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Introduction 

 

Partial differential equations is a many-faceted subject. Created to describe the 

mechanical behavior of objects such as vibrating strings and blowing winds, it has developed 

into a body of material that interacts with many branches of mathematics, such as differential 

geometry, complex analysis, and harmonic analysis, as well as a ubiquitous factor in the 

description and elucidation of problems in mathematical physics. 

The classical development of nonlinear functional analysis arose contemporaneously with 

the beginnings of linear functional analysis at about the beginning of the twentieth century in the 

work of such men as Picard, S.Bernstein, Ljapunov, E.Schimdt, and Lichtenstein and was 

motivated by the desire to study the existence and properties of boundary value problems for 

nonlinear partial differential equations. Its most classical tool was the Picard contraction 

principle (put in its sharpest form by Banach in his thesis of 1920- the Banach fixed-point 

theorem). 

Beyond the early development of bifurcation theory by Ljapunov and E.Schimdt around 

1905, the second, and even more fruitful, branch of the classical methods in nonlinear functional 

analysis was developed in the theory of the compact nonlinear mappings in Banach spaces in the 

late 1920’s and early 1930’s. These included Schauder’s well-known fixed-point theorem and 

the extension of the Brower topological degree by Leray and Schauder in 1934 to mappings to 

Banach spaces of the form     with   compact (as well as interesting related results of 

Caccioppoli on nonlinear Fredholm mappings). 

The central role of compact mappings in this phase of the development of nonlinear 

functional analysis was due in part to the nature of the technical apparatus being developed, but 

also in part to a not fruitful tendency to see the theory of integral equations as the predestinated 

domain of application of the theory to be developed. Since, however, the more significant 

analytical problems lie in the somewhat different domain of boundary value problems for partial 

differential equations, and since the efforts to apply the theory of compact operators ( and in 

particular the Leray-Schauder theory) to the latter problems have given rise to demands for ever 

more inaccessible ( and sometimes invalid) a priori estimates in these problems; the hope of 

applying nonlinear functional analysis to the problems of this type centers on a general program 

of creating new theories for significant classes of nonlinear operators like infinitesimal 

generators of a   -semigroups of contractions or monotone-like operators. 

 In this thesis we are concerned with the study of semilinear boundary value problems 

using the operator approach based on abstract results from nonlinear functional analysis. The 

methods we use were initiated in early sixties by J.L.Lions and Temam for non-homogenous 
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equations with the source term in       , and Perov and Kibenko for semilinear operator 

systems  and since then it was been extensively used for specific problems: 

-boundary value problems for partial differential equation: J.-L.Lions  [42], J.-L.Lions, 

E.Magenes [41], T.Cazenave [15], T.Cazenave, A.Haraux [16], T.Cazenave, F.B.Weissler [17], 

T.Kato [36], R.Temam [76], D.Bainov, E. Minchev and A.Myshkis [5], V.Barbu [6], H.Brezis 

and F.Browder [11], I.Bialynicki-Birula and J. Mycielski [14], L.C.Evans [21], R.Glassey [28], 

T.Kato [34], A.I.Perov, A.V.Kibenko [64], R.Precup [65], [66], [67]. 

-parabolic and elliptic boundary value problems:  N.H.Pavel [62], D.Gilbarg and N.S.Trudinger 

[24], K.Tintarev [77]  

-semilinear operator systems: A.I. Perov, A.V.Kibenko [64], R.Precup [65], [68], C.Avramescu 

[4], I.A. Rus [72], M.J. Ablowitz, B.Prinary and A.D.Trubatch [1], A.Domarkas [20]. 

-nonlinear semigroups and differential equations: V.Barbu [7], F.Kappel, H.Brezis and 

M.G.Crandall [39], A.C.McBride [52], N.H.Pavel [62], A.Pazy [63], I.Vrabie [81], [82],[83]. 

-nonlinear functional analysis and partial differential equations: H.Brezis [12], M.Clapp [18], 

P.Jebelean [33]. 

            Related topics can be found in A.De Bouard [9], J.Bourgain [10], D.Bainov, E. Minchev 

[13], C.Cohen-Tannoudji, J.Dupont-Roc, G.Grynberg [19], R.P.Feynman [22], [23], J.Ginibre 

and G.Velo [25], [26], [27], A.Granas, J. Dugundji [29], H.Grosse and A.Martin [30]. 

The focus of this study is to find such operators for which we can prove the compactness 

property in order to apply contraction principles for different classes of partial differential 

equations and corresponding systems. 

The classical boundary value problems (BVP) of mathematical physics include, besides 

the elliptic equations, the initial BVP for the heat equation and the Cauchy problem for the wave 

equation; in addition, following the development of quantum mechanics, the initial value 

problem for the Schrödinger equation. All these problems can be written in a common 

operatorial form: 

      
where  

(1) for the heat equation:            

(2) for the wave equation:             

(3) for the Schrödinger equation:          , 

L is a differential operator, F a nonlinearity. We shell prove that the solution operator       of 

the nonlinear problem 
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exists and more it is completely continuous for all three types of equations. 

 The goal of this work is to make more precise the operator approach for some evolution 

partial differential equations and extend the theory to semilinear operator systems. More exactly, 

we shall precise basic properties, such as norm estimation and compactness, for the (linear) 

solution operator associated to the non-homogeneous linear evolution equations and we shall use 

them in order to apply the Banach, Schauder and Leray-Schauder theorems to the fixed point 

problems equivalent to Chauchy-Dirichlet problems for evolution equations. We extend these 

results to the corresponding semilinear operator systems. Banach’s contraction principle on 

complete metric spaces will be replaced by Perov’s fixed point theorem for completely 

continuous operators and the Leray-Schauder principle for completely continuous operators and 

set-contractions. 

 The thesis is divided into 5 chapters, each chapter containing several sections. 

Chapter 1: Preliminaries. 

 In the first section of this chapter are reviewed some basic notations and results: the 

notions of compactness and completely continuous operators and some of their properties 

(R.Precup [68], H.Brezis [12]); the fixed point principles used throughout the thesis in order to 

prove existence results to semilinear operator equations and systems ( A.Granas and J.Dugundji 

[29], A.I.Perov and A.V. Kibenko [64], R.Precup [67], I.A.Rus [72]. [73]) . 

 In the next two sections are presented embedding theorems for Sobolev Spaces of real-(or 

complex-) valued functions ( H.Brezis [12], D. Gilbarg and N. S. Trudinger [24], J.-L. Lions 

[42], J.-L.Lions et E.Magenes [41]) and  vector-valued Sobolev spaces  (T. Cazenave, A.Haraux 

[16], J.-L. Lions [43], J.-L.Lions et E.Magenes [41]) ; continuous semigroups of operators 

(V.Barbu [7], A.Pazy [63], I.Vrabie [81], [82] ). 

Chapter 2: Existence theory for systems of semilinear heat and wave equations. 

Motivation for the study of Chapter 2 consists of known results from A.I.Perov and A.V. 

Kibenko [64] for a vector version of the contraction principle applied for the heat and wave 

equations and it was extended recently in R.Precup [67] to other topics of nonlinear analysis. Our 

main goal in Chapter 2 is to extend the methods for heat and wave equation systems and to 

generalize the results from R.Precup [68].  

In the section 2.1 we will present the first evolution equation for which we will apply our 

results. We shall precise basic properties, such as norm estimation and compactness, for the 

(linear) solution operator associated to the non-homogenous linear heat equation and we shell 

use them in order to apply the Perov’s, Schauder and Leray-Schauder theorems to the fixed point 

problem equivalent to the system:  
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                             (0.0.1)                                                

 Here by    we mean            such that       and      are nonlinear operators. We 

seek weak solution to the problem (0.0.1) that is fixed point problem   
 
     

 
  in the space 

                               , where                   ,           defined 

by 

                                                     and       . 

In the second section we apply the same program for the wave equation and the system:                                                  

                   

 
  
 

  
 

               

               

            
  

  
       

         
  

  
       

          

                                                   (0.0.2) 

in      
           and                endowed with the norms 

              
        

  
   

 

  

            
         

  
   

 

for  any          . Here   
   

   
    ,                    . 

The analysis of   (0.0.1) and (0.0.2) will be a vector-valued one and will use matrices instead of 

constants. The result is an existence theory derived from contractions principles. 

Our contributions in this chapter are: Lemma 2.1.1, Theorem 2.1.2, Theorem 2.1.3, Theorem 

2.1.4, Theorem 2.2.1, Theorem 2.2.2. 

Chapter 3: Existence theory for general semilinear evolution equations and systems. 

Our arguments are related to same ideas found in Chapter 2 but extended to the case of general 

evolution equation systems.  

This chapter has two main sections.  The contributions from first section are based on results of 

I.Vrabie [81], [82].  We present some properties of the solution operator like the complete 
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continuity, crucial result for next section. In section 2 we present two fixed point results for the 

system of semilinear equations: 

                                         

            
            

           

                                                 (0.0.3) 

in a Banach space  . Here          and            is the infinitesimal generator of 

a    semigroup of contractions.  is a linear operator such that       and      are nonlinear 

operators. We seek weak solution of the fixed point problem   
 
     

 
  in the space   , 

where                         ,           defined by 

                                                     and       . 

In particular we will present results derived from Perov’s fixed point theorem and 

Schauder’s contraction principle. The results from this section contain as a particular case the 

results of R. Precup (see [68]).    

Our contributions in this chapter are: Theorem 3.1.2, Theorem 3.1.3 and Theorem 3.2.1. 

Chapter 4: Nonlinear Schrödinger equations via fixed point principles.  

This chapter deals with weak solvability of the Cauchy-Dirichlet problem for the perturbated 

Schrodinger equation: 

                         

                          

                                           
                                     

                                         (0.0.4) 

where       is a bounded domain and F is a general nonlinear operator which, in particular, 

can be a superposition operator, a delay operator, or an integral operator. Specific Schrödinger 

equations arise as models from several areas of physics. The problem is a classical one (see [15], 

[36], [42], [41] and [76]) and our goal here is to make more precise the operator approach based 

on abstract results from nonlinear functional analysis. More exactly, we shall precise basic 

properties, such as norm estimation and compactness, for the (linear) solution operator associated 

to the non-homogeneous linear Schrödinger equation and we shall use them in order to apply the 

Banach, Schauder and Leray-Schauder theorems to the fixed point problem. The same 

programme has been applied to discuss nonlinear perturbations of the heat and wave equations in 

[65] and [66]. 

Theorems 4.2.1, 4.3.1, 4.3.2, and 4.3.3, are the original results contained in Chapter 4 of this 

work. These theorems are included in M.Manole and R.Precup [49]. 

Chaper 5:  Systems of nonlinear Schrödinger equations. 
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In the first section we will present the Schrödinger equation for which we will apply our 

results:  

                           

                        

                                              
                                 

                                   (0.0.5) 

We shall precise basic properties, such as norm estimation and compactness, for the (linear) 

solution operator associated to the non-homogenous linear Schrödinger equation  obtained in 

Chapter 4 and we shell use them in order to apply the Perov, Schauder and Leray-Schauder 

theorems to the fixed point problem equivalent to the system : 

                          

         
         

                    

                                        (0.0.6)                                                

in       . Here by    we mean             such that       and      are nonlinear 

operators. We seek weak solution to problem (0.0.6) that is fixed point problem   
 
     

 
  in 

the space                                , where                   ,           

defined by 

                                                     and       . 

The original results are stated in theorems 5.1.1, 5.1.2, and 5.1.3, These theorems are included in 

paper Manole [50]. 
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Preliminaries 

Our arguments and proofs rely essentially on one of the following basic results in nonlinear 

analysis.      

1.1 Basic notations and results       

1.1.1 Compactness and completely continuous operators  

1.1.2 Fixed point principles 

In order to study nonlinear differential equations we are going to apply the following theorems 

(see Cazenave [14], Vrabie [82] and Precup [66]) in Chapters 2, 3 and 4. After we show the 

existence and compactness of the solution operator for the heat equation, wave equation, a 

general evolution equation and Schrödinger equation we can apply the next result to our 

evolution equations. In Chapter 2 of this work we use results due to Precup [66] and [68]. The 

first one is Banach’s contraction principle 

Theorem 1.1.11 (Banach)  Let (X,d) be a complete metric space and       . If there exists a 

constant L < 1 such that                      for all      , then F has a unique fixed 

point     ; i.e., there exists a unique      such that         . 

The next two theorems are the known as the fixed point theorem of Schauder. In applications the 

second variant of Schauder’s theorem is most useful. 

Theorem 1.1.12 (Schauder)  Let K be a nonempty, convex and bounded set in a Banach space X 

and let       be a continuous operator. Then T has at least one fixed point in K, i.e. there 

exists at least one     such that       . 

Theorem  1.1.13 (Schauder) Let D be nonempty, convex and bounded, closed set in a Banach 

space X and let       be a completely continuous operator. Then T has at least one fixed 

point in D. 

 The next fixed point theorem is the Leray-Schauder principle. In the applications one of 

the drawbacks of Schauder’s fixed point theorem is the invariance condition        which 

has to be guaranteed for a bounded, closed and convex subset D of a Banach space. The Leray-

Schauder principle makes it possible to avoid such a condition and requires instead that a 

‘boundary condition’ is satisfied. 
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Theorem 1.1.14 (Leray–Schauder). Let X be a Banach space, K a bounded open subset of X 

with     , and          a completely continuous operator. If                all    

        and         , then N has at least one fixed point. 

     In applications the Leray-Schauder principle is usually used together with the so called ‘a 

priori’ bounds technique: 

     Suppose we wish to solve the operator equation 

                                                                                                                              (1.1.1) 

Where K is closed, convex subset of a Banach space           and       is completely 

continuous. Then we look at the set of all solutions to the one-parameter family of equations 

                                                                                                                  (1.1.2) 

when        . Here       is fixed (in most cases     ). If this set is bounded, i.e., there 

exists     such that 

          

whenever u solves (1.1.2) for some        , then we let U be the intersection of K with the 

open ball         from X. Thus, Theorem 1.1.14 applies and guarantees the existence of s 

solution to (1.1.1). 

 The last fixed point theorem we present is Perov’s theorem. The Banach contraction 

principle was generalized in A.I.Perov and A.V.Kibenko [64] for contractive maps on spaces 

endowed with vector-valued metrics. We present first some basic notions and results and 

afterwards we will state Perov’s theorem. 

     Let X be a nonempty set. By a vector-valued metric on X we mean a map          with 

the following properties: 

i)          for all      ; if          then    . 

ii)               for all      ; 

iii)                      for all        . 
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    A set X endowed with a vector-valued metric is said to be a generalized metric space. For the 

generalized metric spaces the notions of a convergent sequence, completeness, open subset and closed 

subset are similar to those for usual metric spaces. 

Definition 1.1.15  Let       be a generalized metric space. A map       is said to be contractive 

if there exists a matrix            such that 

                                                                     as                                                                     (1.1.3) 

and 

                     

for all      . A matrix M which satisfies (1.1.3) is said to be convergent to zero.  

Lemma 1.1.16 (see Precup [68]) Let M be a square matrix of nonnegative numbers. The 

following statements are equivalent: 

(i) M is a matrix convergent to zero. 

(ii) I-M is non-singular and 

                . 

(iii)       for every     with det          

(iv)     is non-singular and         has nonnegative elements. 

 

Theorem 1.1.15 (Perov) Let (E,d) be a complete generalized metric space with         , 

and let       be such that 

                                                                                                                       (1.1.4) 

for all       and some square matrix   of nonnegative numbers. If the matrix   is 

convergent to zero, that is      as     then   has a unique fixed point   and  

                                                                                                           (1.1.5) 

for every      and    . 
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1.2  Sobolev Spaces 

1.3 Eigenvalues and eigenvectors  

1.4 The non-homogenous heat equation in        

The next lemmas and theorems are used in Chapter 2 in order to justify the complete continuity 

of the solution operator   for the non-homogenous heat equation in        .  

                       

  

  
                      

                                              
                                 

                                                                 (1.4.1) 

In this way we have the theoretical support to extend the theory for the systems of semilinear 

operators.  We refer to Precup [65] and [66] . 

Theorem 1.4.1 (Lions) If                  and         , then there is an unique 

function 

           
                     

such that  for all     
      the function            is absolutely continuous on       and  

 

 

  
                                             

        

  

Moreover, for any        , we have 

 

 
        

  
 

 
      

            
                   

 

 

 

 

 

The estimation theorem that follows implies, on the one hand the continuously dependence of   

and     of the solution   of the problem (1.4.1), and, on the other hand guarantees the 

nonexpansivity of the solution operator from                to          
      and from 

              to               . 

Theorem 1.4.2  Let                  and         . If   is the solution of the problem 

(1.4.1) then for any         we have 
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where         
              

 and               . 

In particular, for      and         , the following inequalities hold: 

   
              

    
              

 

   
         

     
    

              
  

Theorem 1.4.3 Let           and  

                                

be a map for which exists a constant       such that the following inequality holds for all 

                   

                                                        

Then there exists a unique solution u to problem (2.0.1), i.e., 

           
                     

With the property that for all     
     the map            is absolutely continuous on       

and 

 

 

  
                                                

                                                                                                                                   

  

 

Theorem 1.4.4   The solution operator S is completely continuous from                to 

              for            if     and for any     if     or      

1.5 The non-homogenous wave equation in       . 

Another group of theorems and lemmas will be useful to insure the complete continuity of the 

solution operator S for the non-homogenous wave equation. We refer to Precup [66].  

Theorem 1.5.1 (Lions-Mangenes) If                 ,          and          , then 

there exists an unique function u such that 
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for any map                , where             
                      is the solution 

of the problem 

                                        

   

   
                      

       
  

  
                

                                     

                                                       (1.5.1) 

Definition 1.5.1 By a (weak or generalized) solution of the Cauchy-Dirichlet problem 

                              

 
 

 
   

   
                                                         

             
  

  
                                   

                                                                    

                         (1.5.2) 

where                 ,          and          , we mean the function u defined in 

the theorem 1.5.1 

Remarque 1.5.2 If                  ,          and          , then the weak solution 

of the problem (1.5.2) satisfies: 
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2 Existence theory for systems of semilinear heat and wave 
equations 

Our main goal in this chapter is to extend the method used by Precup in [67] and to generalize 

his results to the semilinear operator systems for heat and wave equations. 

In the first part of this chapter we consider the nonlinear Cauchy-Dirichlet problem for systems 

of heat equations. Our framework is based on existence and uniqueness results of R.Precup (see 

[65]) and we establish the existence of a weak solution for the system of semilinear heat 

equations. Next we apply the fixed-point theory for this type of systems and we present existence 

results via Perov, Schauder and Leray-Schauder principles. Our approach relies on compact 

operators theory combined with matrices that converge to zero method. We use the same 

programme for a nonlinear wave equations and also, we establish existence results via fixed-

point principles.  

2.1 Systems of semilinear heat equations   
 

Let   be an open and bounded subset of    ,       and consider the Cauchy-Dirichlet 

problem for the heat equation: 

                    

                       

                                    
                                 

                                                                    (2.0.1) 

By Theorems 1.3.1, 1.3.2 and 1.3.3 in R.Precup [67] we can associate to (2.1.1) the solution 

operator  

                                                      
                    , 

defined by      where            
                     is the weak solution of  

problem (2.1.1) . 

In the first part of this chapter we are concerned with the existence of solutions for the system of 

semilinear heat equations: 

                                        

             

             
                         

     

                                                      (2.0.2) 

Here by    we mean            such that       and      are nonlinear operators. We 

seek weak solution to problem (2.0.2) that is fixed point problem   
 
     

 
  in the space  

                             , where           is defined by 
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                                                     and        . 

2.1.1 Application of Perov’s fixed point theorem 

 

Our first result is an existence, uniqueness and approximation theorem. First we present an useful 

result. 

Lemma 2.1.1 Let  
    
    

   be  a square matrix of nonnegative numbers. Then for      large 

enough the matrix 

                                    
          

          
   

 is convergent to zero.  

Theorem 2.1.2 Let                                                  be continuous 

operators. Assume that  

                                                                                  

and                                                                                                                  (2.1.1) 

                                                                    

for every                                                and some nonnegative 

constants              . 

Then (2.0.2) has an unique solution                                    . 

2.1.2 Application of Schauder’s fixed point theorem 

 

The next theorem is an existence result derived from Schauder’s fixed point principle, assuming 

that nonlinearities F and G have a growth at most linear. 

Theorem 2.1.3  

Let                                                   . Assume that F and G are 

continuous and satisfy the growth conditions.  

                                                                                                       (2.1.5) 

and  
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For all           
                           , where            . Then (2.0.2) has 

at least one solution          , 

           
                              

                    . 

2.1.3 Application of Leray-Schauder’s fixed point theorem 

 

The next result is based on the Leray-Schauder principle. We shall look for a weak solution to 

system (2.0.2). 

Theorem 2.1.4    

Let                                                   . Assume that F and G are 

continuous and admit the decompositions             and              such that the 

following conditions are satisfied for all              
     , any         , some constants 

               such that                              , and           : 

                            
            

  

                                                                                                                                                 (2.1.7) 

                            
            

  

Then (2.0.2) has at least one solution                
               

     . 

Example 2.1.1 Let        
              

       be continuous maps satisfying the 

following conditions: 

                               

 

                                 

 

                                        (2.1.11) 

                     
                                                    

                                             
         

  

an                                                                                                                                  (2.1.12) 

                                             
         

  

for all              
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for some     
                       

 
                          if     and     

for     and    .Then the maps                                                 

given by                   and by                  satisfy all assumptions of Theorem 

2.1.4. 

Example 2.1.2   Let           be two functions such that               is measurable for 

every    ,               are continuous for a.e.     and there are           ,     

     such that  

                                    
  and                

                                                    (2.1.13)        

                                                                                                                   (2.1.14)                                                                                               

for a.e.     and all      Then the superposition operators                        

given by                   and                   with         , satisfies the 

conditions of the previous example. Indeed, condition (2.1.13) guarantee that the superposition 

operators are well-defined, continuous from             to    
      , and satisfy (2.1.11). 

Also (2.1,14) guarantees (2.1.12) with                

Example 2.1.3 The functions                                      (   ,), where  

           , satisfy all the assumptions from Example 2.1.2. 

2.2 Systems of semilinear wave equations 
 

Now we shall look for weak solutions for another evolution system.  

Let   be an open and bounded subset of     ,        and consider Cauchy-Dirichlet 

boundary problem: 

                             

 
 

 
   

   
                    

         
  

  
                 

                                   

                                                        (2.2.1) 

By Theorem 1.4.1 and Remark 1.4.2 we can associate to (2.2.1) the solution operators  

    
                        

                     , 

                           
           , 

defined by                , where u is the solution of (2.2.1). 
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In this section we are concerned with the existence of solution for the system of semilinear wave 

equations: 

                         

 
 
 

 
 

             
             

            
  

  
            

         
  

  
            

            

                                                                 (2.2.2) 

Here    
   

   
   . We will make some notations for the following spaces:      

     

      and                endowed with the norms 

             
       

  
   

 

  

           
        

  
   

 

for  any        . 

 

2.2.1 Application of Perov’s fixed point theorem 

 

Theorem 2.2.1 Let                                be continuous operators. Assume 

that there exists                 such that if            ,            thus 

                                                                                

and                                                                                                                                           (2.2.3) 

                                                                  

for every            ,                       .Then (2.2.2) has a unique solution 

                                
                     . 

The next theorem is an existence result derived from Schauder’s fixed point principle, assuming 

that nonlinearities F and G have a growth at most linear. 
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2.2.2 Application of Schauder’s fixed point theorem 

 

The next theorem is an existence result for the problem (2.2.2) derived from Schauder’s fixed 

point principle, assuming that nonlinearities F and G have a growth at most linear. 

Theorem 2.2.2                                      . Assume that F and G are 

continuous and satisfy the growth conditions.  

                                                                                                       (2.2.6) 

and  

                                                                                 

for all                       , where            . Then (2.2.2) has at least one solution 

                          
                     . 
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3 Existence theory for general semilinear evolution equations 
and systems   

  
  Starting with the existence and uniqueness result for the a general non-homogenous evolution 

equation with the source term in a Banach space, X, we present existence results for the a 

nonlinear evolution system via Perov and Schauder  fixed point theorems. In the first part of this 

chapter we consider  a non-homogenous problem   
       

      
     to which we can associate a 

solution operator                                   , according to Vrabie ([82], 

pp.142). Based on the same results we prove the compactness of the solution operator necessary 

to apply Schauder fixed point theorem for both, semilinear operator equation and the operator 

system.                                              

 In this chapter we are concerned with the existence of solutions for the system of semilinear 

equations 

                                      

            

            

                

                                                                       (3.0.1) 

in a Banach space  .  

Our goal in this chapter is to apply the same methods as in Chapter 2 now for general evolution 

equation systems. That means that to work with the operator        , where the operator A 

is the infinitesimal generator to a   -semigroup.  

Here L is a linear operator such that       and      are nonlinear operators. We seek weak 

solution of the fixed point problem   
 
     

 
  in the space            , where     

                     ,           defined by 

                                                     and       . 

 The interest of (3.0.1) lies moreover in the fact that it can be regarded as an abstract 

model for particular systems describing specific processes as mechanics and dynamical systems. 

In the first section we present existence results for semilinear operator equations of the type  

                                        
          

      
                                                                            (3.0.2)            

Where            is the infinitesimal generator to a   -semigroup            . 

  is a Banach space and we define next Banach spaces: 



24 
 

                                         endowed with the operatorial norm: 

        
     

     

for every        and             the space of continuous functions endowed with the norm: 

                                                                          . 

   is a continuous operator defined  

                                 

The analysis of system (3.0.1) will be a vector-valued one and we will use matrices instead of 

constants, as it was initiated in A.I. Perov and A.V. Kibenko [64] for a vector version of the 

contraction principle and it was extended recently in R.Precup [68] to other topics of nonlinear 

analysis. Moreover, the theory can be easily extended to systems of n operator equations with 

   , and contains, as a particular case, the theory from the Section 3.1.2 and 3.1.3 for a single 

equation. 

3.1  Semilinear evolution equations 

 

It is well-known (see Vrabie [82], pp.142) that one can associate to the non-homogenous 

problem 

                                          
       

      
                                                                                  (3.1.1) 

the solution operator 

                                  

given by      where           defined by the so-called variation of constants formula 

                                   
 

 
   for each                                                            (3.1.2) 

is the    -solution to the problem (3.1.1). 

3.1.1    The solution operator  

 

The next lemmas are used in order to apply Schauder fixed point theorem, more exactly for 

proving the complete continuity of the solution operator  . 

Lemma 3.1.1 Let             and                                   the solution 

operator to the problem (3.1.1). Then the solution operator S is nonexpansive from            
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to           . In particular   maps bounded subsets  of           into bounded subsets of  

           . 

Lemma 3.1.2 (Vrabie [82] pp.143) Let            be the infinitesimal generator to a   -

semigroup of contractions            , and let   be an uniforme integrable subset of 

         . Then    is relatively compact in            if and only if there exists a dense 

subset   of       such that, for any    , the family section    in t,                    

   is relatively compact in X. 

See Vrabie [82, p.143] for a proof. 

Lemma 3.1.3  (Vrabie [82] p.147) Let            be the infinitesimal generator to a   -

semigroup of contractions            , and let   be a bounded subset of          . Then    

is relatively compact in            for any          if and only if for any     there exists 

a relatively compact subset    of    such as for any     there exists a subset      of        

those Lebesgue measure is less then   and such as            for any     and   

          . 

Lemma 3.1.4 (Gutman) An uniformely integrable family   from           is relatively 

compact if and only if : 

(i)    is p-equiintegrable; 

(ii)     there exists a relatively compact subset    of    such as for any     there 

exists a subset      of        those Lebesgue measure is less then   and such as 

           for any     and              

Lemma 3.1.5 (Baras-Hassan-Veron) Let           , ( X is a Banach space)be the 

infinitesimal generator of a compact contractions   -semigroup. Then for any bounded subset   

from           and for any          the following set             is relatively 

compact in            

Theorem 3.1.1 The solution operator   is completely continuous from           to           

for any        .  

Application of Banach’s contraction principle 

 

We will apply here Banach’s fixed point theorem in order to obtain the existence of solution to 

problem (3.1.1) 
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Theorem 3.1.2 Let                                  be a continuous map for which 

there is a constant      such that the following inequality holds  

                                                                                                             (3.1.5) 

for all                and any        . 

Then there exists at least one solution to the problem (3.1.1). 

3.1.3 Application of Schauder’s fixed point theorem 

 

The next existence result comes from Schauder fixed point theorem. The Lipschitz condition on 

the nonlinear term  F  in Theorem 3.1.2 is weakened to a growth condition at most linear. 

Theorem 3.1.3   Let                       be a continuous map for which there are  

constants        such that the following inequality holds  

                                                         

for all              and any        . 

Then there exists at least one solution to the problem (3.1.1). 

Example 3.1.1 Let      a bounded domain,    , and let             and   

       such that  

(a)          is measurable for each    ,  

(b) continuous for a.e.    , and  

(c) for each     there exist constants      and      such that 

                                                                     
           

for a.e      and all    .  

Then the operator                        defined by 

                    

satisfies all the assumptions of Theorem 3.1.3.  
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3.2 Semilinear evolution systems 
 

In this section we are concerned with the existence of solution for the system of semilinear 

evolution equations: 

                                   

         
         

                

                                                                           (3.2.1) 

in a Banach space  . Here          is a linear operator such that      ,     are 

nonlinear operators and A is the infinitesimal generator to a   -semigroup of contractions  

          . We seek weak solution of the fixed point problem   
 
     

 
  in the space   , 

where                          ,           defined by 

                                                     and       . 

Our first result is an existence, uniqueness and approximation theorem. 

 

3.2.1 Application of  Perov’s fixed point theorem 

 

 

Theorem 3.2.1 Let                           . Assume that  

                                                    

and                                                                                                                                           (3.2.2) 

                                                   

for every                                      ,            and              are 

nonnegative constants . 

Then (3.2.1) has a unique solution                                . 

3.2.2 Application of Schauder’s fixed point theorem 

 

The next theorem is an existence result derived from Schauder’s fixed point principle, assuming 

that nonlinearities F and G have a growth at most linear. 

Theorem 3.2.2  Let                            . Assume that F and G are continuous 

and satisfy the growth conditions.  
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and                                                                                                                                           (3.2.4) 

                                                                                 

for all                                , where            . Then (3.2.1) has at least 

one solution                                . 

3.2.3 Examples 

Example 3.2.1 Let                          be two continuous maps for which there 

exists the constants                with 

                                                                

and 

                                                                                  

Then the maps           
                     given by 

                  and                 .                                   

satisfy all the assumptions of Theorem 3.2.2.              

Example 3.2.2 Let      a bounded domain,    , and set               and 

         be a function such that          and           are measurable for every    ,  

continuous for a.e.    ,                            and there are the constants           

with 

                                                                                     

                          

for a.e      and all    . Then the  operators                          defined by 

                   and                    

satisfy all the assumptions from previous example. 
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4 Nonlinear Schrödinger  equations via fixed point principles 
 

Starting with the existence and uniqueness result for the non-homogenous Schrödinger equation 

with the source term in       , we present existence results for the nonlinear perturbated 

Schrödinger equation via Banach, Schauder and Leray-Schauder fixed point theorems.  In the 

first part of this chapter we consider a Cauchy-Dirichlet problem for Schrödinger equation. Our 

framework is based on the theory of Sobolev space        and we establish the existence of a 

weak solution based on an existence and uniqueness result of J.L.Lions [42]. We include a proof 

adapted from Temam [76] and Precup [66] for completeness. Next we will associate to the 

Cauchy-Dirichlet problem the solution operator                           
      

               . We focus on the complete continuity of this operator on               in 

order to prove a result concerning a superlinear problem. It is established by means of Leray-

Schauder fixed point theorem. (see Precup [66]). 

 

4.1 Linear Schrödinger equations 

4.1.1 Introduction 

 

This chapter deals with weak solvability of  the Cauchy-Dirichlet problem for the 

perturbated  Schrödinger equation: 

                                      

                          

                                           
                                     

                                                   (4.1.1) 

Here      is a bounded domain and F is a general nonlinear operator which, in particular, can 

be a superposition operator, a delay operator, or an integral operator. Specific Schrödinger 

equations arise as models from several areas of physics. The problem is a classical one (see [15], 

[36], [42], [41] and [76]) and our goal here is to make more precise the operator approach based 

on abstract results from nonlinear functional analysis. More exactly, we shall precise basic 

properties, such as norm estimation and compactness, for the (linear) solution operator associated 

to the non-homogeneous linear Schrödinger equation and we shall use them in order to apply the 

Banach, Schauder and Leray-Schauder theorems to the fixed point problem equivalent to 

problem (4.1.1).  The same program me has been applied to discuss nonlinear perturbations   of 

the heat and wave equations in [65] and [66]. 
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 Compared to [65] and [66], here all spaces consist of complex-valued functions. Thus  

      is the space of all complex-valued measurable functions   with             
 

 

endowed with inner product and norm 

                         
 

                     
 

 

 
 

  

Also the Sobolev space of complex-valued functions   
     is endowed with inner product and 

norm 

            
  

   

 

   

   

   
    

 

               
  
 

 
   

As usual by        we denote the dual of   
    , that is the space of all linear continuous 

complex-valued functional on   
    . The duality between   

     and        is defined as 

follows: for          and     
    ,       stands for the valued of   at   ; in particular, if  

      
    , then             

 
, and if        , then                . Recall that –   is 

an isometry between spaces   
     and       . 

 Throughout this chapter by    and              we mean the eigenvalues and 

eigenfunctions of –  . Thus 

 
–              
            

  

We also assume that         . Then the systems          
 

   
   

   

 are orthonormal and 

complete in       and   
    , respectively. Recall in addition Poincaré’s inequality 

                                           
 

   
           

                                                               (4.1.2) 

 

4.1.2 The non-homogenous Schrodinger equation in        

First we need the following lemma, the version for the complex-valued functions of a result from 

[65], which is a realization to        of Parseval’s relation and of the completeness property of 

eigenfunctions   . We include its proof for the sake of completeness. 

Lemma 4.1.1  (i) For any         , one have 

                                            
 
               

                                                        (4.1.3)                                                                                   
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                                                             (4.1.4) 

                         (ii) If                  , then 

                                                        
 
               

              . 

Consider now the Cauchy-Dirichlet problem for the non-homogeneous Schrödinger equation 

                                 

                                     

                                              

                                           

                                                   (4.1.5) 

      We have the following existence and uniqueness result. Its proof uses arguments patterned 

from [41], [76] and [66]. 

 

Theorem 4.1.1   If                   and          , then there exists an unique function 

u such that 

                  
                                                                        (4.1.6)                           

 and   
                                                           

     

                                                                                                                       
               (4.1.7) 

    By the (weak or generalized) solution of the Cauchy-Dirichlet problem (4.1.5), when    

              and         , we mean the function   which satisfies ((4.1.6) and (4.1.7). 

The mapping 

                                             
                     

given by     , where    is the unique solution of problem (4.1.5) for     , is called the 

solution operator of Cauchy-Dirichlet problem for the Schrödinger equation. 

4.2 Schrödinger solution operator 
 

4.2.1 Norm estimations 

 

The following estimation theorem guarantees the nonexpansivity and Lipschitz property of the 

solution operator   from                 to          
      and              , respectively. 
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Theorem 4.2.1   Let                  . Then for every         one has 

                                                                                                                              (4.2.1) 

and 

                                                                                                                            (4.2.2) 

4.2.2 Compactness 

 

 This section deals with the complete continuity of the solution operator   . We shall also use the 

following result (see [65, p 255] and [82, p 307]):    

Lemma 4.2.1   Let X, B and Y be Banach spaces with the inclusion      compact and     

continuous.  If a set F is bounded in           and relatively compact in          , where 

     , then F is relatively compact in                       

Theorem 4.2.2 The solution operator S is completely continuous from                 to 

              for       
  

   
      

  

   
 if     and for any     if n=1 or n=2.  

4.3 Existence results for nonlinear Schrödinger equations 

                

4.3.1 Application of Banach’s fixed point theorem 

 

Our first result of existence and uniqueness for the semi-linear problem (4.1.1) is established by 

means of Banach fixed point theorem. 

Theorem 4.3.1  Let                                                 be a map for 

which there exists a constant      such that the following inequality holds for all     

               : 

                                                                                                  (4.3.1) 

Then there exists a unique solution u to problem (4.1.1), i.e., 

                           
                     ,                         

and  



33 
 

 
                                                                    

    

                                                                                    
  

Example 4.3.1 Let                be a map for which there exists a constant       wit 

                                                
                                                  (4.3.2) 

Then the map                                  given by  

                                            

satisfies all the assumptions of Theorem 4.3.1. 

Example 4.3.2 Let         be a function such that        is measurable for each    , 

              and there is a constant       with  

                            

For a.e.     and all          Then the operator                defined by 

               

satisfies all the assumptions from the previous example. 

4.3.2 Application of Schauder’s fixed point theorem 

 

The next existence result comes from Schauder’s fixed point theorem. The Lipschitz condition 

on the nonlinear term   in Theorem 4.3.1 is weakened to a growth condition at most linear.   

Theorem 4.3.2   Let          and                                  be a continuous 

smap for which there exists a constant      such that the following inequality holds for all 

                  

                                             

Then there exists at least one solution to problem (4.1.1). 

Example 4.3.3  Let                be a continuous map for which there exists a constant  

     with 

                                                  
                                                            (4.3.3)     

Then the map                                  given by  
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satisfies all the assumptions of Theorem 4.3.2. 

Example 4.3.4 Let         be a function such that        is measurable for every    , 

       is continuous for a.e.    ,               and there is a constant       with  

                      

for a.e.     and all      Then the operator                defined by 

               

satisfies all the assumptions from the previous example.  

 

4.3.3 Application of the Leray-Schauder fixed point theorem 

 

Our next existence result established by means of the Leray-Schauder fixed point theorem (see 

[66]).             

Theorem 4.3.3   Let          and                                , where       

     if     and     for     and    . Assume that F is continuous and bounded 

(sends bounded sets into bounded sets) and there are constants       ,      and   

       such that if          the following conditions holds 

                                                           
                                                            (4.3.4) 

for every                 and a.e.        . Then there exists  at least one solution to 

problem (4.1.1) 

Example 4.3.5 Let            
       be a continuous map satisfying the following 

conditions: 

                        
   

           

 

                                                                     (4.3.6)             

                                      
    for all         ,                                                     (4.3.7)                     

for some                         if     and     for     and    .Then the 

map                                 given by                  satisfies all 

assumptions of Theorem 4.3.3. 

Example 4.3.6   Let         be a function such that        is measurable for every    , 

       is continuous for a.e.     and there are        ,          such that  
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                                                                        (4.3.8) 

                                                                                                                                     (4.3.9) 

for a.e.     and all      Then the superposition operator                given by 

                with         , satisfies the conditions of the previous example. 

Example 4.3.7 The function                 (   ,), where           , satisfies all 

the assumptions from Example 4.3.6. 
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5 Systems of nonlinear Schrödinger equations 
 

Using the existence linear theory from chapter 4 we establish existence results for the nonlinear 

perturbed Schrödinger operator systems via Perov, Schauder and Leray-Schauder fixed point 

theorems. The abstract frame-work are related to Lebesgue-Sobolev spaces. The proofs are based 

on the method of convergent to zero matrices of Precup [68]. Our results particularize the general 

theory presented in this work.  

This chapter deals with the weak solvability of semilinear operator systems using the method of 

matrices that converge to zero. Our starting point is related to the Schrödinger solution operator, 

for which we established properties of compactness in Chapter 4.  

5.1 Nonlinear Schrödinger equations   

 

Let   be an open and bounded subset of    ,       and consider the Chaucy-Dirichlet 

problem for the linear Schrödinger equation: 

                            

                         

                                            
                                   

                                                          (5.1.1) 

By Theorems 4.1.1, 4.2.1 and 4.2.2 we can associate to this problem the solution operator  

                                                           , 

defined by      where                                is the weak solution of the 

problem (5.1.1) . 

In the first part we are concerned with the existence of solutions for the following system of 

semilinear Schrödinger equations: 

                          

                                                           
                                                           
                                                       
                                                                  

                                       (5.1.2) 

Here by    we mean             such that       and      are nonlinear operators. We 

seek a weak solution to (5.1.2), that is a fixed point of the problem   
 
     

 
  , where     

              ,           defined by 
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                                                               . 

 

5.1.1 Application of Perov’s fixed point theorem 

  

Our first result is an existence, uniqueness and approximation theorem. 

Theorem 5.1.1 Let                                                  be continuous 

operators. Assume that  

                                                                                 

and                                                                                                                                           (5.1.3) 

                                                                    

for every                                                         and  some 

nonnegative constants             . 

  Then (5.1.2) has a unique solution                                    . 

Example 5.1.1 Let        
                  be two maps for which there exists the 

constants                 with 

                                                                  

and                                                                                                                                         

                                                    

for all                   

Then the maps                                                   given by  

                                                     

for                                      satisfy all the assumptions of Theorem 5.1.1. 
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5.1.2 Application of Schauder’s fixed point theorem 

 

The next theorem is an existence result derived from Schauder’s fixed point principle, assuming 

that nonlinearities F and G have a growth at most linear. 

Theorem 5.1.2Let                                                 . Assume that F 

and G are continuous and satisfy the growth conditions.  

                                                                                

and                                                                                                                                           (5.1.7) 

                                                                                  

for every                                     ,       , where            . 

Then (5.1.2) has at least one solution            

           
                              

                    . 

Example 5.1.2  Let        
                  be two continuous maps for which there 

exists the constants                  with 

                                                                              

and  

                                                      

Then the maps                                                   given by  

                                       

for                                         satisfy all the assumptions of Theorem 

5.1.2. 

Example 5.1.3  Let           be two functions such that        and         are 

measurable for every    ,               are continuous for a.e.    ,               

       and there are the constants          with  

                      

and 
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for a.e.     and all      Then the operators                                   

         
      defined by 

                                                    and                  

satisfy all the assumptions from the previous example.  

 

5.1.3 Application of Leray-Schauder’s fixed point theorem 

 

The next result is based on the Leray-Schauder principle. We seek a weak solution to the system 

(5.1.2). 

Theorem 5.1.3 Assume that F and G are continuous and admit the decompositions   

          and              such that the following conditions are satisfied for all 

             
     , any         , some constants                such that    

                          , and           : 

                            
            

  

                                                                                                                         (5.2.9) 

                            
            

  

Then (5.1.2) has at  least one solution       

                                               
               

     . 

Example 5.1.4 Let        
              

       be continuous maps satisfying the 

following conditions: 

                                 

 

                                 

 

                                            (5.2.13) 

                     
                                                    

                                                 
            

  

and                                                                                                                 (5.1.14) 

                                                 
            

  

for all              
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for some     
                       

 
                          if     and     

for     and    .Then the maps                                 

          given by                                          satisfy all assumptions 

of Theorem 5.1.3. 

Example 5.1.5   Let           be two functions such that               is measurable for 

every    ,               are continuous for a.e.     and there are           ,     

     such that  

                      
  and                

                                                                    (5.1.15)                                                                                                                                                                         

                                                                                                                    (5.1.16) 

for a.e.     and all      Then the superposition operators                        

given by                    and                   with         , satisfies the 

conditions of the previous example. 

Example 5.1.6 The functions                                      (   ,), where  

           , satisfy all the assumptions from Example 5.1.5. 
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