(R) is an arbitrary function.



Remark 2.3.1 Using the above lema is obvious that a function v € Cp(R) is
solution for equation (2.1) if and only if is a solution of the integral equation

t+T

z(t) = /G(t,s)F(m)(s)ds. (2.11)

t

2.4 Localization of positive periodic solutions using
the Krasnoselskii’s principle

In this section, we study the existence of positive periodic solutions for equa-
tion (2.1), solutions which satisfies r < ||z|| < R, where 0 < r < R are two
given numbers. The main result of this section is the following.

Theorem 2.4.1 [V. Dincuta [14]] Suppose that for two numbers r and R
with 0 < r < R, one of the next conditions is fulfilled:
((F s nondecreasing,

1 5

T,

1—96
in F' > _—R:
Sty FORE) 2 57 B
F' is nondecreasing,
1—96
. L, 1-0
(a.2){ B FON0 2 57

~\ /7~

~\ /7~

F' is nonincreasing,

1-9
<
(@) "= T
1—

in F > R:
in F(R)() 2~ B

F' is nonincreasing,

1—96
in F' t) >
(d) § EHTOO =75
1—90
F(0R)(t) < ——R.
| By FOR® < =
The there exists at least one positive periodic solution x of equation (2.1)

such that r < ||z|| < R.

T,

N/~

T,

10



Next we give 4 examples, two of them relative to the logistic model.
Example 2.4.1

Consider the classic logistic model

(2.12)

where a, K are positive periodic functions, nonidentical to zero and 7" > 0.
Using Theorem 2.4.1 we obtain the following result.

Theorem 2.4.2 If there exists two numbers r and R such that

1-6 1-6
r= a) ~ a@m ="
T max 20§37 min )
relo) K (1) e K (1)

then there exists a positive periodic solution x of problem (2.12) which satis-
fiesr < ||z|]| < R.

Example 2.4.2

Consider the generalized logistic model for a single species

(1) = a(t)[a(t) = b(t)x(t) — c(t)z(t — 7(1))]
{ 2(0) = 2(7) (2.13)

where a, b, ¢, 7 are positive continuous functions and 7" > 0.
Using Theorem 2.4.1 we obtain the following result.

Theorem 2.4.3 If there exists two numbers r and R such that

1-9¢ 1-0
r < < <R
< 3 . <
Ttre%a%] b(t) +c(t)] o Ttg[lol,rql“] [b(t) + c(1)]

then there exists a positive periodic solution x of problem (2.13) which satis-
fiesr < ||z|| < R.

11



2.5 Krasnoselskii’s theorem for coincidences

In this section we prove a version of Krasnoselskii’s theorem for coincidences.
We study the existence of positive periodic solutions in a cone for the equation

Lzr =T(x), (2.14)

where L is a linear application and 7' is a nonlinear operator. Here L,T :
X — Y, where X is a Banach space and Y is a normed space.

Theorem 2.5.1 [V. Dincuta [11]] Let K C X be a cone, R € R,
O0<r <R, T:K —Y acompletely continuous map and J : X — Y a
linear map such that
(a) L+ J: X — Y is invertible
(b) (T + J)(K)C (L+J)(K):=K.
Suppose that one of the following conditions is fulfilled:
o) { Ly —T(2) ¢ K for [|a]| =,
T(x) — Lz ¢ K for ||z|| = R;
02) { T(z) ~ La ¢ K for ||l2]| =,
Lz —T(x) ¢ K for ||z|| = R.
Then there exists x € K, r such that Lx = T'(x).

2.6 Applications of Krasnoselskii’s theorem for coinci-
dences to the periodic problem

In what follows we will apply the Theorem 2.5.1 to obtain an existence result
for the periodic solutions of equation (2.1).

If we take
X =Y =Cr(R),

then equation (2.1) is equivalent with equation
Lz =T(x).

The main result of this section is the following.

12



Theorem 2.6.1 [V. Dincuta [11]] Suppose that for two numbers r and R
with 0 < r < R, one of the next conditions is fulfilled:
((F s nondecreasing,

1 _
(a.1){ % FOO <=7 5
) 1-—
Juin FOR)() > =57

F' is nondecreasing,

(0.2) trel[lolg] F(or)(t) > 5T5 r,
1—
max F(R)(t) < TR;

T,

R;

N7~

N\~

F' is nonincreasing,
1 —

F(or)(t
CORE: i MU
1—-9

in P (R)(t) > — R

F' is nonincreasing,

: 1 -
(ap){ "= T

1—
FOR)(t) < ——R.
| B (OR)() < —5
Then there exists at least one solution x of equation (2.1) such that r <
lz]] < R.

T,

N/~

3 Periodic solutions for functional-differential
systems

3.1 Periodic solutions via Leray-Schauder Principle

In this section, motivated by chapter 12 from [58], we give an existence result
for systems of equations like:

{ Y () — At)y(t) = Ny(t) ap.t. t €[0,T] (3.1)
y(0) = y(T). ’

Here N : C([0,T],R™) — C([0,T],R"), N = (Ny, Na, ..., Ny,) is a continuous
operator.

13



The results will extend those from [58] in two directions: to systems of
equations, and to delay equations. Moreover, these results can be applied to
high order equations, by reducing them to first order equations.

3.1.1 A general existence principle

First, we give a general existence principle for the solutions of system (3.1)
which in particular, for n = 1, can be reduced to Theorem 12.1.1 from [58].

Theorem 3.1.1 [V. Dincuta [13]] Suppose that

N :C([0,T],R™) — L*([0,T],R™) is a continuous operator, (3.2)
for any constant B > 0 there exists hg € L'[0,T] such that
for any y € C(0,T.R") with [llly = sup |90l B (3
te[0,7

we have ||Ny(t)||g. < hp(t) a.p.t. t €0,T],

and

T
/ A(s)ds
A e LY[0,T), M,n(R)) such that I, —e Jo is invertible.  (3.4)

Here I, is the unity matriz from M,,(R), and for a matriz D € M,,(R)
by eP we understand the sum > %Dk.

k=0
Moreover, suppose that there exists a constant M independent of A\ with

\ylly # M for any solution y € AC([0,T],R"™) of problem
{ y' (t) — At)y(t) = ANy(t) a.p.t. t € [0,T] (3.5)
=y(T)
and any A € (0,1).

Then the system (3.1) has at least one solution y € AC([0,T],R"™) such
that ||yl|, < M.

3.1.2 Existence of positive periodic solutions

We consider the problem

'(t) = Ny(t) a.p.t. t €[0,T]
{ JO) = yT). (3:6)

14



We will discuss the particular case when the operator N is given by

Ny(t) = r(t)+ gyt —0.))y(t —01) + h(t,y(t — 02)) (3.7)

+ kl(t,s)fl(s,y(s))ds+/0 ko (t, 8) fo(s,y(s))ds.

0

Theorem 3.1.2 [V. Dincuta [13]] Suppose that conditions (3.2) and (3.3)
are fulfilled for N given by (3.7).

Moreover, suppose that:
r(t) + h(t,0) <0 a.p.t. t €[0,T]; (3.8)

At y)||gn < P1(t) |yllgn + Pa2(t) a.p.t. t €]0,T] and y > 0, (3.9)
where 0 < a < land &, ®y € L0, T7; ’

there exists 3 € L'([0,T],R")and T € L*([0,T],R) with B(t) < g(t,y)y
and ||g(t, y)yllgn < 7() [[yllgn a-p-t. t €0, T]and any y > 0;

where T(t) > 0 on a subset of positive measure of [0, T);
(3.10)
there exists p € L* ([0, T], R™) with h(t,y) > p(t) a.p.t. t € [0,T)and y > 0;
(3.11)

t T

/kl(t>3)f1(5ay(3))d3+/k2(t78)f2(8,y(8))d8 <0 (3.12)

0 0
a.p.t. t € [0,T]for any y € C([0,T],R");

there exists py € L*[0, T]and py € L'([0,T],R™) such that

ki(t, s) f1(s,y) > p1(s)p2(t) a.p.t. t €[0,T], a.p.t. s € [0,1] (3.13)
for any y > 0;

there exists p3 € L'[0,T]and py € L'([0,T],R") such that

ko(t, s)fa(s,y) > p3(s)pa(t) a.p.t. t €[0,7T], a.p.t. s € [0,T] (3.14)
and any y > 0;

t

/ k(e ) fi(s, w(s))ds|| < Ds(8) |yl + Da(t)

0 Rn
a.p.t. t € [0,T]and for any y € C([0,T],R%);
where @3, @, € L'([0,T],R)and 0 < v < 1;

(3.15)

15



T

/ kot ) (s, y(s))ds| | < Ds(t) lIyl[< + Do(t)

0 Rn (3.16)
a.p.t. t € [0,T]and for any y € C([0,T],R?});
where @5, s € LY([0,T],R)and 0 < w < 1;
and
T T
/ )]dt < /hminf[f(t x)z|dt + /liminf[h(t s)|dt+
0
t T
//hmlnf [k1(t, 8)f1(s,x dsdt+//hm1nf [ka(t, 8) f2(s, x)]dsdt.
0
(3.17)

Then the system (3.6) has at least one solution y € AC([0,T],R"™) such that
y(z) >0 for any x € [0,T].

3.2 Krasnoselskii’s vectorial theorem and periodic so-
lutions for systems of functional-differential equa-

tions

In this section, inspired by [61] we study the existence of positive, T periodic
solutions for the functional-differential system

ay (1) (t) — Fi(z,y)(1)

' (t) =

y' () = ax(t)y(t) — Fa(z,y)(t)

2(0) — o(T) (3.18)
y(0) = y(T).

Then ay,a; € Cr(R,R,) and Fy, F : C2(R,R,) — Cr(R,R,) are continu-

ous operators.
Using Lemma 2.3.1, this system is equivalent with the system

{ z(t) = Ny(z,y Et

t

~—

)
y(t) = N2(37’y)

16



where operators Ny, Ny : CA(R, R, ) — C7(R,R,) are given by
t+T
Nie)®) = [ GiltoR) s
t

t+T
Na(w,y)(t) = / Golt, 5) Fa(w, ) (t)ds;

the Green’s functions are given by

and

T
—/ai(T)dT
§i—e 0 i=1.2

The main result of this section is the following existence theorem.

Theorem 3.2.1 Suppose that we have two pairs of numbers (ri, Ry) and
(ro, Ry) with 0 < ry < Ry and 0 < ry < Ry, such that:

(a) for any y € Ry one of the following conditions is fulfilled:
( Fy(-,y) is nondecreasing,

1—46;

F t) <
(a‘ 1) tg%&% 1(7"1,y)( ) = T
1

. 51
>
tg[lol,lil‘] Fi(01Ry,y)(t) > 5T

Fi(-,y) is nondecreasing,

) 1—0y
>
R 10, y)(t) = 5T

1—96;
max (R ) <
{€[0.T] 1( 173/)( ) =

r,

Ry;

\7~

ri,

Ry;

\7~

Fi(-,y) is nonincreasing,

1—-4;
<
(a.3) § 2 O = T

1—6;
in F; )y > ——
i (R, y)(t) > 5T

ri,

Ry;

17



( Fy(-,y) is nonincreasing,
1—6;
in F' t) >
(a4) { oy V0 = 5
1-46
Fi(6 t) < :
\ trer%&?] 1( 1R17y)( ) = R17
(b) for any x € Ry one of the following conditions is fulfilled:
( Fy(x,) is nondecreasing,
1— 6y
(b]) tg%gf%} FQ(xa TQ)(t) S T T,
1 -4,
in F: 0 t) > ;
\ tg[lol,l%} y(z,091)(t) > 5T Ry;
( Fy(x,) is nondecreasing,
1 -4y
in F: t) >
(bg) tér[lol,l'}} 2($,52T2)( ) el 52T T2,
1-9¢
tren[éx% Fy(x, Ry)(t) < 2R2;
\ 2
( Fy(x,) is nonincreasing,
1 -4y
<
(b.9) tlg%g% Fy(x,09m0)(t) < T ra,
1— 4y
in F: t) > ;
| S >(2, Ro)(t) > 5T
( Fy(x,) is nonincreasing,
1 — 6y
in F t) >
() § oy 0= T
1-9¢
max Fy(x,09Ry)(t) < 2R,.
te(0,7)

\
Then there ezists a solution (x*,y*) of system (3.18) such that ry < ||z*|| <
Ry and ry < ||y*|| < Ra.

Remark 3.2.1 In the previous theorem we can have 16 cases for functions
Fy and F,. This allows to the nonlinearities Fy(z,y) and Fy(x,y) to have
different and independent sublinear and superlinear behaviors in x and y.
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Next, we give two examples, one to the Lotka-Volterra model

(o x(t) fly())
T (t) = al(t)a:(t) 1-— 11 K1<t) — (V12 Kl(t)
Y (1) = as(Dy(t) |1 - O‘ﬂgf(é((?)) o }32(2) (3.19)
z(0) = x(7T)

[ y(0) =y(T)

where a1, as, K1, Ky are positive, continuous functions, nonidentical zero, T-
periodic and 7" > 0.

Using Theorem 3.2.1 we obtain the following result.

Theorem 3.2.2 Suppose that functions f,g : R — [0,00) are continuous
and such that ‘
0 < min f(u) < max f(u) < oo,

0< Ilflellgg(u) < Iggﬂicg(u) < 00.

Moreover, suppose that there exists the numbers ri, ro, Ry and Ry such that

1 1—-6
r < — —l—ozlgmaxf(u) ,
a1 ay (t) u€R
T max
tefo,7] K1(t)
1 1—-96; .
> _
LA )  Cemp
61T min
t€[0,T Kl (t)
1 1— 9
< .
"2 = Q99 ag(t) 21 Ill;léafé{g(U) ’
max
te[0,7) Kg(t)
1 1— 99
Ry > — o1 min g(u
2 04225% (52T o ag (t) 21 ueR ( )

ieior) Ko(t)

Then there ezists a solution (z*,y*) of system (3.19) which satisfy r1 <
lz*]] < Ry and ry < |ly*]] < Ry.
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3.3 The Krasnoselskii’s vectorial theorem and periodic
solutions for systems of second order differential
equations.

The purpose of this section is to study the existence of periodic positive
solutions for the problem

(3.20)

Gi(t) = diaglg}(t), g5(t), -, g, (1)), ,
Fi(x,y) = L[ (2, ), fi(2, ), o iz, y)) 7" S {1,2}.

The case of a single equation was studied in [61], our results extends them
and can be found in paper [16].
In this section, we will consider fulfilled the following conditions:

(H1) f; : R3* — [0, 00) is continuous, for j =1,...,n and i = 1,2;

(H2) g; : [0,27] — [0,00) is continuous and nonidentical zero, for j =
1,...,nand7=1,2.

where my, my € (0, 2) are constants, Aj, Ay > 0 positive parameters, and

3.3.1 Positive periodic solutions in a given shell
We consider the following Green’s functions:

sinm(t — s) + sinm; (27 —t + s) fo<s<t<or

Y

_ 2m;(1 — cos 2m;m)
Gilt;9) =19 gin mi(s —t) + sinm;(2m — s+ t)
(

2m;(1 — cos 2m;m)

,i=1,2.
,f0<t<s<2m

Denote by

~ sin(m;x) + sinm; (27 — x)

Gi(z) = € [0,2n],i =1,2.

2m;(1 — cos 2m;m)

and let o; = cosm;m, 1 =1, 2.
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Also, we consider the following notations:

. n 2r
Ni=NGi(m) > / g;(s)ds,
=10

7j=1

j=1ln

2
M; = X\;j0;G;(0) min / g;(s)ds,
0

fori=1,2.
The main result of this section is the following.

Theorem 3.3.1 [V. Dincuta [16]] Let 0 < < Ry and 0 < ry < Ry. Sup-
pose that (H1) and (H2) takes place and that one of the following conditions
is fulfilled:

( for x,y € R} with ro < |y| < Ry we have:

r . .
(1)f]1(x>y) < Flmj = 1a sy T 7'falrl < Z T < 71,
1 k=1

R n
(2)35* € {1,...,n} such that fjl*(a:,y) > Ulﬁl if 1Ry < ) xp < Ry.
1 k=1
for z,y € R} with ry < |z| < Ry we have:

Ty . . n
(3)f]2(x>y) < %7] = 17 ey ZfUQTZ S Z Yk S T,
2 k=1

R n
(4)35* € {1,...,n} such that ff*(a:,y) > O-QMQ if 09Rs < > yr < Ry.
2 k=1

(H3.1)

\
(for x,y € R with ro < |y| < Ry we have:
(1)f]1(x7y) < i?] = 17 ey 1 ifo-lrl S Z Tk S T,
N =
(2)35* € {1,...,n} such that f}.(z,y) > alﬁl if o1 Ry < ) xp < Ry.

1 k=1
(H3.2) for x,y € R with ri < || < Ry we have:

(3)35* € {1,...,n} such that f}.(z,y) > 02;4—2 if o9 < > yp < 1o,
2 k=1

n

Ry ,
(4)f]2(x>y) < ﬁ?] = 17 L 7ff02R2 < Z Yk < RQ'
2 k=1
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( for x,y € R with ro < |y| < Ry we have:

(1)35* € {1,...,n} such that fjl*(a:,y) > 01;4—1 if orry < >0 xp <,
1 k=1

Ry . n
(z)fjl(x7y) < Fi?] = 17 sy T 7ffalRl S Z Ty S Rl'
k=1
for z,y € R} with ri < |z| < Ry we have:

T . . n
(3)](‘]2(1’,?]) < %7] = 1a sy M ZfO-QTQ < Z Yk < T2,
2 k=1

(4)35* € {1,...,n} such that f}.(z,y) > 02%
2

(H3.3)

if ooRy < 30 Yk < Ry.
( k=1
( for x,y € R} with ro < |y| < Ry we have:

(1)35* € {1,...,n} such that f}*(:v,y) > 01]7\;[—1 if orry < 0 x <y,
1 k=1
R n
(Q)fjl(xvy) < ﬁl?j - ]-7 ceey T ZfO'lRl S Z Tk S Rl-
(H3.4) o F=t
for z,y € R} with ry < |z| < Ry we have:
(3)35* € {1,...,n} such that ff*(x,y) > 02;/[—2 if o9 < > yp < 1o,
2 k=1
Ry | , n
(4)f]2(x,y) < FQ,j =1,..,nif0aRs < > yr < Ry.
2 —

k=1
Then there exists a solution (z*,y*) of problem (3.20) such that ry < ||z*|| <
Ry and ry < ||y*|| < Rs.

Next, we give an application to the system

. L e
#(8) + 1lt) = o (h(y (1) o)

Y (8) + gu(t) = ty’ (O)k(x(t)).

Theorem 3.3.2 [V. Dincuta [16]] Let 0 < 1 < Ry, 0 < ry < Ry and
suppose that functions h,k : R — [0,00) are continuous and such that

0 < min h(t) < max h(t) < oo,

ro<t<Ro ro<t<Ra
0< min k() < max k(t) < occ.
r<t<R; r1<t<R;

Also, suppose that one of the following conditions is fulfilled

1
max A(t)-r¢ ! < and min h(t)- R¢' > . ,

(a.1)Q "= Wi < e B, M) R = ot
ax k(t)-ry ' < ——— and min k() - RS> : ;

Tllgtﬁ}%fl <) " 6\/§7T2 o 7“12211%1 <) 2 \/571'2 0'26_1
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( 1 1 1
h(t)-ri ! < d min h(t) - R} > C—
9 7’2%&;5%2 ( ) i 4\/§7r2 an Tzrér}flénlh ( ) ! 2\/§7T2 0?_1
(a. )< . 51 2 1 51 1
min k(t)-ry " > - —5—7 end  max k(t)- Ry < ;
L r<t<R; \/§7r2 1o r1<t<Ry 6\/§7T2
( 1 1 1
: a—1 a—1
) TZglgnRQ h(t)-ri™ > N and rzrélg%Q h(t)- R < W
: 1 2 1
k(t)-rd ' < d min k(t)-Ry > : ;
| KO8 < g and i kOB > o
( 1 1 1
in h(t) 8> —— . —— and h(t) - R¢™' < :
(0,4) TQISI}'ISHRQ ( ) " 2\5571’2 0'(13671 o 7"21585%2 ( ) ! 4\1/§7T2
min  k(t)-rd ! > + —5—7 and max k(t)- R < .
r1<t<Ry V372 ob r1<t<R; 6+/372

\
The the system (3.21) has a solution (x*,y*) such that ry
ry < [lyl] < Ra.

< ||z|| £ Ry and

3.3.2 Positive periodic solutions in asymptotic conditions

In the previous section we discussed the existence of positive periodic solu-
tions in a given shell. Here, we will give some sufficient conditions on the
nonlinearities f(x,y), f2(x,y) which will guarantee the existence of a such

shell.
For y € R% and any j = 1,...,n we consider the following notations:
fioly) = lim, T and Fio(y) = max fio(y),
1

. (z, )
et = im0 and By = e o)
ff(t,y) = max{f](z,y) : z € R} and |z| < t},
. it N (¢
fio(y) = lim fi (t,y) and f(y) = lim fi <t’y)~

Similarly, for x € R” and any j = 1,...,n we consider:
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f3(z,y)
Hl

f20() | | al :jzl 7777 n ;
fay)

f2oo( ) - |y\—>oo |y| J=1,m
A, t) = max{f3(z,y) : y € RL and [y| <1},

Bo(x) = 1%@ and f?oo(x) _ tli f2 (z, t)

t
The main result of this section is the following.

ly|—0

Theorem 3.3.3 [V. Dincuta [16]] Suppose that (H1) and (H2) takes place.
Moreover, suppose that one of the next conditions is fulfilled:
Fio(y) = 0 and Fioo(y) = oo fory € RY,
(H41) { Fy(x) =0 and Fyo(z) = 00 for x € R

(z) =
Fio(y) =0 and Fi(y) = oo fory € R",
(H4-2) { F(()J(x) oo and ;7200( ) =0 forxz e RJLE.
Fio(y) = 00 and Fi(y) =0 fory € R”,
(H4.5) { F(())(:r;) =0 and FQ:O( ) =00 forx € R—ZE.
Fo(y) 00 and Fiso(y) =0 fory € RY,

Fyo(x) =

0o and Foe(xz) =0 for z € RY.
Then there exists 0 <1y < Ry and 0 < ry < Ry such that problem (3.20) has
a solution (x*,y*) € K, g.

3.4 Krasnoselskii’s vectorial theorem for coincidences

First we will give a vectorial version for coincidences of Krasnoselskii’s the-
orem in cones. We study the existence of positive periodic solutions for the

system
le = Tl (l’, y)
, 3.22
{ Loy = Ty(z,y) (3:22)
where Ly, Ly : X — Y are linear maps and 77,75 : X x X — Y are two
nonlinear operators. Here X is a Banach space and Y is a normed space.

Theorem 3.4.1 [V. Dincuta [12]] Let Ky, Ky two cones in X; (1, R;) €
R2 such that 0 < r; < R; fori=1,2; T, Ty : K1 X Ky — Y two completely
contmuous maps and Ji, Jo : X — Y two linear maps such that

(a) Li + J; : X — Y is invertible for i = 1,2,
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(b) { (L1 + Jl)il[Tl(Kl, KQ) + Jl(K1)] C Ky,
(Ly + Jo) HTo( Ky, Ks) + Jo(Ka)| C K.
Moreover, suppose that one of the following conditions s fulfilled:
( Lyx —Ty(x,y) & (L1 + J1)(K,) for x € O(K,),, and y € Ko,

(c.1) Ti(z,y) — Lix ¢ (L1 + J1)(K,) for x € O(K1)g, andy € Ko,
' Loy — To(z,y) ¢ (Lo + Jo)(Ks) fory € 0(Ks),, and x € K,
| To(z,y) — Loy & (Lo + J2)(K3) fory € O(Ky)g, and x € K.
( Lz — Tl(:zc y) ¢ (L + J1)(Ky) for xz € O(K1),, andy € Ko,
(c.2) Ti(z,y) — Liz & (L1 + J1)(Ky) for x € O(Ki)R, and y € Ko,
’ To(z,y) — Loy & (Lo + J2)(K3) fory € O(K3),, and x € K;,
| Loy — Tg(:c y) ¢ (Lo + Jo)(K3) fory € O(Ks)g, and x € K;.
( Ti(z,y) — L1z ¢ (L + J1)(K,) for v € O(K,),, andy € Ko,
P Lix —Ti(x,y) ¢ (L1 + J1)(Ky) for x € O(K1)g, andy € Ko,
(c:3) Loy — To(z,y) & (Lo + Jo)(K3) fory € O(Ks),, and x € K,
¢ ( )(K2) ()
¢ ( ) (K1) (K1)
¢ ( )(£1) (K1)
¢ ( )(I2) f (K)
¢ (

| To(z,y) — Loy & (Lo + J2)(K3) fory € O(Ky)p, and x € K.
Ti(x,y) — Lix ¢ (L1 + J1)(K3) for x € (K1), andy € Ko,

(c.4) Lix —Ty(z,y) ¢ (L1 + J1)(Ky) for x € O(K1)Rr, and y € Ko,
’ To(x,y) — Loy & (Lo + Jo)(K>) fory € O(Ks),, and x € K,

| Loy — Tg(x y) & (Lo + Jo)(K3) fory € O(K3)r, and x € K.

Then there emists (x*,y*) € K a solution of system (3.22) such that ry <
|2*[| < By and ry < ||y*[| < Ry

3.5 Applications of Krasnoselskii’s vectorial theorem
for coincidences to systems of functional-differential
equations

In this section we will apply the Theorem 3.4.1 in order to obtain an existence

result for the periodic solutions of problem (3.18).

In a similar way like in section 2.6, the system (3.18) is equivalent with
the coincidences system:

Lz =Ty (z,y),
Loy = Ty(z,y).

The main result of this section is the following.

Theorem 3.5.1 [V. Dincuta [12]] Suppose that we have two pairs of num-
bers (r1, Ry) and (re, Ry) with 0 < r; < Ry and 0 < ry < Ry, such that:
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(a) for any y € Ry one of the following conditions is fulfilled:

(a.1)

(a.2)

(a.3)

(a-4)

N\~

\7~

N\~

\

( Fy(-,y) is nondecreasing,

1-—6;
F t
max (1, y)(t) < T

1—
min Fi(01 Ry, y)(t) > !

t€[0,T) 51

1,

Ry;

Fi(-,y) is nondecreasing,

1-96

tg[lln] Fi(61m1,9)(t) > 5 Tl
1 —51

tferf(%(] Fi(Ry,y)(t) < TRL

Fi(-,y) is nonincreasing,

1-6;
Fi(o t) <
tgax] (011, 9)(t) T

1—90
min Fi(Ry,y)(t) > —TlRl;

t€[0,7] 01

1,

1,

Fi(-,y) is nonincreasing,

1-6;
F t) >
tIEI[loln] 1<T17y)( ) (SlT ™

1—6
max Fi(61Rq1,y)(t) < -

t€[0,T)]

R;.

(b) for any € R, one of the following conditions is fulfilled:

(b.1)

(b.2) 4

(b.3) 4

\ /7

\/

Fy(z,-) is nondecreasing,

1-6
tn%élx] Fy(z,m)(t) < T 27’2,

1—96,

F .
U
Fy(x,-) is nondecreasing,

1-46
t%Pf“x@WX)> %T%%

1—6s

F. R Ry;
max y(z, Ro)(t) < 2}
Fy(x,-) is nonincreasing,

1-46
n%éaux] Fy(x,d9m9)(t) < 21y,
t

1—6,

F: R R

tg[lolrjl“} 2(.1' 2)( ) > 52 25
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Fy(x,-) is nonincreasing,

. 1— 69
(b.4) S Ealera)(t) > =emrs,

1 — 0y
Fy(x,00R,)(t) < R,.
tgﬁ% 5(z, 6912) (1) T 2
Then there ezists a solution (x*,y*) of system (3.18) such that ry < ||z*|| <
Ry and ry < ||ly*|| < Rs.
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