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Introduction

The Theory of approximation is an area of mathematical analysis, which, at its core, is con-
cerned with the approximation of functions by simpler and more easily calculated functions. As
A. F. Timan remarked in [136, p. 1], the basis of the theory of approximation of functions of
a real variable is the theorem discovered by K. Weierstrass [154] in 1885, which asserts that for
any continuous function f on the finite interval [a, b], there exists a sequence of polynomials which
converges uniformly to f on [a, b]. In 1912, S. N. Bernstein [21] gives a simple and elegant proof
of Weierstrass theorem, constructing, by probabilistic methods, a sequence of polynomials that
converges uniformly to the function to be approximated. Thus were introduced the Bernstein ope-
rators (the applications that associate the function to be approximated with the polynomials that
approximate the function). These operators belong to the class of positive linear operators.

In the ’50s, the theory of approximation of functions by positive linear operators developed a
lot, when T. Popoviciu [110], H. Bohman [23] and P. P. Korovkin [90, 91], discovered, indepen-
dently, a simple and easily applicable criterion to check if a sequence of positive linear operators
converges uniformly to the function to be approximated. This criterion says that the necessary and
sufficient condition for the uniform convergence of the sequence An of positive linear operators to
the continuous function f on the compact interval [a, b], is the uniform convergence of the sequence
Anf to f for the only three functions ek(x) = xk, k = 0, 1, 2. If the domain of definition of f is
unbounded (for example [0,∞)), then the result remains valid only for the continuous functions
having a finite limit at infinity. In this case, the test functions, xk, k = 0, 1, 2 are replaced by other
three functions (e−kx, k = 0, 1, 2 are an example).

To extend the theorem of Popoviciu-Bohman-Korovkin to continuous and unbounded functions
defined on [0,∞), some bounds on the functions must be required, a fapt which was first noted by
Z. Ditzian in [45]. In 1974, A. D. Gadjiev [60, 61] introduced the weighted space Cρ(I), which is
the set of all continuous functions f on the interval I ⊆ R for which there exists a constant M > 0
such that |f(x)| ≤M ·ρ(x), for every x ∈ I, where ρ is a positive continuous function called weight.
This space is a Banach space, endowed with the norm

‖f‖ρ = sup
x∈I

|f(x)|
ρ(x)

.

The Korovkin type theorem found by Gadjiev is the following: let ϕ : [0,∞)→ [0,∞) be a strictly
increasing, continuous and unbounded function and set ρ(x) = 1 + ϕ2(x); the sequence of positive
linear operators An : Cρ[0,∞)→ Cρ[0,∞) verifies

lim
n→∞

∥∥Anϕi − ϕi∥∥ρ = 0, i = 0, 1, 2.

Then
lim
n→∞

‖Anf − f‖ρ = 0,

for every function f ∈ Cρ[0,∞), for which the limit limx→∞
f(x)
ρ(x) exists and is finite.

We have two basic problems in approximation theory. The first is qualitative – under what
conditions will a sequence of operators approximate the identity operator. The second problem is
quantitative, namely, how quickly do the operators approximate the identity operator. The aim
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of the present thesis is a study of quantitative results related to the above mentioned qualitative
results. For the functions defined on a compact interval, the evaluation of the remainder Anf − f
is done using moduli of smoothness. The simplest and best-known is the modulus of continuity,
defined by the relation

ω (f, δ) = sup { |f(t)− f(x)| : t, x ∈ [a, b] , |t− x| ≤ δ } , δ ≥ 0.

A first result for the estimation of the remainder using the modulus of continuity is due to Shisha
and Mond [128] from 1968. The estimation is of the following form:

|An(f, x)− f(x)| ≤ |f(x)| · |An(1, x)− 1|+ (1 +An(1, x)) · ω
(
f,
√
An((t− x)2, x)

)
.

In order to obtain similar results for bounded functions defined on a noncompact interval or for
unbounded functions, we use the following weighted modulus of continuity

ωϕ (f, δ) = sup
t,x∈I

|ϕ(t)−ϕ(x)|≤δ

|f(t)− f(x)|.

Using this modulus we obtain estimations of the remainder and characterizations of functions, which
can be uniformly approximated using a given sequence of positive linear operators. The thesis is
structured in four chapters.

The first chapter contains preliminary notions and results related to positive linear operators.
Thus, we introduce the notion of positive linear operator and we give some properties of these
operators and some examples. Then we define the moduli of smoothness of order one and two, the
usual ones and those of Ditzian and Totik and we present known estimations of the remainder using
these moduli.

In the first section of the second chapter, it is presented the weighted modulus of continuity
with its properties. This modulus is close connected with the usual modulus of continuity and will
play an important role in all the estimations made throughout the second and third chapters of the
thesis. In the second section, we obtain quantitative results for the approximation of continuous and
bounded functions on the positive semiaxis which have a finite limit at infinity. The general results
from Theorem 2.10 and Theorem 2.12 and the corollaries that follow are personal contributions of
the author. In the next section, we introduce a new technique to characterize the functions which
can be uniformly approximated using a given sequence of positive linear operators. Old and new
results are thus obtained.

Chapter three is the largest and contains results for the approximation of continuous and un-
bounded functions. In the first two sections, are given some known results related to the approxi-
mation on compact subsets and local approximation of unbounded functions using positive linear
operators. In the third section, we give global results (quantitative results for the whole domain of
definition of the functions) for the approximation of functions belonging to weighted spaces. The
majority of the results from the literature related to weighted spaces are for the particular cases of
polynomial and exponential weighted spaces. A first contribution in this chapter is the quantitative
version of the theorem of Gadjiev. Another contribution, maybe the most important, which solves
some open problems, is the extension of the technique introduced in the second chapter for bounded
functions to this more general setting of weighted spaces. These results, which are presented in
subsection 3.3.3, are submitted and will be published soon. In the last part of this chapter, we
present different moduli of continuity used for weighted spaces. A particular interest is shown to
a modulus introduced by the author and properties and estimations of the remainder using this
modulus are given.

The fourth chapter contains two contributions, which use different inequalities for linear oper-
ators. The first part concerns the approximation of functions, using rational expressions with pre-
scribed numerator, which are constructed using positive linear operators. The second part presents
necessary and sufficient conditions in order that an inequality for a linear discrete functional holds
for some classes of convex functions.
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The bibliography is extensive, includind 157 references. The index is very useful to find some
results and the list from the end with the notations used along this thesis gives the page where the
definition of each symbol is located.

This thesis contains original results of the author, which have been obtained in a period of time
of four years. They can be found in the six papers mentioned in the bibliography, five already
published and one submitted, but there are some results and remarks which appear for the first
time in this work.
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Chapter 1

Preliminary concepts and results

1.1 Positive linear operators

1.1.1 Definition and properties of positive linear operators

Let M be a nonempty set and let

F(M,R) = { f : M → R } ,

be the linear space over R of real functions defined on M , endowed with the usual operations of
addition and scalar multiplication.

In the following, we denote by X a linear subspace of F(M,R) and by Y a linear subspace of
F(N,R), where M and N are nonempty sets.

Definition 1.1. The application A : X → Y is called an operator. The operator A is linear, if

A(αf + βg) = αAf + βAg, for every f, g ∈ X, α, β ∈ R,

and is positive, if
Af ≥ 0, for every f ∈ X with the property f ≥ 0.

Proposition 1.2.

(i) A positive linear operator is monotone.

(ii) If A is a positive linear operator, then for every f ∈ X we have |Af | ≤ A(|f |).

Proposition 1.3 (Hölder inequality for positive linear operators). Let A : X → Y be a positive
linear operator and let p, q > 1 be real numbers such that 1/p+ 1/q = 1. Then

A(|f · g|) ≤ (A(|f |p))
1
p · (A(|g|q))

1
q , for every f, g ∈ X.

Remark 1.4. The idea of proof is from [70] and even older (see the references of the article cited).
This result extends the result presented in [69].

Remark 1.5. An important particular case is the Cauchy-Schwarz inequality for positive linear
operators, which is obtained from Hölder inequality for p = q = 2, by using Proposition 1.2 (ii):

|A(f · g, x)| ≤
√
A(f2, x) ·

√
A(g2, x).

Proposition 1.6. Let A : B(I)→ B(I) be a positive linear operator. Then A is bounded and has
the norm ‖A‖ = ‖Ae0‖.
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1.1.2 Examples of positive linear operators

Example 1.7. For a positive integer n ≥ 1 and for a function f defined on [0, 1], the Bernstein
operators Bn : C[0, 1]→ C[0, 1] are defined by

Bn(f, x) =

n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
, x ∈ [0, 1].

They were introduced by S.N. Bernstein [21] in 1912.

Example 1.8. The Stancu operators P
〈α〉
n : C[0, 1]→ C[0, 1] are defined by

P 〈α〉n (f, x) =

n∑
k=0

(
n

k

)∏k−1
i=0 (x+ iα)

∏n−k−1
j=0 (1− x+ jα)

(1 + α)(1 + 2α) . . . (1 + (n− 1)α)
· f
(
k

n

)
, n ≥ 1,

where α is a parameter which may depend only on n. They were introduced by D.D. Stancu [131]
in 1968.

Example 1.9. Let 0 ≤ α ≤ β be real numbers. For n ≥ 1, the relation

P (α,β)
n (f, x) =

n∑
k=0

(
n

k

)
xk(1− x)n−k · f

(
k + α

n+ β

)
,

defines the Bernstein-Stancu operators P
(α,β)
n : C[0, 1] → C[0, 1], introduced by D.D. Stancu [132]

in 1969.

Example 1.10. For n ≥ 1, let xn be the greatest root of Jacobi’s polynomial J
(1,0)
n of degree n

related to the interval [0, 1] and

P2n−1(x) = λn

∫ x

0

(
J

(1,0)
n (t)

t− xn

)2

dt, where λn =
1∫ 1

0
(1− x)

(
J

(1,0)
n (x)
x−xn

)2

dx

.

Using the representation P2n−1(x) =
∑2n−1
k=0 akx

k, I. Gavrea [65] introduced in 1996 the operators
H2n+1 : C[0, 1]→ Π2n+1 defined by

H2n+1(f, x) =

2n−1∑
k=0

ak
k + 1

Lk+2(f, x),

where Ln : C[0, 1]→ Πn are given by

Ln(f, x) = f(0)(1− x)n + f(1)xn + (n− 1)

n−1∑
k=1

pn,k(x)

∫ 1

0

pn−2,k−1(t) · f(t) dt,

where pn,k are defined by

pn,k(x) =

(
n

k

)
xk(1− x)n−k.

The operators H2n+1 are linear and positive, preserving the affine functions and having the property
that

H2n+1(e2, x)− x2 = x(1− x)

(
1−

∫ 1

0

x2P2n−1(x) dx

)
≤ x(1− x)(1− xn) ≤ Cx(1− x)

n2
.
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Example 1.11. The Hermite-Fejér interpolatory polynomial Hn(f, x) of degree 2n− 1 is defined
by

Hn(f, x) =

n∑
k=1

f(xk,n)(1− xxk,n)

(
Tn(x)

n(x− xk,n)

)2

,

where xk,n = cos (2k−1)π
2n , k = 1, 2, . . . , n, are the roots of Chebyshev polynomial of the first kind

Tn(x) = cos(n arccosx) and f ∈ C[−1, 1]. These operators were introduced and studied by Fejér
[56] in 1916. They are called Hermite, also, because they verify the interpolatory conditions of
Hermite [72]

Hn(f, xk,n) = f(xk,n) and H′n(f, xk,n) = 0, for every k = 1, 2, . . . , n.

Example 1.12. The operators Ln : C[0, 1]→ C[0, 1] defined by

Ln(f, x) =

∫ 1

0
(1− (u− x)2)nf(u) du

2
∫ 1

0
(1− u2)n du

are called Landau operators and were introduced by E. Landau [92] in 1908 to give another proof
to the theorem of Weierstrass (see Theorem 1.30).

For a noncompact interval I ⊆ R, let D ⊂ C(I) be a linear subspace of continuous real functions
defined on I. In the following, we give some examples of positive linear operators defined on a such
subspace, which will be mentioned for every particular case.

Example 1.13. For I = [0,∞), the operators Sn : D → C(I) defined by

Sn(f, x) = e−nx
∞∑
k=0

(nx)k

k!
f

(
k

n

)
, x ∈ [0,∞), n ≥ 1,

are called Szász-Mirakjan operators. They were introduced by G. Mirakjan [105] in 1941 (some
authors spell this name: Mirakyan) and were studied by J. Favard [55] in 1944 and by O. Szász
[134] in 1950. The domain of definition of Sn is the set of all functions f(x) = O(eαx ln x), α > 0, this
fact being proved by T. Hermann [71]. Concerning the uniform approximation of these operators
see Corollary 2.19 and Corollary 3.14.

Example 1.14. For I = [0,∞), the operators Vn : D → C(I) defined by

Vnf(x) =

∞∑
k=0

(
n+ k − 1

k

)
xk

(1 + x)n+k
f

(
k

n

)
, x ≥ 0, n ≥ 1,

are called Baskakov operators and were introduced by V.A. Baskakov [15] in 1957. The domain of
definition D, is the set of all functions f which have the growth f(x) = O(eαx), α > 0, this fact
being proved by T. Hermann [71]. Concerning the uniform approximation of these operators see
Corollary 2.21 and Corollary 3.17.

Example 1.15. For I = [0, 1), the operators Mn : D → C(I) defined by

Mn(f, x) =

∞∑
k=0

(
n+ k

k

)
xk(1− x)n+1f

(
k

n+ k

)
, 0 ≤ x < 1,

are called Meyer-König and Zeller operators and were introduced in the present form by E.W.
Cheney and A. Sharma [30] in 1964. Initially, they were introduced by W. Meyer-König and K.
Zeller [104] in 1960, having f(k/n+1+k) instead of f(k/n+k). The set D, for which it was proved
in [104] the convergence of the series defining the operators, is the set of all functions f having the
growth f(x) = O((1− x)−α), α > 0.
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Example 1.16. For I = [0,∞) and for n ≥ 1, the operators Ln : D → C(I) defined by

Ln(f, x) =
1

(1 + x)n

n∑
k=0

(
n

k

)
xkf

(
k

n− k + 1

)
are called Bleimann-Butzer-Hahn operators. They were introduced by G. Bleimann, P.L. Butzer
and L. Hahn [22] in 1980 and were studied for the set of all functions which are bounded and
uniformly continuous on [0,∞).

Example 1.17. For I = [0,∞), the operators Cn : D → C(I) defined by

Cnf(x) =

n∑
k=0

f

(
k

n
βn

)(
n

k

)(
x

βn

)k (
1− x

βn

)n−k
,

for 0 ≤ x ≤ βn and Cnf(x) = f(x), for x > βn, where (βn)n∈N is a sequence of positive real
numbers having the properties

lim
n→∞

βn =∞ and lim
n→∞

βn
n

= 0,

are called Bernstein-Chlodovsky operators and were introduced by I. Chlodovsky [39] in 1937. In
the same paper, the author proves that Cn(f, x) converges punctually to f(x), if

max
x∈[0,βn]

|f(x)| · e−α
2 n
βn → 0, n→∞,

for every α 6= 0.

Example 1.18. For I = R, the operators Wn : D → C(I) defined by

Wn(f, x) =

√
n√
2π

∫ ∞
−∞

e−n
(u−x)2

2 f(u) du, x ∈ (−∞,∞),

are called Gauss-Weierstrass operators. In 1885, K. Weierstrass [154] proves that (Wn(f, x))n
converges punctually to f(x), if f is continuous and bounded on R. Using this result, he proves

Theorem 1.30. In 1944, J. Favard [55] proves the convergence for the set of functions f(x) = O(eαx
2

),
α > 0.

Example 1.19. For I = (0,∞), the operators Pn : D → C(I) defined by

Pn(f, x) =
1

(n− 1)!

(n
x

)n ∫ ∞
0

e−
nu
x un−1f(u) du, x > 0,

are called Post-Widder operators. They were introduced by E.L. Post [111] in 1930 and studied by
D.V. Widder [152] in 1934. They are the real inversion formula for the Laplace transform (see [153],
for details). In [153, p. 283-287] are given the conditions for the simple and uniform convergence
of Pnf toward f . R.A. Khan [88] and M.K. Khan, B. Della Vecchia and A. Fassih [89] called these
operators the Gamma operators.

Example 1.20. For I = (0,∞), the operators Gn : D → C(I) defined by

Gn(f, x) =
xn+1

n!

∫ ∞
0

e−xuunf
(n
u

)
du, x > 0, n ≥ 1,

are called Gamma operators. They were studied by M. Müller and A. Lupa’s [99] in 1967.

Example 1.21. For I = R, the operators Pn : D → C(I) defined by

Pn(f, x) =
n

2

∫ ∞
−∞

e−n|u−x|f(u) du

are called Picard operators.

4



1.2 The approximation of functions using positive linear
operators

1.2.1 The modulus of continuity

Definition 1.22. Let f ∈ C(I) be a continuous function defined on an interval I ⊆ R. The function
ω : C(I)× [0,∞)→ R ∪ {∞}, defined by:

ω (f, δ) = sup { |f(t)− f(x)| : t, x ∈ I , |t− x| ≤ δ }

is called modulus of continuity of the function f .

Proposition 1.23. The modulus of continuity has the following properties:
1. For f ∈ B(I), the function ω (f, ·) is nonnegative, increasing, subadditive and bounded, and

for δ ≥ 0, the function ω (·, δ) is a seminorm on B(I) (subadditive and positive homogeneous).
2. The function f is uniformly continuous on I if and only if

lim
δ↘0

ω (f, δ) = 0.

3. For every δ, λ ≥ 0, it is true the inequality:

ω (f, λδ) ≤ (1 + λ) · ω (f, δ) .

4. For every δ > 0 we have

|f(y)− f(x)| ≤
(

1 +
|y − x|
δ

)
· ω (f, δ) .

5. For every δ > 0 we have

|f(y)− f(x)| ≤
(

1 +
(y − x)2

δ2

)
· ω (f, δ) .

Proposition 1.24. For a compact interval I, the modulus of continuity is equivalent with the
K-functional

K1(f, t) = inf
g′∈C(I)

(‖f − g‖+ t ‖g′‖), t > 0,

i.e., there are the constants C1, C2 > 0 and δ0 > 0 such that

C1 · ω (f, δ) ≤ K1(f, δ) ≤ C2 · ω (f, δ) , for δ < δ0.

Theorem 1.25. Let A : C(I)→ B(I) be a positive linear operator. Then
(i) if f ∈ C(I) ∩B(I), then we have

|A(f, x)− f(x)| ≤ |f(x)| · |A(e0, x)− 1|

+

(
A(e0, x) +

A((t− x)2, x)

δ2

)
ω (f, δ) .

(ii) if f is differentiable on I and f ′ ∈ C(I) ∩B(I), then

|A(f, x)− f(x)| ≤ |f(x)| · |A(e0, x)− 1|+ |f ′(x)| · |A(e1, x)− xA(e0, x))|

+

(√
A(e0, x)A((t− x)2, x) +

A((t− x)2, x)

δ

)
ω (f ′, δ) .

Remark 1.26. The estimations from Theorem 1.25 are based on the ideas of O. Shisha and B.
Mond [128] from 1968.
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Theorem 1.27 (Popoviciu-Bohman-Korovkin). Let An : C[a, b]→ C[a, b] be a sequence of positive
linear operators. If

lim
n→∞

An(ek, x) = ek(x), k = 0, 1, 2,

uniformly on [a, b], then
lim
n→∞

An(f, x) = f(x),

uniformly on [a, b], for every continuous function f defined on [a, b].

Remark 1.28. The theorem 1.27 was discovered by H. Bohman [23] in 1952 and by P.P. Korovkin
[90, 91] in 1953. T. Popoviciu [110] obtained in 1950 this result for the polynomial operators.
For other details related to the history of this theorem and its generalizations, you can consult
the survey article [51], for its 102 referencies and the monografy [7], for its teoretical notions and
examples. This result shows that a necessary and sufficient condition for the uniform convergence
of a sequence of positive linear operators An toward a continuous function f on a compact interval
[a, b], is the convergence of Anf toward f for only three functions, ek(x) = xk, k = 0, 1, 2.

Remark 1.29. Let I ⊆ R be a noncompact interval, and let D ⊂ C(I) be a subspace on which is
defined a sequence of positive linear operators An : D → C(I). If we have the relations T (An(ek))→
T (ek), k = 0, 1, 2 uniformly on [a, b] ⊂ I, where T : C(I) → C[a, b] is defined by T (f) = f |[a,b],
then, using Theorem 1.27 we have

lim
n→∞

Anf = f, uniformly on [a, b],

for every continuous function f ∈ D.

Theorem 1.30 (Weierstrass [154]). Let f ∈ C[a, b] be a continuous function. Then, for every
ε > 0, there is a polynomial P (x) with real coefficients, such that

|f(x)− P (x)| < ε, for every x ∈ [a, b].

Theorem 1.31 (Jackson [85]). Let f ∈ C[a, b] be a continuous function. Then

inf
p∈Πn

‖f − p‖ ≤ C · ω
(
f,
b− a
n

)
,

where C is a constant not depending on n and f , and Πn is the set of polynomials with real
coefficients having the degree less or equal with n.

Theorem 1.32. Let An : C[a, b]→ Πn be a sequence of polynomial positive linear operators. Then,
at least one of the functions ek = xk, k = 0, 1, 2 cannot be approximated by Anek with an order
better than n−2.

1.2.2 The modulus of smoothness of order two

1.2.3 The moduli of smoothness of Ditzian and Totik

6



Chapter 2

Uniform approximation of
continuous and bounded functions

2.1 The weighted modulus of continuity

Definition 2.1. Let ϕ : I → J be a strictly increasing and continuous one-to-one map and f ∈ B(I).
Then, for δ ≥ 0 we define by

ωϕ (f, δ) = sup
t,x∈I

|ϕ(t)−ϕ(x)|≤δ

|f(t)− f(x)|. (2.1)

the weighted modulus of continuity of f .

Remark 2.2. For ϕ(x) = x we obtain the usual modulus of continuity. The weighted modulus is
a particular case of a more general modulus (see [68], for example)

ωd(f, δ) = sup { |f(t)− f(x)| : t, x ∈ X, d(t, x) ≤ δ } ,

where f is a bounded function defined on X and (X, d) is a compact metric space.

Proposition 2.3. The following relation is true:

ωϕ (f, δ) = ω
(
f ◦ ϕ−1, δ

)
. (2.2)

Proposition 2.4. The weighted modulus of continuity has the properties:
1. For f ∈ B(I), the function ωϕ (f, ·) is nonnegative, increasing, subadditive and bounded, and

for δ ≥ 0, the function ωϕ (·, δ) is a seminorm on B(I) (subadditive and positive homogeneous).
2. (i) If the function f ◦ ϕ−1 is uniformly continuous on J , then, for every sequence (δn)n≥1 of

real numbers having the property limn→∞ δn = 0, we have limn→∞ ωϕ (f, δn) = 0.
(ii) If (δn)n≥1 is a sequence of positive real numbers such that limn→∞ ωϕ (f, δn) = 0, then

f ◦ ϕ−1 is uniformly continuous on J .
3. For every δ, λ ≥ 0 we have

ωϕ (f, λδ) ≤ (1 + λ) · ωϕ (f, δ) .

4. For every δ > 0 the following inequality is true:

|f(y)− f(x)| ≤
(

1 +
|ϕ(y)− ϕ(x)|

δ

)
· ωϕ (f, δ) .
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2.2 The approximation of continuous and bounded functions
on the positive half-line

Remark 2.5. To extend the Theorem of Popoviciu-Bohman-Korovkin for the space C[0,∞), we
consider first, those functions which are continuous and bounded on [0,∞). To be more precise, let
C∗[0,∞) be the set of all continuous functions which have finite limit at infinity, which is a normed
space, endowed with the uniform norm ‖f‖ = supx≥0 |f(x)|,

C∗[0,∞) =
{
f : [0,∞)→ R | f continuous on [0,∞) and lim

x→∞
f(x) = L ∈ R

}
.

In [139] and [1] it is used the notation C[0,∞], but we prefer C∗[0,∞), which is used in [7], [51]
and [24].

Theorem 2.6. Let An : C∗[0,∞) → C∗[0,∞) be a sequence of positive linear operators with the
property that

lim
n→∞

An(e−kt, x) = e−kx, k = 0, 1, 2,

hold uniformly on [0,∞). Then
lim
n→∞

Anf(x) = f(x),

holds uniformly on [0,∞), for every function f ∈ C∗[0,∞).

Remark 2.7. The proof of the above theorem is for the first time mentioned in the paper [24].
Using a remark from [26], we construct another compactification of the positive half-line [0,∞) to
obtain another theorem of Korovkin type.

Theorem 2.8. Let An : C∗[0,∞) → C∗[0,∞) be a sequence of positive linear operators such that
the relations

lim
n→∞

An

((
t

1 + t

)k
, x

)
=

(
x

1 + x

)k
, k = 0, 1, 2,

hold uniformly on [0,∞). Then
lim
n→∞

Anf(x) = f(x),

holds uniformly on [0,∞), for every f ∈ C∗[0,∞).

Remark 2.9. The condition that f has a finite limit at infinity is essential, as the following
examples show (the second example is from [63]). The sequence of positive linear operators An,
defined by

An(f, x) =

{
f(x) + ex−n[f(x+ 1)− f(x)], x ∈ [0, n]
f(x), x > n,

which transforms every function f ∈ C∗[0,∞) into a function from C∗[0,∞), verifies the conditions
supx≥0

∣∣An(e−kt, x)− e−kx
∣∣ → 0, for k = 0, 1, 2. But, for f∗(x) = cosπx which is continuous and

bounded on [0,∞), even uniformly continuous on [0,∞), we have

‖Anf∗ − f∗‖ = sup
x∈[0,n]

∣∣2ex−n cosπx
∣∣ = 2.

The sequence Bn defined by

Bn(f, x) =

{
f(x) +

1− xn
n+1

[(
x+ 3

2

)
f
(
x+ 1

2

)
− (x+ 1)f(x)

]
, x ∈ [0, n]

f(x), x > n,

is a sequence of positive linear operators with
∥∥Bn(tk/(1 + t)k, x)− xk/(1 + x)k

∥∥→ 0, for k = 0, 1, 2
and ‖Bnf∗ − f∗‖ ≥ 2.
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Next, we present some quantitative results, estimating the error of approximation, using the
weighted modulus of continuity mentioned in Definition 2.1. We denote as in Holhoş [77]

ω∗(f, δ) = sup
x,t≥0

|e−x−e−t|≤δ

|f(x)− f(t)|,

and
ω#(f, δ) = sup

x,t≥0

| x1+x− t
1+t |≤δ

|f(x)− f(t)|,

for every δ ≥ 0 and every f ∈ C∗[0,∞).

Theorem 2.10 (Holhoş [77]). Let An : C∗[0,∞) → C∗[0,∞) be a sequence of positive linear
operators with

‖An1− 1‖ = an,
‖An(e−t, x)− e−x‖ = bn,∥∥An(e−2t, x)− e−2x

∥∥ = cn,

where an, bn and cn converge to 0, when n tends to infinity. Then

‖Anf − f‖ ≤ ‖f‖ · an + (2 + an) · ω∗
(
f,
√
an + 2bn + cn

)
,

for every f ∈ C∗[0,∞).

Remark 2.11. Similarly, if we replace e−t and e−2t with t/(1 + t) and t2/(1 + t)2 and the modulus
ω∗(f, δ) with ω#(f, δ) we obtain another estimation of the error of approximation.

Theorem 2.12 (Holhoş [77]). Let An : C[0,∞)→ C[0,∞) be a sequence of positive linear opera-
tors, preserving the affine functions and

sup
x≥0

|An(t2, x)− x2|
(1 + x)2

= dn → 0, (n→∞)

then
‖Anf − f‖ ≤ 2 · ω#

(
f,
√
dn

)
,

for every f ∈ C∗[0,∞).

Remark 2.13. Because the inequality |e−t − e−x| ≤ |t − x| is true for every t, x ≥ 0, we deduce
that

ω(f, δ) ≤ ω∗(f, δ), for every δ ≥ 0,

and because |e−t − e−x| = e−θ|t− x| ≥ e−M |t− x| is true only for t, x ∈ [0,M ], we obtain

ω∗(f, δ) ≤ ω(f, eMδ) ≤ (1 + eM ) · ω(f, δ).

The inequality
∣∣∣ x

1+x −
t

1+t

∣∣∣ ≤ |x− t|, for x, t ≥ 0, shows us that

ω(f, δ) ≤ ω#(f, δ),

and
∣∣∣ x

1+x −
t

1+t

∣∣∣ ≥ |x−t|
(1+M)2 , for x, t ∈ [0,M ] proves that

ω#(f, δ) ≤ ω(f, (1 +M)2δ) ≤ (1 +M)2 · ω(f, δ),

where M > 0, is an integer.
Because of these inequalities we cannot replace the weighted moduli from Theorem 2.10 and

Theorem 2.12 with the usual modulus of continuity unless we approximate the functions on [0,M ].
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Corollary 2.14. For the Szász-Mirakjan operators Sn : C∗[0,∞)→ C∗[0,∞) defined in Example
1.13 and for f ∈ C∗[0,∞), we have the estimations

‖Snf − f‖ ≤ 2 · ω∗
(
f,

1√
n

)
, n ≥ 1,

and

‖Snf − f‖ ≤ 2 · ω#

(
f,

1

2
√
n

)
, n ≥ 1.

Corollary 2.15. For the Baskakov operatorsVn : C∗[0,∞) → C∗[0,∞) defined in Example 1.14
and for f ∈ C∗[0,∞), we have

‖Vnf − f‖ ≤ 2 · ω∗
(
f,

5

2
√
n

)
, n ≥ 2,

and

‖Vnf − f‖ ≤ 2 · ω#

(
f,

1√
n

)
, n ≥ 1.

Corollary 2.16. For the Bernstein-Chlodovsky operators defined in Example 1.17 and for a func-
tion f ∈ C∗[0,∞), we have the estimations

‖Cnf − f‖ ≤ 2 · ω∗
(
f,

√
βn
n

)
, n ≥ 1,

and

‖Cnf − f‖ ≤ 2 · ω#

(
f,

√
βn
4n

)
, n ≥ 1.

Corollary 2.17. The Bleimann-Butzer-Hahn operators Ln : C∗[0,∞) → C∗[0,∞) defined in E-
xample 1.16, verify for every f ∈ C∗[0,∞)

‖Lnf − f‖ ≤ 2 · ω#

(
f,

2√
n+ 1

)
, n ≥ 1.

2.3 Uniform approximation of functions on noncompact
intervals

The next results give a characterization of the functions which can be uniformly approximated by
a sequence of positive linear operators. The results are published in [76] and they present another
approach to this problem already solved (see [140] and [40]).

Theorem 2.18 (Holhoş [76]). Let An : C(I) → C(I) be a sequence of positive linear operators
preserving the constant functions. Then, the following statements are true:
a) if supx∈I An(|ϕ(t) − ϕ(x)|, x) = an → 0 and f ◦ ϕ−1 is uniformly continuous on J , then
‖Anf − f‖ → 0 and moreover

‖Anf − f‖ ≤ 2 · ωϕ (f, an) .

b) if ‖Anf − f‖ → 0 and (Anf) ◦ ϕ−1 is uniformly continuous on J , then f ◦ ϕ−1 is uniformly
continuous on J .

Corollary 2.19. For the Szász-Mirakjan operators

Snf(x) = e−nx
∞∑
k=0

(nx)k

k!
f

(
k

n

)
,
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we have ‖Snf − f‖ → 0 if f(x2) is uniformly continuous on [0,∞). If f is bounded and continuous
on [0,∞) and ‖Snf − f‖ → 0, then f(x2) is uniformly continuous on [0,∞) and

‖Snf − f‖ ≤ 2 · ω
(
f(t2),

1√
n

)
, n ≥ 1. (2.3)

Remark 2.20. In [137, 140] V. Totik proves that Snf converge uniformly to f for f ∈ C[0,∞) ∩
B[0,∞), if and only if f(x2) is uniformly continuous on [0,∞). The estimation (2.3) is mentioned
for the first time in the article of J. de la Cal and J. Cárcamo [40, Theorem 1].

Corollary 2.21. For the Baskakov operators

Vnf(x) =

∞∑
k=0

(
n+ k − 1

k

)
xk

(1 + x)n+k
f

(
k

n

)
,

the convergence ‖Vnf − f‖ → 0 is true, if f(ex − 1) is uniformly continuous on [0,∞). If f is
bounded and continuous on [0,∞) and Vnf converges uniformly to f on [0,∞), then f(ex − 1) is
uniformly continuous on [0,∞). Furthermore,

‖Vnf − f‖ ≤ 2 · ω
(
f(et − 1),

1√
n− 1

)
, n ≥ 2. (2.4)

Remark 2.22. Totik [138, 140] proves that for the function f continuous and bounded on [0,∞),
Vnf converges uniformly to f , if and only if f(ex) is uniformly continuous on [0,∞). The estimation
(2.4) is similar to that from [40, Theorem 7].

Corollary 2.23. The Meyer-König and Zeller operators

Mn(f, x) =

∞∑
k=0

(
n+ k

k

)
xk(1− x)n+1f

(
k

n+ k

)
have the property that ‖Mnf − f‖ → 0, if f(1 − e−x) is uniformly continuous on [0,∞). If f is
bounded and continuous on [0, 1) and Mnf converges uniformly on [0, 1) to f , then f(1 − e−x) is
uniformly continuous on [0,∞). Moreover,

‖Mnf − f‖ ≤ 2 · ω
(
f(1− e−t), 1√

n

)
, for n ≥ 1. (2.5)

Remark 2.24. In [138] Totik proves that Mnf converges to f uniformly, for the functions f which

are continuous and bounded on [0,∞), if and only if f
(

ex

1+ex

)
is uniformly continuous on [0,∞). In

[140], the condition for the uniform continuity of f
(

ex

1+ex

)
is proved to be equivalent to the uniform

continuity of f(1− e−x) on [0,∞). The estimation (2.5) is similar to that from [40, Theorem 8].

Corollary 2.25. For the Gauss-Weierstrass operators

Wn(f, x) =

√
n√
2π

∫ ∞
−∞

e−n
(u−x)2

2 f(u) du,

we have ‖Wnf − f‖ → 0, if f is uniformly continuous on R. If f is bounded and continuous on R
and Wnf → f uniformly on R, then f is uniformly continuous on R. Moreover,

‖Wnf − f‖ ≤ 2 · ω
(
f,

1√
n

)
, for n ≥ 1. (2.6)

Remark 2.26. Stancu [133] proved that ‖Wnf − f‖ → 0, if f is uniformly continuous on R. Holhoş
[76] proved that if f is bounded and continuous on R and Wnf converges uniformly to f on R, then
f is uniformly continuous on R. The estimation (2.6) is similar to that from [133].
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Corollary 2.27. The Bleimann-Butzer-Hahn operatorsLn have the property that ‖Lnf − f‖ → 0,
if f(x−2 − 1) is uniformly continuous on (0, 1]. If f is bounded and continuous on [0,∞) and Lnf
converges uniformly on [0,∞) to f , then f(x−2 − 1) is uniformly continuous on (0, 1]. Furthemore,
we have the estimation

‖Lnf − f‖ ≤ 2 · ω
(
f(t−2 − 1),

1√
n+ 1

)
, for n ≥ 1. (2.7)

Remark 2.28. The function f(x−2−1) is uniformly continuous on (0, 1] if and only if f ∈ C∗[0,∞).
Totik [139] proved that if f ∈ C∗[0,∞), then Lnf converges uniformly to f . The estimation (2.7)
is mentioned for the first time in Holhoş [76].
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Chapter 3

The approximation of continuous
and unbounded functions

3.1 The local approximation

3.2 The approximation on compact subsets

3.3 The approximation on weighted spaces

3.3.1 Weighted spaces: definition and examples

In the previous sections we have mentioned some results for the local approximation and approxi-
mation on compact subsets of an unbounded function using positive linear operators. The function
f to be approximated must satisfy some growth condition

f(x) = O(ρ(x)). (3.1)

In this section we want to obtain global results (on the entire domain of definition of the functions)
for the approximation of unbounded functions using positive linear operators.

Definition 3.1. For the interval I ⊆ R the continuous function ρ : I → (0,∞)is called weight. We
call weighted space, the set Bρ(I), which represents the space of all functions f : I → R, for which
there exists M > 0, such that |f(x)| ≤ M · ρ(x), for every x ∈ I. This space can be endowed with
the ρ-norm

‖f‖ρ = sup
x∈I

|f(x)|
ρ(x)

.

We define the subspace Cρ(I) = C(I) ∩Bρ(I), and for I = [0,∞)

C∗ρ [0,∞) =

{
f ∈ Cρ[0,∞), lim

x→+∞

f(x)

ρ(x)
= K < +∞

}
.

Example 3.2. The polynomial weighted spaces CN [0,∞) are obtained from the weight

ρ(x) = 1 + xN , x ≥ 0, N > 0.

Some authors use the weight wN (x) = (1+x)N . The weight space associated with this weight is the
same with CN [0,∞) with equivalent norms. There are many who have studied the approximation
of functions on these weighted spaces using positive linear operators: A. Aral [10, 11], F. Altomare
[8], A. Attalienti [12], M. Becker [16], J. Bustamante [28], M. Campiti [12], A. Ciupa [34, 35, 36, 38],
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O. Doğru [49], A. Erençýn [53], A.D. Gadjiev [61], S. Graczyg [123], V. Gupta [11, 151], E. Ibikli
[81], N. Ispir [83, 156], A.-J. López-Moreno [97], E. Mangino [8], L. Morales de la Cruz [28], J.M.
Quesada [28], L. Rempulska [114, 119, 120, 121, 122, 123, 124], M. Skorupka [114, 119, 121, 122],
F. Taşdelen [53], K. Tomczak [124], Z. Walczak [120, 144, 145, 146, 149, 150, 151], I. Yuksel [156].

Example 3.3. The exponential weight spaces Cp[0,∞) are defined by means of the weight

ρ(x) = epx, x ≥ 0, p > 0.

From those who studied the problem of approximation of functions on such spaces using positive
linear operators, we mention: M. Becker [17], A. Ciupa [31, 32, 33, 37], Z. Ditzian [46], M. Leśniewich
[93], L. Rempulska [93, 114, 115, 116, 117, 118], M. Skorupka [114, 115, 116], Z. Walczak [117, 118,
147, 148].

Example 3.4. D.-X. Zhou [157] uses the weight

w(x) = x−a(1 + x)b, 1 > a > 0, b > 0,

to obtain a similar result to that of Becker [16], for the Szász-Mirakjan operators. In [41, 42], B.
Della Vecchia, G. Mastroianni and J. Szabados considered a general class of weights including

w(x) = ex
β

, x ≥ 0, β > 0.

Remark 3.5. The spaces Bρ(I), Cρ(I) and C∗ρ [0,∞) are Banach spaces. The completeness of
these spaces comes from the completeness of the spaces B(I), C(I) ∩ B(I) and C∗[0,∞), by the
relation between ρ-norm and uniform norm: ‖f‖ρ= ‖f/ρ‖.

Remark 3.6. Let A be a positive linear operator defined on Cρ(I). A necessary and sufficient
condition for the operator A to map Cρ(I) into Bρ(I) is

A(ρ, x) ≤M · ρ(x), for every x ∈ I,

whereM > 0 is a constant independent o x. This condition assures the boundedness (the continuity)
of the operator A. The norm of the operator A is given by

‖A‖Cρ→Bρ = ‖Aρ‖ρ .

3.3.2 Theorems of Korovkin type

The following result is the first extension of the Popoviciu-Bohman-Korovkin Theorem 1.27 for the
weighted spaces. A similar result, but for the more general case of weighted spaces of functions
defined on locally compact Hausdorff spaces see [125] and [7].

Theorem 3.7 (Gadjiev). Let ϕ : [0,∞)→ [0,∞) be a strictly increasing continuous function with
the property that limx→∞ ϕ(x) =∞ and let ρ(x) = 1+ϕ2(x) be a weight. If the sequence of positive
linear operators An : Cρ[0,∞)→ Bρ[0,∞), satisfies

lim
n→∞

∥∥Anϕi − ϕi∥∥ρ = 0, i = 0, 1, 2,

then, for every f ∈ C∗ρ [0,∞), we have

lim
n→∞

‖Anf − f‖ρ = 0.

Remark 3.8. This theorem of A.D. Gadjiev is stated in [60] in 1974 and proved in 1976 (see [61]),
for the weighted space of functions defined on R.

In the following, we present a quantitative version of Theorem 3.7.
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Theorem 3.9 (Holhoş [74]). Let ϕ : [0,∞) → [0,∞) be a strictly increasing continuous function
with the properties that ϕ(0) = 0 and limx→∞ ϕ(x) = ∞. Let ρ(x) = 1 + ϕ2(x) be the weight and
let An : Cρ[0,∞)→ Bρ[0,∞) be a sequence of positive linear operators for which

‖An1− 1‖ = an,

‖Anϕ− ϕ‖
ρ

1
2

= bn,∥∥Anϕ2 − ϕ2
∥∥
ρ

= cn,

where (an)n≥1, (bn)n≥1, (cn)n≥1 are sequences converging to 0. Using the following notation
δn =

√
an + 2bn + cn and considering the sequence of real numbers (ηn)n≥1 with the properties

lim
n→∞

ηn =∞ and lim
n→∞

ρ
1
2 (ηn)δn = 0,

we have for every f ∈ C∗ρ [0,∞) the estimation

‖Anf − f‖ρ ≤ Kf · (an + cn)

+
(
‖f‖ρ +Kf

) [
ρ

1
2 (ηn)δn

√
1 + an + an + δn

√
δ2
n + 4

]
+ (2 + an)ωϕ

(
f

ρ
, ρ

1
2 (ηn)δn

)
+ 2rn(3 + 2an + 2cn),

where Kf = lim
x→∞

f(x)

ρ(x)
and rn = sup

x≥ηn

∣∣∣∣f(x)

ρ(x)
−Kf

∣∣∣∣.
3.3.3 Uniform approximation in weighted spaces

In this section, we consider as weight an increasing and differentiable function ρ : I → [1,∞), where
I ⊆ R is a noncompact interval of the real line. Let ϕ : I → J , (J ⊂ R), be a differentiable one-
to-one map with the property that ϕ′(x) > 0, for every x ∈ I. Some of the following results are
presented in [78]. They give an answer to two open problems mentioned in the survey article [27]:

Let D be a linear subspace of RI and let An : D → C(I) be a sequence of positive linear
operators. For which weights ρ, does An map Cρ[0,∞)∩D onto Cρ[0,∞) with uniformly bounded
norms?

2. For which functions f ∈ Cρ[0,∞) do we have ‖An − f‖ρ→ 0, when n→∞?
A result related to the problem 2 is mentioned in the same paper [27, Theorem 3.8].

Theorem 3.10. Let ρ be an arbitrary weight and let G ∈ C[0,∞) be a function with the properties:
(i) G is differentiable, G′(x) > 0 for every x > 0 and G′ is an increasing, continuous function on
(0,∞) and (ii) there exist the constants x0 > 0, h1 > 0 and C such that G′ ◦G−1 ∈ Lip[x0,∞) and
for every x ≥ x0 and h ∈ (0, h1) we have G′(x + h) ≤ C ·G′(x). Let An : Cρ[0,∞) → Cρ[0,∞) be
a sequence of positive linear operators with the property

G′ ◦G−1 · An(f)

ρ
∈ Lip[x0,∞), f ∈ Cρ[0,∞), n ∈ N.

If for some f ∈ Cρ[0,∞) one has limn→∞ ‖An − f‖ρ = 0, then the function (f/ρ) ◦G is uniformly
continuous.

Theorem 3.11 (Holhoş [78]). Let An : Cρ(I) → Cρ(I) be a sequence of positive linear operators
preserving constant functions. Suppose the following conditions are satisfied

sup
x∈I

An(|ϕ(t)− ϕ(x)|, x) = an → 0, (n→∞) (3.2)

sup
x∈I

An(|ρ(t)− ρ(x)|, x)

ρ(x)
= bn → 0. (n→∞) (3.3)
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If An(f, x) is differentiable and there exists a constant K(f, n) such that

|(Anf)′(x)|
ϕ′(x)

≤ K(f, n) · ρ(x), for every x ∈ I, (3.4)

and, ρ and ϕ are given such that there is a constant α > 0 with the property

ρ′(x)

ϕ′(x)
≤ α · ρ(x), for every x ∈ I, (3.5)

then, the following statements are equivalent

(i) ‖Anf − f‖ρ → 0 as n→∞.

(ii)
f

ρ
◦ ϕ−1 is uniformly continuous on J.

Furthermore, we have the estimation

‖Anf − f‖ρ ≤ bn · ‖f‖ρ + 2 · ωϕ
(
f

ρ
, an

)
, for every n ≥ 1. (3.6)

Remark 3.12. For ρ(x) = 1, the result of Theorem 3.11 was obatined by Totik [140, 141], by J.
de la Cal and Cárcamo [40] and by Holhoş [76] (see Theorem 2.18 from this thesis).

Remark 3.13. For the Bleimann-Butzer-Hahn operatorswe have found in the Corollary 2.27 the
function ϕ(x) = 1√

1+x
. The maximal weight is ρ(x) = e

α√
1+x , which is a bounded function on [0,∞),

which shows the equivalence of this weight with ρ(x) = 1. So, the appropriate space for global
approximation of functions using the Bleimann-Butzer-Hahn operators is Cρ[0,∞) = C∗[0,∞).

Corollary 3.14. For α > 0 and ρ(x) = eα
√
x, the Szász-Mirakjan operators Sn : Cρ[0,∞) →

Cρ[0,∞) have the property that

‖Snf − f‖ρ → 0, when n→∞

if and only if
f(x2)e−αx is uniformly continuous on [0,∞).

Moreover, for every f ∈ Cρ[0,∞) and every n ≥ 1, one has

‖Snf − f‖ρ ≤ ‖f‖ρ ·
αC√
n

+ 2 · ω
(
f(t2)e−αt,

1√
n

)
,

where C = supn∈N
1
2

√
‖Snρ2‖ρ2 + 2 ‖Snρ‖ρ + 1 <∞ is a constant depending only on α.

Remark 3.15. The result from Corollary 3.14 for the limit case, α=0, was obtained in [137], [140],
[40] and [76] (see the Corollary 2.19).

Remark 3.16. In [16], Becker studied the global approximation of functions using Szász-Mirakjan
operators for the polynomial weight ρ(x) = 1 + xN , N ∈ N. Becker, Kucharsky and Nessel [17]
studied the global approximation for the exponential weight ρ(x) = eβx. But because

sup
x≥0

Sn(eβt, x)

eβx
= sup

x≥0
enx(e

β
n−1)−βx = +∞,

they obtain results only for the space C(η) = ∩β>ηCβ , where Cβ is Cρ for ρ = eβx. It is also
mentioned, that for any f ∈ Cβ we have Snf ∈ Cγ , for γ > β and for n > β/ ln(γ/β). Ditzian [46],
also, give some inverse theorems for exponential spaces. In [9], Amanov obtained that the condition

sup
x≥0

ρ(x+
√
x)

ρ(x)
<∞
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upon the weight ρ, is necessary and sufficient for the uniform boundedness of the norms of the
operators Sn : Cρ[0,∞)→ Cρ[0,∞). He mentions that this condition implies the inequality

ρ(x) ≤ eα
√

1+x, x ≥ 0.

He, also, gives a characterization of the functions f which are uniformly approximated by Snf in
the ρ-norm, using a weighted second order modulus of smoothness.

Corollary 3.17. For a real number α > 0 and for ρ(x) = (1 + x)α the Baskakov operators
Vn : Cρ[0,∞)→ Cρ[0,∞) have the property that

‖Vnf − f‖ρ→ 0, as n→∞

if and only if
f(ex − 1)e−αx, is uniformly continuous on [0,∞).

Moreover, for f ∈ Cρ[0,∞) and for n ≥ 2, we have

‖Vnf − f‖ρ ≤ ‖f‖ρ ·
αC√
n− 1

+ 2 · ω
(
f(et − 1)e−αt,

1√
n− 1

)
.

where C = supn∈N
1
2

√
‖Vnρ2‖ρ2 + 2 ‖Vnρ‖ρ + 1 <∞ is a constant depending only on α.

Remark 3.18. The result of the Corollary 3.17 for the limit case, α = 0, was obtained in [138],
[140], [40] and [76] (see the Corollary 2.21).

Remark 3.19. Becker [16] studied the global approximation of functions from the polynomial
weighted space and remarked that ”polynomial growth is the frame best suited for global results
for the Baskakov operators”. The reason is that for the exponential weight ρ(x) = eβx, the series

Vn(ρ, x) exists only for x < (e
β
n − 1)−1. Nevertheless, Ditzian [46] gave some inverse results for

functions with exponential growth.

Corollary 3.20. For α > 0 and ρ(x) =
(

1
1−x

)α
the Meyer-König and Zeller operators

Mn : Cρ[0, 1)→ Cρ[0, 1) have the property that

‖Mnf − f‖ρ → 0, when n→∞

if and only if
f(1− e−x)e−αx is uniformly continuous on [0,∞).

Moreover, for every f ∈ Cρ[0, 1) and for every n ≥ 3, one has

‖Mnf − f‖ρ ≤ ‖f‖ρ
αC√
n

+ 2 · ω
(
f(1− e−t)e−αt, 1√

n

)
,

where C = supn∈N
1
2

√
‖Mnρ2‖ρ2 + 2 ‖Mnρ‖ρ + 1 <∞ is a constant depending only on α.

Remark 3.21. The result of the Corollary 3.20 for the limit case, α = 0, was obtained in [138],
[140], [40] and [76] (see the Corollary 2.23).

Corollary 3.22. For α > 0 and ρ(x) = 1 + xα, the Post-Widder operators Pn : Cρ(0,∞) →
Cρ(0,∞) have the property that

‖Pnf − f‖ρ → 0, when n→∞

if and only if
f(ex)e−αx is uniformly continuous on (0,∞).
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Moreover, for every f ∈ Cρ(0,∞) and every n ≥ 2, one has

‖Pnf − f‖ρ ≤ ‖f‖ρ
αC√
n− 1

+ 2 · ω
(
f(et)e−αt,

1√
n− 1

)
,

where C = supn∈N
1
2

√
‖Pnρ2‖ρ2 + 2 ‖Pnρ‖ρ + 1 <∞ is a constant depending only on α.

Remark 3.23. The result of the Corollary 3.22 for the limit case, α = 0, was obtained in [141]
and in [40].

Corollary 3.24. For α > 0 and ρ(x) = 1 + xα, the Gamma operators Gn defined on the space
Cρ(0,∞), n ≥ [2α], have the property that

‖Gnf − f‖ρ → 0, when n→∞

if and only if
f(ex)e−αx is uniformly continuous on (0,∞).

Moreover, for every f ∈ Cρ(0,∞) and every n ≥ [2α], one has

‖Gnf − f‖ρ ≤ ‖f‖ρ
αC√
n

+ 2 · ω
(
f(et)e−αt,

1√
n

)
,

where C = supn∈N
1
2

√
‖Gnρ2‖ρ2 + 2 ‖Gnρ‖ρ + 1 <∞ is a constant depending only on α.

Remark 3.25. The result of the Corollary 3.24 for the limit case, α = 0, was obtained in [140].

Corollary 3.26. For α > 0 and ρ(x) = eαx the Gauss-Weierstrass operators Wn : Cρ(R)→ Cρ(R)
have the property that

‖Wnf − f‖ρ → 0, when n→∞,

if and only if
f(x)e−αx is uniformly continuous on R.

Moreover, for every f ∈ Cρ(R) and for every n ≥ 1, one has

‖Wnf − f‖ρ ≤ ‖f‖ρ
αC√
n

+ 2 · ω
(
f(t)e−αt,

1√
n

)
,

where C = e
α2

2

√
1 + α2

4

(
1 + e

α2

2

)2

.

Remark 3.27. The result of the Corollary 3.26 for the limit case, α = 0, was obtained in Holhoş
[76] (see Corollary 2.25).

Corollary 3.28. For α > 0 and ρ(x) = eαx the Picard operators Pn : Cρ(R)→ Cρ(R), n ≥ [2α]+2,
have the property that

‖Pnf − f‖ρ → 0, when n→∞,

if and only if
f(x)e−αx is uniformly continuous on R.

Moreover, for every f ∈ Cρ(R) and for every n ≥ [2α] + 2, one has

‖Pnf − f‖ρ ≤ ‖f‖ρ
αC

n
+ 2 · ω

(
f(t)e−αt,

√
2

n

)
,

where C > 0 is a constant depending on α, but independent of n.
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3.3.4 Moduli of continuity for weighted spaces

Many authors (see Examples 3.2 and 3.3) use the following modulus of continuity for the approxi-
mation on weighted spaces:

ωρ(f, δ) = sup
0<h≤δ

‖∆hf‖ρ , where ∆h(f, x) = f(x+ h)− f(x).

But this modulus doesn’t satisfy some properties of the classical moduli for functions defined on a
compact set. This fact motivated Lopez-Moreno [97] to introduce the modulus

Ω(f, δ) = sup
0<h≤δ

sup
x≥0

|f(x+ h)− f(x)|
ρ(x+ h)

,

for ρ(x) = 1 + xm and f ∈ Cρ[0,∞). Amanov [9] gives a similar definition for the modulus of
Ditzian and Totik:

ωϕ1 (f, δ)ρ = sup
0<h≤δ

sup
x≥0

|f(x+ hϕ(x))− f(x)|
ρ(x+ hϕ(x))

,

where ρ : [0,∞)→ [1,∞) is an increasing function and ϕ(x) =
√
x.

In Theorema 3.9 the estimation of the remainder f(x)− An(f, x) in ρ-norm, in approximating
the function f by Anf , where (An)n∈N is a sequence of positive linear operators, is done using

the quantities ωϕ

(
f
ρ , δ
)

and rn, where ωϕ (·, ·) is the modulus introduced in Definition 2.1, and

rn = supx≥ηn

∣∣∣ f(x)
ρ(x) −Kf

∣∣∣ measures the speed of convergence in limx→∞
f(x)
ρ(x) = Kf where (ηn)n≥1

is a sequence converging to infinity. In [13], Balász and Szabados use the following modululus

Ω(f,A) = sup
x≥y≥A

|(f(x)− f(y)|,

calling it ”modululus at infinity”, which has the property that measures the speed of convergence
in limx→∞ f(x) = L <∞. This modulus doesn’t need to know the limit of the function at infinity,
as rn does.

In Teorema 3.11, which is a recent result from 2010 (see [78]), the estimation of the remainder is

done using only the weighted modulus ωϕ

(
f
ρ , δ
)

, without the need to know the speed of convergence

of the function f/ρ at infinity.
In [26, 27], Bustamante and Morales de la Cruz, construct some moduli on the space C∗ρ [0,∞)

using moduli on the space C[0, 1], by the relation

Θ(f, δ)ρ = Θ(Φf, δ),

where Θ is a modulus on C[0, 1], and Φ is an isomorphism Φ: C∗ρ [0,∞)→ C[0, 1].
In [62], Gadjiev and Aral use the following modulus

Ωρ(f, δ) = sup
x,y≥0

|ρ(x)−ρ(y)|≤δ

|f(x)− f(y)|
[|ρ(x)− ρ(y)|+ 1]ρ(x)

,

where ρ ∈ C1[0,∞), ρ(0) = 1 and infx≥0 ρ
′(x) > 0 and f ∈ Cρ[0,∞), to prove the following theorem

Theorem 3.29. Let (An)n∈N be a sequence of positive linear operators. If ‖Ane0 − 1‖ρ = αn,

‖Anρ− ρ‖ρ = βn and
∥∥Anρ2 − ρ2

∥∥
ρ2

= γn and if αn + 2βn + γn → 0, then

‖Anf − f‖ρ4 ≤ 16 · Ωρ(f,
√
αn + 2βn + γn) + ‖f‖ρ αn,

for every f ∈ C∗ρ [0,∞) and n large enough.

Motivated by this last result, we introduce a similar modulus to obtain better results.
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Definition 3.30. Let ϕ : [0,∞) → [0,∞) be a strictly increasing, continuous function with the
property that ϕ(0) = 0 and limx→∞ ϕ(x) =∞ and set ρ(x) = 1+ϕ2(x). For a function f ∈ Cρ[0,∞)
and for δ ≥ 0, we introduce the following modulus

ωρϕ (f, δ) = sup
t,x≥0

|ϕ(t)−ϕ(x)|≤δ

|f(t)− f(x)|
ρ(t) + ρ(x)

. (3.7)

Remark 3.31. If ϕ(x) = x, then ωρϕ (f, ·) is equivalent with the modulus Ω(f, ·) defined by

Ω(f, δ) = sup
x≥0, |h|≤δ

|f(x+ h)− f(x)|
(1 + h2)(1 + x2)

.

This is true because
ωρϕ (f, δ) ≤ Ω(f, δ) ≤ 3 · ωρϕ (f, δ) ,

the first inequality being true for δ ≤ 1√
2

and the second one for every δ ≥ 0.

Proposition 3.32. lim
δ↘0

ωρϕ (f, δ) = 0, for every function f ∈ C∗ρ [0,∞).

Proposition 3.33. For every δ ≥ 0 and λ ≥ 0, we have

ωρϕ (f, λδ) ≤ (2 + λ) · ωρϕ (f, δ) .

Proposition 3.34. For every f ∈ Cρ[0,∞), for δ > 0 and for every x, t ≥ 0

|f(t)− f(x)| ≤ (ρ(t) + ρ(x))

(
2 +
|ϕ(t)− ϕ(x)|

δ

)
ωρϕ (f, δ) .

Theorem 3.35 (Holhoş [73]). Let An : Cρ[0,∞) → Bρ[0,∞) be a sequence of positive linear
operators with the property that ∥∥Anϕ0 − ϕ0

∥∥
ρ0

= an,

‖Anϕ− ϕ‖
ρ

1
2

= bn,∥∥Anϕ2 − ϕ2
∥∥
ρ

= cn,∥∥Anϕ3 − ϕ3
∥∥
ρ

3
2

= dn,

where (an)n≥1, (bn)n≥1, (cn)n≥1 and (dn)n≥1 are convergent to 0. Then

‖Anf − f‖
ρ

3
2
≤ (7 + 4an + 2cn) · ωρϕ (f, δn) + ‖f‖ρ an

for every f ∈ Cρ[0,∞), where the sequence (δn)n≥1 is given by

δn = 2
√

(an + 2bn + cn)(1 + an) + an + 3bn + 3cn + dn.
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Chapter 4

Inequalities related to linear
operators and their applications

4.1 Approximation by rational functions with prescribed nu-
merator using positive linear operators

In this section, we present two results for the approximation of functions using rational expressions
with prescribed numerator: first, for functions which keep a constant sign over the entire interval of
the approximation, which are approximated by reciprocals of polynomials, i.e. numerator equals 1,
and second, for functions which change sign, and the numerator of the approximants is a polynomial
that change sign in the same points as the function to be approximated. These results, namely
Theorem 4.2 and Theorem 4.5) are not new (see [96], [95], [94], [155]), but the technique used
to derive them is new and unitary. In the papers mentioned above, the authors use the Jackson
operators and an inequality which can be obtained using Chebyshev polynomials. We obtain these
results using a sequence of positive linear operators with ”good” properties. The proofs of Lemma
4.1, Lemma 4.3 and Lemma 4.4 are new.

Let An : C[0, 1]→ Πn be a sequence of positive linear operators. Suppose that An satisfies the
properties:

1. An(ei, x) = ei(x), i = 0, 1, where ei(x) = xi,

2. An((t− x)2, x) ≤ C · φ
2(x)

n2
, where φ(x) =

√
x(1− x),

3. ‖Anf − f‖ ≤ C · ωφ1
(
f,

1

n

)
,

4. An(f, x) ≥ f(x), 0 < x < 1, for every convex function f on (0, 1),

5. |An(f, x)− f(x)| ≤ C · ω2

(
f,
φ(x)

n

)
,

6. ‖Anf − f‖ ≤ C · ωφ2
(
f,

1

n

)
.

An example of such operators are An = H2[n−1
2 ]+1 : C[0, 1] → Πn, n ≥ 3, where Hn are the

Gavrea operators presented in Example 1.10.

Lemma 4.1. For the operators An with the above properties, we have

An(|f(t)− f(x)|2, x) ≤ C ·
[
ωφ1

(
f,

1

n

)]2

.
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Theorem 4.2. Let f ∈ C[0, 1] be a nonconstant and nonnegative function. Then, there is a
sequence of polynomials pn ∈ Πn such that∥∥∥∥f − 1

pn

∥∥∥∥ ≤ C · ωφ1 (f, 1

n

)
.

Lemma 4.3. For any 0 < b1 < b2 < · · · < b` < 1, ` ≥ 1, set

ρ(x) = (x− b1)(x− b2) · · · (x− b`).

Then, there is a polynomial Sn ∈ Πn, such that for every x ∈ [0, 1] and every n ≥ `, we have

0 ≤ 1− |ρ(x)|
Sn(x)

≤ min

1,
C`

n

∑̀
j=1

φ(x)

|x− bj |

 .

Lemma 4.4. There exists an absolute constant C > 0 such that for every t, x ∈ [0, 1] and every
f ∈ C[0, 1], we have

|f(t)− f(x)| ·min

(
1,

max(φ(t), φ(x))

n|t− x|

)
≤ C · ωφ1

(
f,

1

n

)
.

Theorem 4.5. There exists a positive constant C with the following property: if f ∈ C[0, 1] changes
sign in exactly ` ≥ 1 points from [0, 1], say b1, b2, . . . , b`, then, for every n ≥ 2`, there is a polynomial
pn ∈ Πn, having the same sign as f in (b`, 1) and such that that for every x ∈ [0, 1],∣∣∣∣f(x)− (x− b1)(x− b2) . . . (x− b`)

pn(x)

∣∣∣∣ ≤ C`2ωφ1 (f, 1

n

)
.

4.2 An inequality for a linear discrete operator

In [86], Kuang Jichang proved the following inequality

1

n

n∑
k=1

f

(
k

n

)
>

1

n+ 1

n+1∑
k=1

f

(
k

n+ 1

)
>

∫ 1

0

f(x)dx,

where f is a strictly increasing and convex (or concave) function on (0, 1].
In [67], using positive linear operators of Bernstein-Stancu type, I. Gavrea obtained the inequal-

ity

1

n

n∑
k=1

f (xk−1,n−1)− 1

n+ 1

n+1∑
k=1

f (xk−1,n) ≥ 0, (4.1)

for an increasing convex function f and for the points xi,n, i = 0, 1, . . . , n from [0, 1], which satisfy
the properties

0 ≤ x0,n ≤ x1,n < · · · < xn,n ≤ 1

xk−1,n ≤ xk−1,n−1 ≤ xk,n
x0,n−1 ≥ x0,n ’si xn−1,n−1 ≥ xn,n

(n− k)(xk,n−1 − xk,n) ≥ k(xk,n − xk−1,n−1),

for n ≥ 1 and for every k = 1, 2, . . . , n.
For related inequalities see [3],[67],[109],[112]. In [3], the authors presented, in a chronological

order, these inequalities and some recent results related to them.
In this section, we want to prove an inequality for a discrete linear operator and obtain necessary

and sufficient conditions over the points xi,n in order to obtain inequality (4.1). We deduce, also a
weighted majorization inequality.
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Let m ≥ 3 be an integer and let Im = { 1, 2, . . . ,m }. Consider (zk)k∈Im a strictly decreasing
sequence of real numbers from [0, 1]. Let A be the linear functional defined by

A[f ] =

m∑
k=1

akf(zk), (4.2)

where ak are real numbers and f is a real function defined on [0, 1]. We want to find the necessary
and sufficient conditions over zk, such that

A[f ] ≥ 0, (4.3)

holds for some classes of convex functions. We have the following result

Theorem 4.6 (Holhoş [75]). Consider the following conditions

A[e0] = 0 (4.4)

A[e1] ≥ 0 (4.5)

A[e1] ≤ 0 (4.6)

k∑
i=1

ai(zi − zk+1) ≥ 0, for every k ∈ Im−2. (4.7)

m∑
i=k

ai(zi − zk−1) ≥ 0, for every k ∈ Im \ { 1, 2 } . (4.8)

Then
a) (4.3) holds for every increasing convex function f iff (4.4), (4.5) and (4.7) hold;
b) (4.3) holds for every decreasing convex function f iff (4.4), (4.6) and (4.7) hold;
c) (4.3) holds for every convex function f iff (4.4), (4.5), (4.6) and (4.7) hold;
d) (4.3) holds for every increasing concave function f iff (4.4), (4.5) and (4.8) hold;
e) (4.3) holds for every decreasing concave function f iff (4.4), (4.6) and (4.8) hold;
f) (4.3) holds for every concave function f iff (4.4), (4.5), (4.6) and (4.8) hold.

Remark 4.7. In [109], T. Popoviciu proves the case c) from the Theorem 4.6. The author, also,
generalizes the result to the class of convex functions of order n.

Corollary 4.8. Let n ≥ 1 be an integer and let xi, i ∈ In and yj , j ∈ In+1 be two increasing
sequences of points from [0, 1]. Let A be the linear functional defined by

A[f ] =
1

n

n∑
k=1

f(xk)− 1

n+ 1

n+1∑
k=1

f(yk). (4.9)

If

x1 ≥ y1,

xn ≥ yn+1,

(n− i)(xi+1 − yi+1) ≥ i(yi+1 − xi), for i ∈ In−1,

(n+ 1− i)(xi − yi) ≥ i(yi+1 − xi), for i ∈ In,

then A[f ] ≥ 0, for every increasing convex or concave function f : [0, 1]→ R.
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Corollary 4.9. Let n ≥ 1 be an integer and let xi, i ∈ In and yj , j ∈ In+1 be two increasing
sequences of points from [0, 1] such that xk ≥ yk for k ∈ In. Let A be the linear functional defined
by

A[f ] =
1

n

n∑
k=1

f(xk)− 1

n+ 1

n+1∑
k=1

f(yk), (4.10)

a) If xn ≥ yn+1 and
(n− i)(xi+1 − yi+1) ≥ i(yi+1 − xi), for i ∈ In−1,

then A[f ] ≥ 0, for every increasing convex function f : [0, 1]→ R.
b) If

(n+ 1− i)(xi − yi) ≥ i(yi+1 − xi), for i ∈ In,

then A[f ] ≥ 0, for every increasing concave function f : [0, 1]→ R.

Corollary 4.10. Let (an)n∈N be a positive increasing sequence of real numbers such that the

sequence
(
n
(

1− an
an+1

))
n∈N

is increasing (
(
n
(
an+1

an

)
− 1
)
n∈N

is increasing). Then

1

n

n∑
k=1

f

(
ak
an

)
≥ 1

n+ 1

n+1∑
k=1

f

(
ak
an+1

)
for every f : [0, 1]→ R increasing convex (concave) function.

Remark 4.11. The result of the Corollary 4.10 was obtained for the first time in [113].

Corollary 4.12. Let n ≥ 1 be an integer and let xi, i ∈ In and yj , j ∈ In+1 be two strictly
increasing sequences of points from [0, 1], with the property

0 ≤ y1 < x1 < y2 < · · · < yn < xn ≤ yn+1 ≤ 1. (4.11)

Let A be the linear functional defined by

A[f ] = α

n∑
k=1

f(xk)− β
n+1∑
k=1

f(yk), (4.12)

where α and β are positive real numbers. Then A[f ] ≥ 0 for every increasing convex or concave
function f : [0, 1]→ R, if and only if

α =
c

n
and β =

c

n+ 1
, where c > 0,

(n+ 1)(x1 + x2 + · · ·+ xk)− n(y1 + · · ·+ yk) ≥ kyk+1, for every k ∈ In,
(n+ 1)(xk + · · ·+ xn)− n(yk+1 + · · ·+ yn+1) ≥ (n+ 1− k)xk, for k ∈ In.

Remark 4.13. Let n ≥ 1 be an integer and let xi, i ∈ In and yj , j ∈ In+1 be two strictly increasing
sequences of points from [0, 1], with the property

0 ≤ y1 ≤ x1 < y2 < · · · < yn < xn ≤ yn+1 ≤ 1.

The condition

(n+ 1)(xk + · · ·+ xn)− n(yk+1 + · · ·+ yn+1) ≥ (n+ 1− k)xk, for k ∈ In,

is equivalent with

n−1∑
i=k

[(n− i)(xi+1 − yi+1)− i(yi+1 − xi)] ≥ 0, for every k ∈ In−1 and xn = yn+1,
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and the condition

(n+ 1)(x1 + x2 + · · ·+ xk)− n(y1 + · · ·+ yk) ≥ kyk+1, for every k ∈ In

is equivalent with

k∑
i=1

[(n+ 1− i)(xi − yi)− i(yi+1 − xi)] ≥ 0, for every k ∈ In.

Remark 4.14. Using Corollary 4.12 and Remark 4.13 we deduce the result obtained in [67], the
one presented in the beginning of this section.

Remark 4.15. If y1 ≤ y2 ≤ · · · ≤ yn+1 are the roots of a polynomial P of degree n + 1 and
x1 ≤ x2 ≤ · · · ≤ xn the roots of the derivative of the polynomial P , then we have the inequalities

(n+ 1)(x1 + x2 + · · ·+ xk)− n(y1 + · · ·+ yk) ≥ kyk+1, for every k ∈ In−1.

See [109], for details.

Corollary 4.16. Let n ≥ 1 be an integer and let xi, yi, i ∈ In be two decreasing sequences of
points from [0, 1] and pi, qi, i ∈ In be real numbers such that (pi) majorizes (qi) (i.e. p1 + · · ·+pk ≥
q1 + · · ·+ qk for every k ∈ In−1 and p1 + · · ·+ pn = q1 + · · ·+ qn). If the following conditions are
satisfied:

k∑
i=1

qixi ≥
k∑
i=1

qiyi, for every k ∈ In−1,

k∑
i=1

pixi ≥
k∑
i=1

piyi, for every k ∈ In,

and
n∑
i=1

pixi =

n∑
i=1

qiyi,

then, for every convex function f : [0, 1]→ R, we have

n∑
k=1

pkf(xk) ≥
n∑
k=1

qkf(yk).

Corollary 4.17. If f is a convex function on [0, 1], then

Bn(f, x) ≥ Bn+1(f, x), for every x ∈ [0, 1] and n ≥ 1.
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