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INTRODUCTION

The theory of the dynamical systems has been rapidly developed due to its remark-
able success in mathematical modelling of real phenomena and processes from physics,
chemistry, biology, economics and various other scientific domains [35](Marsden and
Raţiu, 1994), [18](Hirsch, Smale and Devaney, 2003), [41](Petrera, Phadlery and Sur-
ris, 2009), [43](Puta, 1993), [2](Andrica and Caşu, 2008). The analysis of the modelled
processes may be studied using different geometrical, analytical and numerical methods.
A class of dynamical systems is constituted from the HamiltonPoisson systems.

In order to dwell upon the dynamical properties of a HamiltonPoisson system, are
investigated the following issues:

(1) existence of Poisson structure and of some Casimir functions;
(2) problem of stability in the stationary states and the existence of periodic orbits;
(3) determining of a Lax formulation and problem of numerical integration of the

dynamical system, using geometrical integrators.
An extension of dynamical systems of the HamiltonPoisson type is represented by

metriplectic systems, [27] (A. N. Kaufman, 1984),[40] (Ortega and Planas-Bielsa, 2004).
The scientific researches being carried during the last two decades have highlighted a

major interest in study of non-linear systems with control on matrix Lie groups. All these
appear naturally in various domains such as: robotics, elasticity, molecular dynamics,
aeronautics and many others, [33](Leonard and Krishnaprasad, 1998), [28](Khalil, 2002).

The theory of finite-dimensional Lie groups has offered an open setting for to be
explained and well-understood a series of phenomena from geometrical mechanics, the-
oretical physics and the control theory. In this respect there may be mentioned: the
Lie group SO(3) and the theory of free rigid body, the Lie group SE(2,R) and the
laser-matter dynamics, the matrix Lie groups and the control theory. The topic of the
last chapter is focused upon this particular subject matter.

The present thesis has as its declared goal to bring in some geometrical and dynam-
ical details of the dynamical systems on Rn and to provide solutions to some problems
in the area of geometrical mechanics.

The work is divided into four chapters that to ensure the unitary character of its con-
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tent and the relevance of the researched topics. The thesis is based on 53 bibliographical
references.

Chapter 1, entitled ”Elements of geometrical mechanics”, is structured in four para-
graphs and it has a monographic character. The principal objective is the presentation
in a brief form of some results about symplectic structures, Hamiltonian mechanical
systems, Poisson manifolds and Hamilton-Poisson mechanical systems.

In Paragraph 1.1 are defined notions from symplectic geometry and those of Hamil-
tonian mechanical system. Are presented fundamental results linked of these [structure
theorem of Darboux (Theorem 1.1.15), Hamilton’s equations (Theorem 1.1.19), conser-
vation energy principle (Proposition 1.1.21), Liouville’s theorem (Proposition 1.1.22)].

The Paragraph 1.2 contains notions and basic theorems from Poisson geometry [Defi-
nitions 1.2.1, 1.2.2, Proposition 1.2.3, structure theorem of Darboux-Lie-Weinstein (The-
orem 1.2.11), Theorem 1.2.20, Propositions 1.2.21–1.2.23]. One proves that a bracket
on the algebra C∞(Rn,R) which is R−bilinear, skew-symmetric and satisfying Leibniz
rule determines a Poisson structure on Rn if and only if Jacobi identity is verified for
coordinate functions (Proposition 1.2.17). The third Section is dedicated to presentation
of Poisson structures on the dual of Lie algebra (Propositions 1.2.29, 1.2.34).

The Paragraph 1.3 deals with the Hamilton-Poisson mechanical systems on Rn. Is
defined the notion of Hamilton-Poisson realization for a system of differential equations
on Rn and we present some important properties of those dynamical systems [conser-
vation of energy (Proposition 1.3.2), the flow of an Hamilton-Poisson system preserves
the Poisson structure (Proposition 1.3.3)].

In Paragraph 1.4 gives two important examples of Hamilton-Poisson systems on R3,
namely: the Euler’s equations of the free rigid body and the equations of the dynamics
of autonomous underwater vehicle.

Chapter 2, entitled ”Dynamical properties of the Hamilton-Poisson systems on
Rn”, is structured in three paragraphs and combines a monographic presentation with
original elements, which can be found in the last two paragraphs.

This chapter is dedicated to present of the fundamental notions and methods fre-
quently used for the qualitative study of the dynamics of an Hamilton-Poisson system
on Rn. As illustrative example we investigate the general Euler top system.

The Paragraph 2.1 contains basic notions concerning the Hamilton-Poisson systems
from theory of dynamical systems. Also the Lyapunov’s results are presented (Theo-
rems 2.1.3, 2.1.6, 2.1.9). Two methods for determination of the nature for nonlinear
stability are highlighted [energy-Casimir method (Theorem 2.1.12), Arnold’s method
(Theorem 2.1.14)]. Also we present Lax formulation. In finally are given two methods
of numerical integration for the approximation of solutions of a dynamical system using
the geometrical integrators (Lie-Trotter integrator and Kahan integrator).

In Paragraph 2.2 realizes a geometrical and dynamical study of general Euler top
system. This system is described by a family of non-linear differential equations on
R3 depending by a triple of reel parameters. The geometrical and dynamical proper-

3



ties of Euler top system are studied [Hamilton-Poisson realization (Propositions 2.2.3,
2.2.6), connection with pendulum dynamics (Proposition 2.2.11)] and stability problem
(Propositions 2.2.13, 2.2.14, 2.2.16–2.2.19, Corollaries 2.2.15, 2.2.20)].

Original contributions of the author are included in Secţion 2.2.3 and refers to nu-
merical integration of the Euler top dynamics, using the Lie-Trotter integrator (Propo-
sitions 2.2.21, 2.2.22, Corollaries 2.2.23-2.2.25) and Kahan integrator (Propo-
sition 2.2.26, Remark 2.2.27). These results have been communicated to ”The
12th Symposium of Mathematics and its Applications, 5-7th November 2009,
Timişoara” and published in the paper [50] (Şuşoi, 2010).

In Paragraph 2.3 we study the geometrical and dynamical properties of the metriplec-
tic Euler top. Secţion 2.2.1 contains aspects with monographic character about metriplec-
tic structures. The content of the two last sections is based on the author’s results
included in the paper [49] (Şuşoi and M. Ivan, 2009).

Original contributions refers to the construction of a metriplectic structure associ-
ated of Euler top system (Proposition 2.3.4) and to study of spectrally stability for
the metriplectic Euler top system (Propositions 2.3.8, 2.3.10–2.3.12, Corollary
2.3.13). These results have been communicated to ”The International Confer-
ence on Theory and Applications of Mathematics and Informatics (ICTAMI
2009), 3-6th September 2009, Alba-Iulia” [conference organized by ”1 Decembrie
1918” University of Alba-Iulia and Institute of Mathematics ”Simion Stoilow” of the
Romanian Academy].

Chapter 3, entitled ”Two classical dynamical systems on R6”, is structured in three
paragraphs. Original results are contained in the two last paragraphs.

In this chapter we establish some important geometrical and dynamical properties
for two remarkable differential systems on R6, namely: Goryachev-Chaplygin top system
and Kowalevski top system.

In Paragraph 3.1 are presented the Lie-Poisson structures on the dual of Lie algebra
se(3,R).

In Paragraph 3.2 we present a geometrical and dynamical study of the Goryachev-
Chaplygin top system (3.2.1). This paragraph contains original contributions of the
author and these have been published in the paper [5] (Aron, Puta and Suşoi, 2005).
More precisely, these refers to: Hamilton-Poisson formulation of the a dynamics (3.2.1)
(Proposition 3.2.1), Lax formulation (Proposition 3.2.6), stability problem for G-C
top (Propositions 3.2.8-3.2.13), existence of periodic solutions (Proposition 3.2.15)
and numerical integration of the dynamics (3.2.1) via Lie-Trotter integrator (Proposi-
tions 3.2.16, 3.2.17).

In Paragraph 3.3 realizes a geometrical and dynamical study of the Kowalevski
top system (3.3.1). The content of this paragraph bases on the author’s results in-
cluded in the paper [6] (Aron, Puta, Şuşoi et al., 2006). These contributions refers to:
Hamilton-Poisson formulation of the dynamics (3.3.1) (Proposition 3.3.1), Lax for-
mulation (Proposition 3.3.4, Corollary 3.3.5), stability problem for Kowalevski top
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(Propositions 3.3.6-3.2.11), existence of periodic solutions (Proposition 3.3.13),
numerical integration of the dynamics (3.3.1), using the Lie-Trotter integrator (Propo-
sitions 3.3.14, 3.3.15) and Kahan integrator (Propositions 3.3.16, 3.3.17).

Chapter 4, entitled ”Control dynamical systems on Lie group SO(4)”, is structured
in two paragraphs. Original results of the author are included in Paragraph 4.2 and have
been published in the papers [42](Pop, Puta and Şuşoi, 2005) and [7](Aron, Pop, Puta
and Şuşoi, 2006).

In Paragraph 4.1 we present the principal definitions and properties concerning the
systems with control on matrix Lie groups (Theorems 4.1.2, 4.1.5). One gives two
examples of controllable left invariant systems on the Lie group SE(2,R) [resp. SO(3)]
which describes the dynamics of the robot Hilare [resp. dynamics of spacecraft]. For each
from these models is studied an optimal control problem. For the study of properties
of dynamical systems (4.1.19) and (4.1.24) are used the results obtained in Chapter 2
about Euler top system. For these dynamical systems are investigated stability problem
(Proposition 4.1.7) [resp., Proposition 4.1.11] and numerical integration via Lie-
Trotter integrator (Propositions 4.1.8, 4.1.9)[ resp., Propositions 4.1.12, 4.1.13].

Paragraph 4.2 is dedicated of controllable systems on Lie group SO(4). Original
results obtained refers to: the study of an optimal control problem with three controls
for the system (4.2.4) (Proposition 4.2.3), stability problem (Propositions 4.2.5-
4.2.12), Lax formulation and the complete integrability (Propositions 4.2.14, 4.2.16,
Corollary 4.2.15) and numerical integration [the Lie-Trotter integrator given by
the system of recurrent equations (4.2.11) and Proposition 4.2.17].

The authors original work has been published in six scientific papers which are cited
in the bibliography section. Four are realized in collaboration with Professor Mircea
Puta and his collaborators [([5], [6], [7], [42]], and one paper is written in collaboration
with dr. Mihai Ivan ([49]).

I wish to express my gratitude for my first doctoral adviser, Professor Mircea Puta,
because without his help and support I could not have written this thesis.

I also wish to bring my deepest thanks to Professor Dorin Andrica for having accepted
to be my doctoral adviser after the tragic disappearance of Professor Mircea Puta. He
gave me a substantial support for to complete this scientific demarche. Relevant remarks
and suggestions of his have contributed to the current version of the thesis.

Finally, but not at last, I would like to express my sincere thanks to the staff of the
Department of Geometry of the BabeşBolyai University from Cluj-Napoca, who have
given me their moral support and trust, which was essential for me.
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Chapter 1

Elements of geometrical mechanics

In this summary, for definitions, propositions, theorems etc., we keep the numbering
used in the thesis.

Also to ensure the coherence and unity of content we recall some notions and basic
results that are needed in the following.

Chapter 1 is structured in four paragraphs and it has a monographic character. The
principal objective is the presentation in a brief form of some results about symplectic
structures, Hamiltonian mechanical systems, Poisson manifolds and Hamilton-Poisson
mechanical systems.

1.1 Elements of symplectic geometry on Rn

The principal notations used are:
M − a differential manifold of dimension n of class C∞;
X (M)− the reel Lie algebra of vector fields on M ;
TM (resp. T ∗M)− the total space of tangent (resp. cotangent) bundle on M ;
C∞(M,R)− the algebra of reels functions of class C∞ definite on M .
The concepts from theory of differential manifolds and associated geometric struc-

tures are those from works of differential geometry, see [14](M. Craioveanu, 2008).

In this paragraph we present some elements from theory of symplectic manifolds. The
principal objectives addressed are: symplectic vector space, symplectic map, property of
characterization of a symplectic form (Proposition 1.1.6), symplectic structure, symplec-
tomorphism, Hamiltonian mechanical system, conservation of energy for an Hamiltonian
system (Proposition 1.1.21). The principal bibliographic sources used are: [1] (Abraham
and Marsden, 1979), [43] (Puta, 1993).
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Let M be a manifold of dimension n and A2(M) the reel vector space of exterior
differential forms defined on M . An element ω ∈ A2(V ) is called 2−form on M .

Definition 1.1.8 (a) By a symplectic structure or symplectic form on the manifold
M , we mean a closed non-degenerate 2− form ω on M .

(b) The pair (M,ω) is called symplectic manifold. �
Definition 1.1.10 Let be the symplectic manifolds (M1, ω1) and (M2, ω2). A map

ϕ ∈ C∞(M1,M2) is said to be symplectomorphism, if ϕ∗ω2 = ω1. �
A differentiable map c : I → M (I ⊂ R is open interval containing 0) is a integral

curve of a vector field X ∈ X (M) with initial condition x, if:

dc(t)

dt
= X(c(t)) and c(0) = x.

A family {ϕt}t∈I , where ϕt : M → M is a differentiable map with property that
ϕt(x) = c(t), is called flow of vector field X.

Let Q be a manifold of dimension n and T ∗Q its cotangent manifold. The local
coordinates (q1, q2, ..., qn) on Q induces the local coordinates (q1, q2, ..., qn, p1, p2, ..., pn)
on T ∗Q, called canonical cotangent coordinates.

Define on T ∗Q a 1− form θ, called Liouville form, given by:

θ = p1dq
1 + p2dq

2 + ...+ pndq
n. (1.1.1)

Using the Liouville form θ, define a 2− form ω on T ∗Q, given by:

ω = dθ = dp1 ∧ dq1 + dp2 ∧ dq2 + ...+ dpn ∧ dqn. (1.1.2)

Proposition 1.1.13 (T ∗Q,ω = dθ) is a symplectic manifold. �
The symplectic ω = dθ given by (1.1.2) is called canonical symplectic form on T ∗Q.
The local structure of a symplectic manifold is given in Darboux’s theorem(Theorem

1.1.15). More precisely:
on each symplectic manifold (M,ω) in the neighborhood of all point x ∈ M there

exist the local coordinates (q1, q2, ..., qn) in which ω has the expression (1.1.2). In other
words, every symplectic manifold is, locally, of the form T ∗Q.

The local coordinates (qi, pi) from (1.1.2) are called symplectic coordinates on M .
Definition 1.1.17 Let (M,ω) be a symplectic manifold (dimM = 2n) and H ∈

C∞(M,R). The triple (M,ω,H) is said to be Hamiltonian mechanical system. The
vector field XH ∈ X (M) determined by the condition:

iXHω + dH = 0, (1.1.3)

is called Hamiltonian vector field with energy or Hamiltonian H. �
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Proposition 1.1.18 Let (M,ω) be a symplectic manifold (dimM = 2n), H ∈
C∞(M,R) and (q1, q2, ..., qn, p1, p2, ..., pn) the symplectic coordinates on M . The Hamil-
tonian vector field XH has the local expression:

XH =
n∑
i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

)
. (1.1.4)

If (M,ω,H) is an Hamiltonian system, its dynamics is described by the integral
curves of vector field XH .

In Theorem 1.1.19 is given the Hamilton’s equations of a vector field XH .
As examples are determined the Hamilton’s equations of 1−dimensional harmonic

oscillator [Example 1.1.20(i)] and Hamilton’s equations of pendulum [Example 1.1.20(ii)].
În Liouville theorem gives characteristic properties of a Hamiltonian system (M,ω,H)

[if {ϕt} is the flow of XH , then ϕt is a symplectic map; the flow of XH preserves the
canonical volume form] (Proposition 1.1.22).

Jacobi theorem gives and necessary and sufficient condition such that f ∈ Diff(M)
to be a symplectodiffeomorphism of a symplectic manifold (M,ω) (Proposition 1.2.23).

Definition 1.1.24 Let (M,ω) be a symplectic manifold. The Poisson bracket of
functions f, g ∈ C∞(M,R) is the function {f, g}ω ∈ C∞(M,R), given by:

{f, g}ω = −ω(Xf , Xg), (1.1.5)

where Xf , resp. Xg is the Hamiltonian vector field with energy f , resp. g. �
Proposition 1.1.27 Let (M,ω) be a symplectic manifold (dimM = 2n) and f, g ∈

C∞(M,R). Then in the symplectic coordinates (qi, pi) on M , the Poisson bracket {f, g}ω
has the following expression:

{f, g}ω =
n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (1.1.6)

Proposition 1.1.30 Let (M,ω) be a symplectic manifold (dimM = 2n). The map
{·, ·}ω : C∞(M,R)× C∞(M,R)→ C∞(M,R):

(a) is R− bilinear and skew-symmetric;
(b) verifies the Jacobi identity, i.e.

{{f, g}ω, h}ω + {{g, h}ω, f}ω + {{h, f}ω, g}ω = 0, (∀) f, g, h ∈ C∞(M,R);

(c) verifies the Leibniz identity, i.e.

{fg, h}ω = f{g, h}ω + g{f, h}ω, (∀) f, g, h ∈ C∞(M,R). �
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1.2 Poisson manifolds. Poisson structures on Rn

We will review some notions and basic results concerning Poisson geometry and Hamilton-
Poisson systems. The content of this paragraph is based on the following bibliographic
sources: [1] (Abraham and Marsden, 1979), [53](Weinstein, 1983), [35] (Marsden and
Raţiu, 1994), [2] (Andrica and Caşu, 2008), [19](Holm et al., 1985).

Definition 1.2.1 (i) A Poisson structure or Poisson bracket on a manifold P is a
map {·, ·} : C∞(P,R)× C∞(P,R) −→ C∞(P,R) satisfying the following properties:

(P1) {·, ·} is R− bilinear; (P2) {·, ·} is skew-symmetric;
(P3) {·, ·} satisfies Leibniz rule; (P4) {·, ·} satisfies Jacobi identity.
(ii) The manifold P endowed with a Poisson structure {·, ·} on C∞(P,R) is called

Poisson manifold. A Poisson manifold is denoted with (P, {·, ·}). �
We observe that a Poisson bracket on the manifold P is a Lie bracket {·, ·} on

C∞(P,R) (i.e. (C∞(P,R), {·, ·}) is a Lie algebra) which satisfies Leibniz rule.
Definition 1.2.2 Let (P1, {·, ·}1)) and (P2, {·, ·}2) two Poisson manifolds. A Poisson

map is a differentiable map ϕ : P1 → P2 with the property:

ϕ∗ ({f, g}2) = {ϕ∗f, ϕ∗g}1, (∀) f, g ∈ C∞(P2,R).

Proposition 1.2.3 Every symplectic manifold is a Poisson manifold. More precisely,
if (M,ω) is a symplectic manifold, then (M, {·, ·}ω) is a Poisson manifold, where the
Poisson structure {·, ·}ω is given by the relation (1.1.6).

Proposition 1.2.4 Let (P, {·, ·}) be a Poisson manifold. If H ∈ C∞(P,R), then
there exists an unique vector field XH ∈ X (P ) such that:

XH(f) = {f,H}, (∀) f ∈ C∞(P,R). (1.2.1)

The vector field XH given by (1.2.1) is called Hamiltonian vector field with energy
H associated to Poisson manifold (P, {·, ·}).

Remark 1.2.7 Every symplectic manifold (M,ω) is a Poisson manifold. The ques-
tion arises, when may be define a symplectic structure on a Poisson manifold? The
answer was given by Jost ([23], 1964) and it was enunciated in Proposition 1.2.8.

Proposition 1.2.8 If the Poisson structure {·, ·} defined on the manifold P is non-
degenerate, then the symplectic structure ω defined on P is given by:

ω(Xf , Xg) = −{f, g}. (1.2.2)

The locally structure of Poisson manifolds is more complex than of symplectic man-
ifold. More precisely the following theorem holds.

Theorem 1.2.10 (Kirilov). Every Poisson manifold is an smooth union of sym-
plectic manifolds (called symplectic leaves), not necessarily of same dimension.

In finally we present the Darboux-Lie-Weinstein theorem (Theorem 1.2 11).
Definition 1.2.12 A function C ∈ C∞(P,R) is a Casimir for the configuration

(P, {·, ·}), if {C, f} = 0, (∀)f ∈ C∞(P,R).
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Poisson structures on Rn

The most part of thesis is dedicated to mechanical systems on Rn. From this reason
we will present in details some aspects in theory of Poisson structures on Rn.

We denote the coordinate functions on Rn with (x1, x2, ..., xn).
Proposition 1.2.16 Let {·, ·} be a Poisson structure on Rn. Then:

{f, g} = {xi, xj} ∂f
∂xi

∂g

∂xj
, (∀) f, g ∈ C∞(Rn,R), i, j = 1, n. (1.2.3)

The matrix Π defined by:

Π =
({xi, xj}) , i, j = 1, n, . (1.2.4)

is called structure matrix of Poisson manifold (Rn, {·, ·}).
The relation (1.2.3) reads in equivalent form:

{f, g} = (∇f)T · Π · ∇g, (1.2.5)

where ∇ϕ, is the gradient of ϕ ∈ C∞(Rn,R).
Proposition 1.2.17 Let {·, ·} be a composition law on C∞(Rn,R) which satisfies

the conditions (P1)− (P3). Then it verifies Jacobi’s identity if and only if it is verified
by the coordinate functions xi, i = 1, n.

Remark. By Proposition 1.2.16, every Poisson structure on Rn determines a structure
matrix Π = ({xi, xj}). Ourselves the following question:

In what conditions a matrix Π = (πij(x))1≤i,j≤n whose elements are functions is a
structure matrix for a Poisson structure {·, ·} on Rn ?

The answer is given in the following theorem, [39](Olver, 1993).
Theorem 1.2.20 Let be a matrix Π = (πij(x))1≤i,j≤n, where πij(x) ∈ C∞(Rn,R).

Then Π(x) is a structure matrix for a Poisson bracket given by the relation (1.2.5), if
and only if the following conditions hold:

(i) Π is skew-symmetric for all x ∈ Rn;
(ii) πij(x) verifies the Jacobi equations:

πi`
∂πjk

∂x`
+ πj`

∂πki

∂x`
+ πk`

∂πij

∂x`
= 0, i, j, k, ` = 1, n. (1.2.6)

For n = 3, if we choose the functions π12(x), π23(x) and π13(x) it is easy to see that:
Jacobi equation reduces to a single equation, namely:

π12∂π
31

∂x1
− π31∂π

12

∂x1
+ π23∂π

12

∂x2
− π12∂π

23

∂x2
+ π31∂π

23

∂x3
− π23∂π

31

∂x3
= 0. (1.2.7)

In Propositions 1.2.22 and 1.2.23 gives two general methods for to construct
Poisson structures on R3.
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Proposition 1.2.22 Let A = (Aij) ∈ M3(R) be a skew-symmetric matrix. Define
the matrix Π = (πij)1≤i,j≤3, where

πij = Aijxk, k 6= i şi k 6= j.

Then Π(x) = (πij(x)) is a structure matrix for the {·, ·} on R3.
If in Proposition 1.2.22, we consider the skew-symmetric matrix

A =




0 −c b
c 0 −a
−b a 0


 , a, b, c ∈ R,

one obtains the structure matrix

Π(a,b,c) =




0 −cx3 bx2

cx3 0 −ax1

−bx2 ax1 0


 , a, b, c ∈ R. (1.2.8)

If in the relation (1.2.8) we consider the matrix Π(a,b,c) with abc 6= 0, we will say that
this generates a Poisson structure{·, ·} on R3 of so(3)−type.

If in the relation (1.2.8) we consider the matrix Π of the form

Π(0,b,c) =




0 −cx3 bx2

cx3 0 0
−bx2 0 0


 , b, c ∈ R, bc 6= 0 (1.2.9)

we will say that this generates a Poisson structure {·, ·} on R3 of se(2)−type.
Proposition 1.2.23 Let F ∈ C∞(R3,R) be a given function.
(i) The algebraic operation {·, ·}F : C∞(R3,R) × C∞(R3,R) → C∞(R3,R) given

by:
{f, g}F = −∇F · (∇f ×∇g) , (∀) f, g ∈ C∞(R3,R), (1.2.10)

defines a Poisson structure on R3.
(ii) F ∈ C∞(R3,R) is a Casimir for the configuration (R3, {f, g}F ). �
The relation (1.2.10) reads in the equivalent form:

{f, g}F = (∇f)T · ΠF · ∇g, where ΠF =




0 − ∂F
∂x3

∂F

∂x2

∂F

∂x3
0 − ∂F

∂x1

− ∂F
∂x2

∂F

∂x1
0



. (1.2.11)

Remark 1.2.26 C ∈ C∞(Rn,R) is a Casimir of configuration (Rn, {·, ·}) iff:

Π · ∇C = 0.
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Poisson structures on the dual of a Lie algebra

Let G be the Lie algebra of a finite dimensional Lie group G and G∗ its dual space.
The Lie group G acts on G by the action Ad : G × G → G, called adjoint action of

G on G. For g ∈ G, the map Adg : G → G is given by:

Adg(ξ) = Te(Rg−1 ◦ Lg)(ξ), (∀)ξ ∈ G.

The Lie group G acts on G∗ by the action Ad∗ : G × G∗ → G∗, called co-adjoint
action of G on G∗. For g ∈ G, the map Ad∗G : G∗ → G∗ is given by:

< Ad∗gµ, ξ >=< µ,Adg(ξ) >, (∀)µ ∈ G∗, ξ ∈ G.

Let µ ∈ G∗. The co-adjoint orbit of µ is defined by:

Oµ = {Ad∗gµ | g ∈ G}.

The infinitesimal generator ξG∗ of co-adjoint action of G on G∗ is given by:

< ξG∗(µ), η >=< µ, [ξ, η] >, (∀)µ ∈ G∗, ξ, η ∈ G.

Proposition 1.2.28 (Kirilov-Kostant-Souriau).Let G be a Lie group and O ⊂ G∗
a co-adjoint orbit. Then O is a symplectic manifold. In other words, there exists an
unique symplectic form ωO on O such that

ωO(ξG∗ , ηG∗) = − < µ, [ξ, η] >, (∀)µ ∈ O, ξ, η ∈ G. (1.2.12)

Define a bracket on algebra C∞(G∗,R) by:

{f, g}+
LP =< θ, [df(θ), dg(θ)] >, ∀ f, g ∈ C∞(G∗,R), θ ∈ G∗. (1.2.13)

Proposition 1.2.29 (Lie-Poisson) The dual space G∗ of Lie algebra G endowed with
bracket {f, g}+

LP given by (1.2.13) has a (non-canonical) structure of Poisson manifold,
called the plus Lie-Poisson structure on G∗.

Similarly, we define the plus Lie-Poisson structure on G∗.
Corollary 1.2.30 There exist two (non-canonical) Poisson structures on the dual

G∗ of Lie algebra G, called the plus-minus Lie-Poisson structure and denoted, re-
spectively with {·, ·}±. In consequence, (G∗, {·, ·}±) are Poisson manifolds.

In the following proposition is established a connection between the Lie-Poisson
structures on the dual of a Lie algebra and Kirilov-Kostant-Souriau symplectic form.

Proposition 1.2.31 Let G be a Lie group and O ⊂ G∗ a co-adjoint orbit. For all
f, g ∈ C∞(G∗,R) and µ ∈ O, we have:

{f, g}+(µ) = {f|O , g|O}ωO . (1.2.14)
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Remark 1.2.32 The symplectic leaves of G∗ are exactly the co-adjoint orbits of G∗.
Proposition 1.2.33 A function f ∈ C∞(G∗,R) is a Casimir of configuration

(G∗, {·, ·}±) if and only if it is constant on each co-adjoint orbit.
Proposition 1.2.34 Let G be a Lie algebra of dimension n and G∗ its dual. Then

the Poisson structures {·, ·}± on G∗ are given by:

{f, g}± (m) = ±ckij
∂f

∂mi

∂g

∂mj

mk, (1.2.15)

where ckij, i, j, k = 1, n are structure constants of Lie algebra G.

This paragraph ends with the presentation of the plus-minus Lie-Poisson structures
on the dual of some from the following classical Lie algebras of dimension 3, namely:
Lie algebra (R3,×), Lie algebra so(3) and Lie algebra se(2,R). More precisely:

• The plus-minus Lie-Poisson structures on the dual of Lie algebra (R3,×) are
generated by the de matrices:

Π− =




0 −m3 m2

m3 0 −m1

−m2 m1 0


 and Π+ =




0 m3 −m2

−m3 0 m1

m2 −m1 0


 ; (1.2.16)

• The plus-minus Lie-Poisson structures on the dual (so(3))∗ of Lie algebra so(3)
are generated by the matrices Π− and Π+ given in the relation (1.2.16), where

so(3) =








0 −a b
a 0 −c
−b c 0


 | a, b, c ∈ R



 ;

• The plus-minus Lie-Poisson structures on the dual (se(2,R))∗ of Lie algebra

se(2,R) =



X(a, v1, v2) =




0 −a v1

a 0 v2

0 0 0


 | a, v1, v2 ∈ R



 .

are generated by the matrices Πe2,− and Πe2,+, where

Πe2,− =




0 −m3 m2

m3 0 0
−m2 0 0


 and Πe2,+ =




0 m3 −m2

−m3 0 0
m2 0 0


 .

1.3 Hamilton-Poisson mechanical systems on Rn

Definition 1.3.1 An Hamilton-Poisson system is a triple (P, {·, ·}, H) where {·, ·} is a
Poisson structure on P and H ∈ C∞(P,R) is the Hamiltonian or energy of system.
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Let XH be the Hamiltonian vector field with energy function H, that is:

XH(f) = {f,H}, (∀) f ∈ C∞(P,R).

The dynamics of the Hamilton-Poisson system (P, {·, ·}, H) is described by:

dxi(t)

dt
= XH(xi(t)), t ∈ R or equivalent ẋi = {xi, H}, i = 1, n. (1.3.1)

Applying (1.2.5), the system (1.3.1) can be written in the equivalent form

Ẋ = Π · ∇H, (1.3.2)

where Ẋ =
(
ẋ1 ẋ2 . . . ẋn

)T
, and Π = ({xi, xj}) is its associated matrix.

Let (P, {·, ·}, H) be an Hamilton-Poisson system and {ϕt} the flow of Hamiltonian
vector field XH . Then for all f ∈ C∞(P,R) and all t ∈ R, we have:

− H ◦ϕt = H (conservation of energy);
d

dt
(f ◦ϕt) = {f,H} ◦ϕt = {f ◦ϕt, H};

− {ϕt} preserves the Poisson structure {·, ·}, i.e. ϕ∗t{f, g} = {ϕ∗tf, ϕ∗tg} (Propositions
1.3.2 and 1.3.3)

We say that f ∈ C∞(Rn,R) is a first integral or constant of motion for the system
(1.3.1), if its derivative along the trajectories of system is null.

Proposition 1.3.5 Let (Rn, {·, ·}, H) be an Hamilton-Poisson system. Then f ∈
C∞(Rn,R) is a first integral of the system (1.3.1) if and only if {f,H} = 0.

Proposition 1.3.6 Let (Rn, {·, ·}, H) be an Hamilton- Poisson system and C ∈
C∞(Rn,R) a Casimir. Then C and H are first integrals for (1.3.2).

The following result holds: every Hamiltonian system on R2n is an Hamilton-Poisson
system (Proposition 1.3.8).

Definition 1.3.9 If a system of differential equations of the form:

ẋi = fi(x
1, x2, . . . , xn), fi ∈ C∞(Rn,R), i = 1, n (1.3.3)

can be written in the form (1.3.1), we say that (Rn, {·, ·}, H) is an Hamilton-Poisson
realization for (1.3.3); denoted also with (Rn,Π, H), where Π is the structure matrix.

1.4 Examples of Hamilton-Poisson systems

• Free rigid body as Hamilton-Poisson system
In mechanical processes, an important role is played by the free rigid body, [35]

(Marsden and Raţiu, 1994).
The Euler equations which describe the dynamics of free rigid body are:

ṁ1 =

(
1

I3

− 1

I2

)
m2m3, ṁ2 =

(
1

I1

− 1

I3

)
m1m3, ṁ3 =

(
1

I2

− 1

I1

)
m1m2, (1.4.1)
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where m = (m1,m2,m3) ∈ C∞(R3,R) represents the angular velocities vector, and
I1, I2, I3 are the components of inertia tensor of body. We suppose that I1 > I2 > I3 > 0.
a

Proposition 1.4.1 [19]( Holm et al., 1985). Dynamical system (1.4.1) has the
Hamilton-Poisson realization (R3, {·, ·}RB, HRB) with the Casimir CRB, where {·, ·}RB
is the Poisson structure defined by (1.2.10), and HRB, CRB ∈ C∞(R3,R) are given by:

HRB(m) =
1

2

(
1

I1

m2
1 +

1

I2

m2
2 +

1

I3

m2
3

)
, CRB(m) =

1

2

(
m2

1 +m2
2 +m2

3

)
. (1.4.2)

The Poisson structure {·, ·}RB is generated by the matrix

ΠRB =




0 −m3 m2

m3 0 −m1

−m2 m1 0


 (1.4.3)

and is in fact the minus Lie-Poisson structure on the dual (so(3))∗ ∼= R3.
• Equations of the motion of an underwater vehicle

We refer now to the system of equations which models the dynamics of an au-
tonomous underwater vehicle, [20] (Holmes et al., 1998).

The motions of an underwater vehicle in the subspace S ⊂ R6 defined by
π2 = 0, π3 = 0, p1 = 0 are described by the equations:

π̇1 =

(
1

m3

− 1

m2

)
p2p3, ṗ2 =

1

I1

p3π1, ṗ3 = − 1

I1

p2π1. (1.4.4)

Proposition 1.4.4 [46],(Puta et al., 2008). The triple (R3,Πvs, Hvs) is an Hamilton-
Poisson realization of the dynamics (1.4.5) with the Casimir Cvs ∈ C∞(R3,R), where

Πvs =




0 −p3 p2

p3 0 0
−p2 0 0


 ,

Hvs(π1, p2, p3) =
1

2

(
1

I1

π2
1 +

1

m2

p2
2 +

1

m3

p2
3

)
, Cvs(π1, p2, p3) =

1

2

(
p2

2 + p2
3

)
. (1.4.5)

The Poisson structure {·, ·}vs generated by the matrix Πvs is in fact the minus Lie-
Poisson structure on the dual (se(2,R))∗ ∼= R3 of Lie algebra se(2,R).

Remark. In Chapter 2, paragraph 2.2 will be give other Hamilton-Poisson realizations
for the dynamics (1.4.1) and (1.4.4).
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Chapter 2

Dynamical properties of the
Hamilton-Poisson systems on Rn

This chapter is dedicated to presentation of fundamental notions and methods fre-
quently used for the qualitative study of the dynamics of an Hamilton-Poisson system
on Rn. As illustrative example we investigate the dynamics of general Euler top system.

The chapter is structured in three paragraphs and combines a monographic presen-
tation with original elements, which can be found in the last two paragraphs.

2.1 Qualitative study of the dynamical system asso-

ciated to a vector field

This paragraph contains basic notions concerning the Hamilton-Poisson systems.
The principal objectives addressed are: nonlinear stable equilibrium state, Lyapunov
function, Lax formulation, Lyapunov,s theorems, methods for determination of the na-
ture for nonlinear stability (Theorems 2.1.12, 2.1.14), the existence of periodic orbits
(Theorem 2.1.15) and the problem of numerical integration using geometric integra-
tors. The principal bibliographic sources used are: [1] (Abraham and Marsden, 1979),
[19](Holm, Marsden, Raţiu and Weinstein, 1985), [43] (Puta, 1993), [35](Marsden and
Raţiu, 1994), [18]( Hirsch, Smale and Devaney, 2004), [2](Andrica and Caşu, 2008).

Let be the system of differential equations associated to vector field X ∈ X (Rn):

ẋ = X(x), x ∈ Rn. (2.1.1)

The system (2.1.1) can be written in the equivalent form:

ẋi = fi(x1, x2, . . . , xn), i = 1, n, (2.1.2)

where x = (x1, . . . , xn) ∈ Rn, X(x) = (f1(x), . . . , fn(x)) with fi ∈ C∞(D,R), D ⊆ Rn.
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A point xe ∈ D ⊆ Rn is called equilibrium state of the system (2.1.1), if:

X(xe) = 0, equivalent fi(xe) = 0, i = 1, n. (2.1.3)

Definition 2.1.1 (i) A equilibrium state xe is nonlinear stable or Lyapunov stable,
if for all neighborhood U of xe from Rn there exists a neighborhood V of xe with
V ⊂ U such that all trajectories x(t) with the initial condition in V is included in U, or
equivalent, for all ε > 0, there exists δ > 0 such that:

for ‖x(0)− xe‖ < δ ⇒ ‖x(t)− xe‖ < ε, (∀) t > 0.

(ii) xe is asymptotic stable if the neighborhood V can be chosen such that is satisfied
the supplementary condition lim

t→∞
x(t) = xe.

(iii) xe is unstable, if xe is not nonlinear stable. �
Definition 2.1.5 Let D ⊆ Rn be an open subset and L : U → R, a function defined

on a neighborhood U ⊂ D of xe ∈ D. We say that L is a Lyapunov function for the
system (2.1.1), if the following conditions are verified:

(i) L and its partial derivatives are continuous;
(ii) L is positive definite (resp. negative definite), that is:

L(xe) = 0 şi L(x) > 0 (resp. L(x) < 0), (∀) x ∈ U \ {xe};

(iii) The derivative of L along the trajectories of the system (2.1.1) is negative
semi-definite (resp. positive semi-definite), that is:

L̇(x) ≤ 0 (resp. L̇(x) ≥ 0), (∀) x ∈ U.

Theorem 2.1.6 [34](Lyapunov) Let xe ∈ D be an equilibrium state for (2.1.1).
(i) If there exists a Lyapunov function L defined on a neighborhood U of xe ∈ D,

then xe is nonlinear stable;
(ii) If there exists a Lyapunov function L ∈ C∞(Rn,R) such that

L̇(x) < 0 (resp. L̇(x) > 0) (∀) x ∈ Rn, x 6= xe,

then xe is asymptotic stable.
The function L satisfying the conditions of Definition 2.1.5 is called Lyapunov func-

tion associated to xe.
We call linear part of the dynamical system (2.1.1) in the equilibrium state xe, the

following system of differential equations:

Ẋ = A(xe)X, where
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A(xe) =




∂f1

∂x1

(xe)
∂f1

∂x2

(xe) . . .
∂f1

∂xn
(xe)

...
... . . .

...

∂fn
∂x1

(xe)
∂fn
∂x2

(xe) . . .
∂fn
∂xn

(xe)



. (2.1.4)

Theorem 2.1.9 (Lyapunov) The equilibrium state xe of the system (2.1.1) is:
(i) asymptotic stable (nonlinear stable), if Re(λi) < 0, for all eigenvalue of the

matrix A(xe), that is it have all eigenvalues with strictly negative reel parts.
(ii) unstable, if Re(λi) > 0, for at least eigenvalue of the matrix A(xe), that is it

has an eigenvalue with strictly positive real part.
Let us we present two practical methods for to determine the nonlinear stability for

a system which admits more first integrals.
Theorem 2.1.12 [19](Energy-Casimir method) Let (Rn, {·, ·}, H) be an Hamilton-

Poisson system, xe an equilibrium state and C a family of first integrals. If there exists
C ∈ C such that the following conditions hold:

(i) D(H + C)(xe) = 0;
(ii) D2(H + C)(xe) is positive (resp. negative) definite,

then xe is nonlinear stable.
Theorem 2.1.14 [3](Arnold’s method) Let be the first integrals C1, ..., Ck ∈

C∞(Rn,R) for the dynamics (2.1.1) and xe an equilibrium point. Let be the functions
Fi ∈ C∞(Rn ×Rk−1,R) given by:

Fi(x, λ1, . . . , λ̂i, . . . , λk) = Ci(x)− λ1C1(x)− . . .− λiĈi(x)− . . .− λkCk(x), i = 1, k,

here Ĉi means that Ci is omitted.
If there exist the constants λ∗1, . . . , λ̂

∗
i , . . . , λ

∗
k ∈ R such that:

(i) ∇xFi(xe, λ
∗
1, . . . , λ̂

∗
i , . . . , λ

∗
k) = 0, for all i = 1, ..., k;

(ii) ∇2
xxFi(xe, λ

∗
1, . . . , λ̂

∗
i , . . . , λ

∗
k)|W×W is positive or negative definite on W ×W ,

where

W =
k⋂

j=1,j 6=i
Ker dCj(xe),

then xe is nonlinear stable.
In certain hypothesis, the existence of periodic orbits for a system of differential

equations can be establish with aid of Moser’s theorem, [36](Moser, 1976).
Theorem 2.1.15 (J. Moser) Let be the system of differential equations

ẋ = f(x), where x ∈ Rn and f ∈ C∞(Rn,Rn). (2.1.5)

If xe is an equilibrium state for the system (2.1.5) such that 0 is not an eigenvalue for
the matrix of linear part of the system (2.1.4) in xe and if there exists K ∈ C∞(Rn,R)
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such that:

(i) K is a first integral; (ii) K(xe) = 0;

(iii) dK(xe) = 0; (iv) d2K(xe) is positive definite,

then for all ε sufficiently small any integral manifold

K(x) = ε2

contains at least one periodic solution whose periods are closed to those of the corre-
sponding linear system in xe.

Lax formulation and integrability

A efficiently method for the study of the integrable dynamical systems is ”Lax
formulation”. The connection between the Lax formulation and the integrability of an
Hamiltonian system is given by the fact that the Lax formulation furnishes first integrals
of dynamical system.

Definition 2.1.16 We say that the dynamical system (2.1.1) admits a Lax formu-
lation Lax, if there exists a pair of matrices (L,B), where L = L(t) and B = B(t) are
matrices of type n× n whose components are functions of class C1 such that

L̇ = [L,B] = LB −BL, where L̇ =
dL

dt
. (2.1.6)

Theorem 2.1.17 (Flaschka’s theorem). The flow of the equations L̇ = [L,B] is
iso-spectral, that is the eigenvalues of the matrix L(t) are independently of t.

If the system (2.1.5) has the Lax formulation (2.1.6), then the eigenvalues of the
matrix L(t) are constants of motion (Remarks 2.1.18, 2.1.19).

Sometimes, the motion equations of some dynamical systems cannot be integrated
by elementary functions. Their solutions can be expressed with elliptic functions ([31]).

Numerical methods for the approximation of solution of a dynamical system

The geometric integrators are methods of numerical integration for simulation on
computer of dynamical processes described by differential equations. The geometric
integrators preserves the properties of the system (energy, symplectic structure, volume).

Let (Rn,Π, H) be an Hamilton-Poisson system whose dynamics is described by the
system of differential equations:

ẋ = Π(x) · ∇H(x), x ∈ Rn. (2.1.7)

Definition 2.1.20 By a (geometric) integrator on Rn, we mean a family of smooth
maps ϕt : Rn → Rn, which differentiable depends by t ∈ R; ϕt is said to be:
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(i) Poisson integrator if the relation holds:

(Dϕt(x))T · Π(x) ·Dϕt(x) = Π(ϕt(x)), (∀) x ∈ Rn;

(ii) energy-integrator if it preserves the energy H of the system (2.1.7), i.e.

H(ϕt(x)) = H(x);

(iii) Casimir integrator if preserves a Casimir C ∈ C∞(Rn,R), i.e.

C(ϕt(x)) = C(x);

(iv) if n = 2m and ω is a symplectic form on R2m, then the integrator {ϕt} is called
symplectic integrator, if:

ϕ∗tω = ω, (∀) t ∈ R, or equivalent

(Dϕt(x))T · Πcan ·Dϕt(x) = Πcan, where Πcan =

(
0 Im
−Im 0

)
. �

For a given integrator we shall use the notation

xk+1 = ϕt(x
k), where xk(t) = x(kt), k ∈ N.

We present now two geometric integrators which are used in this work.

Lie-Trotter integrator. Let (Rn,Π, H) be an Hamilton-Poisson system. The Lie-
Trotter integrator ([51]) is applied when H can be written in the form:

H = H1 +H2,

such that the generated dynamics by H1 and H2 may be explicitly integrated.
Let exp(tXH1) (resp. exp(tXH2)) be the integral curve associated to vector field XH1

(resp. XH2). Then the Lie-Trotter integrator ([17]) is given by the formula:

ϕt(x) = exp(tXH2)exp(tXH1)(x) = exp(tXH)(x) +O(t2). (2.1.8)

Proposition 2.1.21 ([45]) The Lie-Trotter integrator (2.1.8) has the following
properties:

(i) ϕt is a Poisson integrator;
(ii) the restriction to symplectic foliation of the Poisson vector space (Rn,Π) defines

a symplectic integrator.
Kahan integrator. Let be the system of differential equations:

ẋ = X(x), x(0) = x0, x ∈ Rn, (2.1.9)
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with property that X is greatest quadratic in x, that is:

X(x) = A(x, x) + Bx+ b,

A(·, ·) is a symmetric tensor, B is a matrix, and b is a constant vector.
The Kahan integrator ([26]) for (2.1.9) is given by:

xk+1 − xk
h

= A(xk+1, xk) +B
xk+1 + xk

2
+ b, h ∈ R+. (2.1.10)

2.2 Dynamics of the general Euler top system

In this paragraph are studied various geometrical and dynamical properties of the
Euler top system, stability problem, the link between the dynamics Euler top and the
dynamics of pendulum and numerical integration problem. Original contributions are
contained in Section 2.2.3 and these was published in the cited paper [50] (Şuşoi, 2010).

The general Euler top system is described by a family of differential equations on R3

which depends by a triple of reel parameters. A remarkable representant is the free rigid
body [35]. For different values given of parameters one obtains dynamical systems, for
example: Lagrange system [48](Takhtajan, 1994), the equations of underwater vehicle
dynamics [20], Rabinovich system [12](Chiş and Puta, 2008) etc.

2.2.1 Poisson geometry of the Euler top system

The (general) Euler top system is described by the following set of differential equa-
tions on R3 ([41]):

dx1

dt
= α1x2(t)x3(t),

dx2

dt
= α2x1(t)x3(t),

dx3

dt
= α3x1(t)x2(t), (2.2.1)

where α1, α2, α3 ∈ R are parameters such that α1α2α3 6= 0 and t is the time.

Remark 2.2.1 For α1 =
1

I3

− 1

I2

, α2 =
1

I1

− 1

I3

, α3 =
1

I2

− 1

I1

[respectively,

α1 =
1

m3

− 1

m2

, α2 =
1

I1

, α3 = − 1

I1

], the system (2.2.1) reduces to equations of free

rigid body (1.4.1) [respectively, equations (1.4.4) of underwater vehicle dynamics]. �
If in (2.2.1) we replace the parameters αi with the corresponding values one obtains:

ẋ1 = x2x3, ẋ2 = −x3x1, ẋ3 = −k2x1x2, cu 0 < k2 < 1. (2.2.2)

(equations of Tzitzeica-Lorentz gradient flow [15]);

ẋ1 = x2x3, ẋ2 = −x1x3, ẋ3 = x1x2 (Rabinovich system); (2.2.3)
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ẋ1 = x2x3, ẋ2 = x1x3, ẋ3 = x1x2 (Lagrange system). (2.2.4)

We denote the vector of parameters involved in (2.2.1) with α = (α1, α2, α3).
Consider the functions Hα, Cα ∈ C∞(R3,R) given by:

Hα(x1, x2, x3) =
1

2
(α2x

2
1 − α1x

2
2) and Cα(x1, x2, x3) =

1

2
(
α3

α2

x2
2 − x2

3). (2.2.5)

Proposition 2.2.2 The functions Hα and Cα given by (2.2.5), are constant of mo-
tion (first integrals) for the dynamics (2.2.1).

Proposition 2.2.3 An Hamilton-Poisson realization of the Euler top system (2.2.1)
is (R3, P α, Hα) with the Casimir Cα, where Hα, Cα are given by (2.2.5), and Pα is:

Pα =




0 −x3 −α3

α2
x2

x3 0 0

α3

α2
x2 0 0


 . (2.2.6)

The Poisson geometry of the system (2.2.1) is generated by a matrix of se(2)−type.
Remark 2.2.5 Since Hα and Cα are first integrals, it follows that: the trajectories

of motion of the Euler top system are intersections of the surfaces:

1

2
(α2x

2
1 − α1x

2
2) = constant and

1

2
(
α3

α2

x2
2 − x2

3) = constant. �

Define the functions Cα
ab, H

α
cd ∈ C∞(R3,R) given by:

Cα
ab = aCα + bHα, Hα

cd = cCα + dHα, a, b, c, d ∈ R that is (2.2.7)




Cα
ab(x1, x2, x3) =

1

2

(
bα2x

2
1 + (a

α3

α2

− bα1)x2
2 − ax2

3

)

Hα
cd(x1, x2, x3) =

1

2

(
dα2x

2
1 + (c

α3

α2

− dα1)x2
2 − cx2

3

) (2.2.8)

Proposition 2.2.6 The Euler top system (2.2.1) has an infinite number of Hamilton-
Poisson realizations. More precisely, (R3, {·, ·}αab, Hα

cd), where:

{f, g}αab = −∇Cα
ab · (∇f ×∇g), (∀)f, g ∈ C∞(R3,R) (2.2.9)

and a, b, c, d ∈ R such that ad− bc = 1, is an Hamilton-Poisson realization.
The Poisson structure given by (2.2.9) is generated by the matrix

Pα
ab =




0 ax3 (a
α3

α2

− bα1)x2

−ax3 0 −bα2x1

−(a
α3

α2

− bα1)x2 bα2x1 0


 ,
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and Cα
ab is a Casimir for the configuration (R3, {·, ·}αab).

Remark 2.2.8 Proposition 2.2.6 assures that the equations (2.2.1) are invariant, if
Hα and Cα are replaced by linear combinations with coefficients modulo SL(2,R). In
consequence, the trajectories of motion of the Euler top system remain unchanged. �

If in Proposition 2.2.3 are replaced αi with corresponding values we obtains Hamilton-
Poisson realizations for the systems (1.4.1), (1.4.4), (2.2.2), (2.2.3) and (2.2.4) ( Corollary
2.2.9).

Remark 2.2.10 The Euler equations of the free rigid body (1.4.1) have two Hamilton-
Poisson realizations, namely: the first of so(3)−type and the second of se(2)−type.

The systems (2.2.2)− (2.2.4) have Hamilton-Poisson realizations of se(2)−type. �
For certain restrictions on parameters αi, the motion of Euler top system reduces to

motion on the surface described by the conservation law:

x2
1 −

α1

α2

x2
2 = 2H, where H = constant. (2.2.10)

More precisely: if α1α2 < 0, then the dynamics of Euler top system (2.2.1) can be
reduced to pendulum dynamics (Proposition 2.2.11)

The solutions of Euler top system restricted to constant level surface (2.2.10) are:

x1(t) =
√

2H · cos
θ(t)

2
, x2(t) =

√
2H

√
−α2

α1

· sin θ(t)
2
, x3(t) =

1

2α2

√
−α2

α1

· θ̇(t),

where θ is a solution of the pendulum equation:

θ̈(t) = 2Hα2α3 · sin θ(t).

Since the pendulum equation may be integrated by elliptic functions ([31]), it follows
that the solutions of Euler top system restricted to the surface (2.2.10) can be written
using elliptic functions (a similar result obtain in the case α2α3 < 0).

2.2.2 Stability problem for the Euler top dynamics

The equilibrium states of the Euler top system (2.2.1) are
e0 = (0, 0, 0), em1 = (m, 0, 0), em2 = (0,m, 0) and em3 = (0, 0,m) for all m ∈ R∗.

In Proposition 2.2.14 is established the nature of spectral stability for the equilib-
rium states of Euler top system. We get the following results:

− em1 , m ∈ R∗ is spectrally stable if α2α3 < 0 and unstable if α2α3 > 0;

− em2 , m ∈ R∗ is spectrally stable if α1α3 < 0 and unstable if α1α3 > 0;

− em3 , m ∈ R∗ is spectrally stable if α1α2 < 0 and unstable if α1α2 > 0;

− e0 is spectrally stable.
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Indeed, the matrix of the linear part of the system (2.2.1) is

A(x) =




0 α1x3 α1x2

α2x3 0 α2x1

α3x2 α3x1 0


 .

The characteristic polynomial of the matrix A(em1 ) is pA(em1 )(λ) = −λ(λ2−α2α3m
2)

which has the roots λ1 = 0, λ2,3 = ±m√α2α3.
We have λ1 = 0 and λ2,3 = ±m√α2α3, if α2α3 > 0 and λ2,3 = ±im√−α2α3, if

α2α3 < 0. Then, by Theorem 2.1.9 (Lyapunov), it follows that em1 is spectrally stable
for α2α3 < 0 and unstable for α2α3 > 0.

We replace in Proposition 2.2.2 the parameters αi with the corresponding values
and one obtains the spectral stability of the equilibrium states for Lagrange system etc.
(Corollary 2.2.15).

Proposition 2.2.16 If α1α2 < 0 (resp. α1α3 < 0; resp. α2α3 < 0), then the state
e0 of Euler top system (2.1.1) is nonlinear stable.

For demonstration it is easy to prove that Lα is a Lyapunov function, where

Lα(x1, x2, x3) =
1

2
(α2x

2
1 − α1x

2
2).

In the following propositions is studied nonlinear stability of the equilibrium states
em1 (if α2α3 < 0), em2 (if α1α3 < 0) and em3 (if α1α2 < 0), where m ∈ R∗.

Proposition 2.2.17 If α1α2 < 0, then em3 , m ∈ R∗, is nonlinear stable.
Proof. Let the function Fα

λ ∈ C∞(R3,R), λ ∈ R, given by:

Fα
λ (x1, x2, x3) = Hα(x1, x2, x3)− λCα(x1, x2, x3), that is

Fα
λ (x1, x2, x3) =

1

2

(
α2x

2
1 − α1x

2
2

)− λ

2

(
α3

α2

x2
2 − x2

3

)
.

Then we have successively:
(i) ∇Fα

λ (em3 ) = 0 if and only if λ = 0;

(ii) W := ker dCα(em3 ) = spanR

(
(1, 0, 0)T , (0, 1, 0)T

)
;

(iii) For all v ∈ W , i.e. v = (a, b, 0)T , a, b ∈ R, follows:

vT · ∇2Fα
0 (em3 ) · v = α2a

2 − α1b
2

ant so ∇2Fα
0 (em3 )

∣∣∣
W×W

is pozitive definite if α1 < 0, α2 > 0 and negative definite if

α1 > 0, α2 < 0 .
Therefore via Arnold’s method (Theorem 2.1.14), we conclude that em3 , is nonlinear

stable. �
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In Propositions 2.2.18, 2.2.19 one prove that:
− if α1α3 < 0 (resp., α2α3 < 0 ), then em2 , m ∈ R∗ (resp., em1 , m ∈ R∗), is

nonlinear stable.
As consequences of the above propositions obtain nonlinear stability of equilibrium

states for the systems (1.4.1), (1.4.4), (2.2.1)− (2.2.3) (Corollary 2.2.20).

2.2.3 Numerical integration of the Euler top system

We shall discuss the numerical integration of the Euler top dynamics (2.2.1), using
the Lie-Trotter integrator [51] and Kahan integrator[26]. The results included in this
section was published in the cited paper [50] (Şuşoi, 2010).

The vector field XHα associated to Hamiltonian Hα of the dynamics (2.2.1) reads:

XHα = XHα
1

+XHα
2
, where

Hα
1 (x1, x2, x3) =

1

2
α2x

2
1, Hα

2 (x1, x2, x3) = −1

2
α1x

2
2.

The corresponding integral curves are, respectively, given by:

X(t) = Ai ·X(0), i = 1, 2,

where X(t) = (x1(t), x2(t), x3(t))T and Ai is the matrix of operator exp(tXHα
i
), i = 1, 2.

Determine the matrix A1 of operator exp(tXHα
1
). We have

Ẋ = Pα · ∇Hα
1 = AX where A =




0 0 0
0 0 α2a
0 α3a 0


 and a = x1(0).

The characteristic polynomial of the matrix At is pAt(λ) = −λ(λ2 − α2α3a
2t2). If

α2α3 < 0, then the roots of polynomial pAt(λ) are λ1 = 0 and λ2,3 = ±iat√−α2α3 =
±iaγt, where γ =

√−α2α3. We have

exp(At) = I3 + sin γat
γa
· A+ 1−cos γat

γ2a2 · A2 = A1, where

A1 =




1 0 0

0 cos(aγt) α2

γ
sin(aγt)

0 α3

γ
sin(aγt) cos a(γt)


 , a = x1(0).

In the same manner one determine the matrix A2 of operator exp(tXα
H2

) and we
have:

A2 =




1 0 bα1t

0 1 0

0 0 1


 , b = x2(0).
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Then via [51], the Lie-Trotter integrator is given by:

X(n+ 1) = A1A2X(n). (2.2.11)

Proposition 2.2.21 If α2α3 < 0 and γ =
√−α2α3, then the Lie-Trotter integrator

of Euler top dynamics (2.2.1) is given by:





x1(n+ 1) = x1(n) + tα1x2(0) · x3(n)
x2(n+ 1) = cos(tγx1(0)) · x2(n) + α2

γ
sin(tγx1(0)) · x3(n)

x3(n+ 1) = α3

γ
sin(tγx1(0)) · x2(n) + cos(tγx1(0)) · x3(n)

(2.2.12)

Proposition 2.2.22 The Lie-Trotter integrator (2.2.12) has the following properties:
(i) it is a Poisson integrator; (ii) it is a Casimir integrator;
(iii) it doesn’t a energy-integrator.
Applying Proposition 2.2.21 one obtain successively the Lie-Trotter integrator for

the systems (1.4.4), (2.2.2) and (2.2.3) (Corollaries 2.2.23-2.2.25).
Proposition 2.2.26 For the Euler top system (2.2.1), the Kahan integrator is given

by the system of recurrent equations:




xk+1
1 − xk1 = hα1

2
(xk+1

2 xk3 + xk+1
3 xk2),

xk+1
2 − xk2 = hα2

2
(xk+1

1 xk3 + xk+1
3 xk1), where xk = x0 + k · h.

xk+1
3 − xk3 = hα3

2
(xk+1

2 xk1 + xk+1
1 xk2),

(2.2.13)

Remark 2.2.27 Replacing in (2.2.13) the parameters αi with corresponding values
one obtain the Kahan integrator for the systems (1.4.1), (1.4.4), (2.2.2)− (2.2.4).

2.3 Metriplectic Euler top system

In this paragraph we study the geometrical and dynamical properties of the metriplec-
tic Euler top system. The content of the last two sections focuses on the author’s results
contained in the cited paper [49] (Şuşoi and M. Ivan, 2009).

In Section 2.3.1 one presents notions and results concerning the metriplectic systems
[40] (Ortega and Plannas-Bielsa, 2004), [22](Gh. Ivan and Opriş, 2006). In Section 2.3.2
we construct the metriplectic structure associated to Euler top system. Section 2.3.3 is
dedicated to study of spectral stability for the metriplectic Euler top system.

First present the construction of the metriplectic system associated to a
Hamilton-Poisson system (Section 2.3.1).

A Leibniz bracket on the differential manifold M of dimension n, is a bilinear map
[·, ·] : C∞(M)× C∞(M)→ C∞(M) which satisfies the Leibniz rules :

[fg, h] = [f, h]g + f [g, h] and [f, gh] = [f, g]h+ g[f, h], f, g, h ∈ C∞(M).
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A Leibniz manifold is a pair (M, [·, ·]), where [·, ·] is a Leibniz bracket.
Let P and g two 2−contravariant tensor fields on M . Define the map [·, (·, ·)] :

C∞(M)× (C∞(M)× C∞(M))→ C∞(M) given by:

[f, (h1, h2)] = P (df, dh1) + g(df, dh2), (∀) f, h1, h2 ∈ C∞(M). (2.3.1)

One prove that the map [[·, ·]] : C∞(M)× C∞(M)→ C∞(M) given by:

[[f, h]] = [f, (h, h)], (∀) f, h ∈ C∞(M), (2.3.2)

is a Leibniz bracket and (M,P,g, [[·, ·]]) is a Leibniz manifold.
A Leibniz manifold (M,P,g, [[·, ·]]) such that P is a skew-symmetric tensor and g is

a symmetric tensor is called metriplectic manifold.
Let (M,P,g, [[·, ·]]) be a metriplectic manifold. In the paper [22] was proved that ,

if there exist the functions h1, h2 ∈ C∞(M) such that P (df, dh2) = 0 and g(df, dh1) = 0
for all f ∈ C∞(M), then the bracket [[·, ·]] given by (2.3.2) satisfy the relation:

[[f, h1 + h2]] = [f, (h1, h2)], (∀) f ∈ C∞(M). (2.3.3)

In these hypothesis, the vector field Xh1h2 given by:

Xh1h2(f) = [[f, h1 + h2]] (∀) f ∈ C∞(M), (2.3.4)

is called the Leibniz field associated to pair (h1, h2) on M.
Applying the relations (2.3.1)− (2.3.3), it follows that Xh1h2 is given by:

Xh1h2(f) = P (df, dh1) + g(df, dh2), (∀) f ∈ C∞(M). (2.3.5)

In local coordinates (xi), i = 1, n on M , the following system:

ẋi = Xh1h2(xi) = P ij ∂h1

∂xj
+Gij ∂h2

∂xj
, i, j = 1, n, (2.3.6)

with P ij = P (dxi, dxj) şi Gij = g(dxi, dxj), is called metriplectic system on M associ-
ated to field Xh1h2 with the bracket [[·, ·]].

We present now a method to obtain metriplectic systems which consist in adding of
a dissipation therm to an Hamilton-Poisson system [10] (Birtea, Puta et al,, 2007).

Let {·, ·} be a Poisson structure on Rn generated by the skew-symmetric matrix
P = (P ij), a function H ∈ C∞(Rn) and C1, . . . , Ck ∈ C∞(Rn) a complete set of
functionally independent Casimir functions. Let G be a smooth function from Rn to
the vector space of symmetric matrices of type n× n.
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Definition 2.3.1([10])A metriplectic system on Rn is a system of differential equa-
tions of the following form:

ẋ(t) = P (x(t)) · ∇H(x(t)) +G(x(t)) · ∇ϕ(C1, . . . , Ck)(x(t)), (2.3.7)

where ϕ ∈ C∞(Rk) such that the following conditions hold:

(i) P (x) · ∇Ci(x) = 0, i = 1, k, (ii) G(x) · ∇H(x) = 0;

(iii) (∇C̃(x))T ·G(x) · ∇C̃(x)) ≤ 0, where C̃ = ϕ(C1, . . . , Ck). �
The metriplectic system (2.3.7), denoted with (Rn, P,H,G, C̃), can be regarded as

a ”perturbation” of the Hamilton-Poisson system

ẋ(t) = P (x(t)) · ∇H(x(t))

with the dissipation therm G(x) · ∇ϕ(C1, . . . , Ck)(x). We say that metriplectic system
(2.3.7) is associated to Hamilton-Poisson system (Rn, P,H).

If (Rn, P,H) is a Hamilton-Poisson system, then we determine a symmetric tensor
g on Rn, generated by the matrix G = (Gij), where:

Gii(x) = −
n∑

k=1, k 6=i
(
∂h1

∂xk
)2 and Gij(x) =

∂h1

∂xi
∂h1

∂xj
, for i 6= j. (2.3.8)

Definition 2.3.3 A differential system on Rn of the form:

ẋi = ϕi(x1, x2, ..., xn), where ϕi ∈ C∞(Rn), i = 1, n (2.3.9)

has a metriplectic realization on Rn, if there exists a metriplectic structure (Rn, P,H,G, C̃)
such that (2.3.9) can be written in the form (2.3.7).

As illustrative example we construct the metriplectic system associated to
Euler top system (2.2.1) (Section 2.3.2). For this we use the Hamilton-Poisson real-
ization (R3, P α, Hα) given in Proposition 2.2.3.

We apply now the relations (2.3.8) for h1 = Hα ∈ C∞(R3) given by (2.2.5).
The symmetric tensor g is generated by the matrix Gα = (Gij

α ), where

Gα =




−α2
1x

2
2 −α1α2x1x2 0

−α1α2x1x2 −α2
2x

2
1 0

0 0 −α2
2x

2
1 − α2

1x
2
2


 . (2.3.10)

We consider H = Hα and C = Cα given by the relations (2.2.5), the skew-symmetric
tensor P = Pα given by (2.2.6) and the symmetric tensor g given by (2.3.10).
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For the function C̃α = βCα with β ∈ R, the dynamical system (2.3.7) reads:





ẋ1 = α1x2(x3 − βα3x1x2)
ẋ2 = α2x1(x3 − βα3x1x2)
ẋ3 = α3x1x2 + βx3(α2

2x
2
1 + α2

1x
2
2)

(2.3.11)

Proposition 2.3.4 (R3, P α, Hα, Gα, C̃α) is a metriplectic realization for (2.3.11).
The system (2.3.11) is called the metriplectic Euler top system.
If β = 0, the system (2.3.11) reduces to Hamilton-Poisson system (2.2.1).
Proposition 2.3.6 The function Hα given by (2.2.5) is a constant of motion of the

metriplectic system (2.3.11).

For β 6= 0, C̃α = βCα is not a constant of motion for (2.3.11).
If in (2.3.11) we take α = (1, 1, 1), one obtain the metriplectic Lagrange system:

ẋ1 = x2x3 − βx1x
2
2, ẋ2 = x1x3 − βx2

1x2, ẋ3 = x1x2 + βx3(x2
1 + x2

2). (2.3.12)

Finally we deal with the study of spectral stability for the dynamics (2.3.11)
(Section 2.3.3).

The Euler top system (2.2.1) and metriplectic Euler top system (2.3.11) have the
same equilibrium states.

Proposition 2.3.10 (i) For β 6= 0, the equilibrium states em1 , m ∈ R∗ of metriplec-
tic system (2.3.11), have the following behavior:

(1) if βα2(α2 − α3) ≤ 0 , then em1 is spectrally stable;

(2) if βα2(α2 − α3) > 0, then em1 is unstable.
(ii) For β = 0, the equilibrium state em1 , m ∈ R∗ of Euler top system (2.2.1), is

spectrally stable if α2α3 < 0 and unstable if α2α3 > 0.
Proposition 2.3.11 (i) For all β 6= 0, the equilibrium states em2 , m ∈ R∗ of

metriplectic system (2.3.11), have the following behavior:

(1) if βα1(α1 − α3) ≤ 0 , then em2 is spectrally stable;

(2) if βα1(α1 − α3) > 0, then em2 is unstable.
(ii) For β = 0, the equilibrium state em2 , m ∈ R∗ of Euler top system (2.2.1), is

spectrally stable if α1α3 < 0 and unstable if α1α3 > 0.
Proposition 2.3.12 (i) For all β ∈ R∗ and m ∈ R, the equilibrium state em3 of the

system (2.3.11) is spectrally stable if α1α2 < 0 and unstable if α1α2 > 0.
(ii) For all β ∈ R, the equilibrium state e0 = (0, 0, 0) is spectrally stabile.
Corollary 2.3.13 (i) If β 6= 0 and m ∈ R∗, then e0, e

m
1 , e

m
2 of metriplectic Lagrange

system (2.3.13), are spectrally stable and em3 , m ∈ R∗ is unstable.
(ii) For β = 0, the states em1 , e

m
2 , e

m
3 for m ∈ R∗ of Lagrange system (2.2.4) are

unstable and e0 is spectrally stable.
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Chapter 3

Two classical dynamical systems on
R6

In this chapter one establish some important geometrical and dynamical properties
for two remarkable differential systems on R6, namely: the Goryachev-Chaplygin top
system and the Kowalevski top system. The chapter is structured in three paragraphs.
Original contributions of the author are contained in the last two paragraphs.

3.1 Lie-Poisson structure on the dual of Lie algebra

se(3)

Let SE(3,R) = SO(3) ×R3− be the special Euclidean group of order 3. This is a
Lie group with Lie algebra se(3,R) which it can identified with so(3)×R3, [2](Andrica
and Caşu, 2008). We have:

se(3,R) = {
(
x̂ y
0 0

)
| x̂ ∈ so(3), y ∈ R3}, x̂ =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 . (3.1.1)

The plus-minus Lie-Poisson structures on the dual (se(3,R))∗ of Lie algebra se(3,R)
are generated by the matrices Πe3,−, respectively Πe3,+ (Proposition 3.1.3).

3.2 Study of the dynamics Goryachev- Chaplygin

top

In Paragraph 3.2 gives an Hamilton-Poisson realization of the dynamics Goryachev-
Chaplygin top (3.2.1) and studies the Lax formulation, stability problem, existence
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of periodic solutions and numerical integration. This paragraph contains the original
contributions and these was published in [5] (Aron, Puta and Şuşoi, 2005).

The Goryachev- Chaplygin top (or shorter, G-C top) was introduced by Goryachev
in 1900 ([16]) and was integrated in terms of hyper-elliptic integrals by Chaplygin in
1948 ([11]). G-C top is a rigid body rotating about a fixed point with principal moments
of inertia I1, I2, I3 satisfying I1 = I2 = 4I3 = I, and with center of mass lying in the
equatorial plane. For simplicity, we consider I = 1.

The dynamical variables are components m1,m2,m3 of angular momentum and com-
ponents γ1, γ2, γ3 of the center mass vector in the system related to the principal axes
of the body.

The dynamics of Goryachev-Chaplygin top is described by the differential system:

{
ṁ1 = 3m2m3, ṁ2 = −3m1m3 − 2γ3, ṁ3 = 2γ2,
γ̇1 = 4γ2m3 − γ3m2, γ̇2 = γ3m1 − 4γ1m3, γ̇3 = γ1m2 − γ2m1.

(3.2.1)

Proposition 3.2.1 An Hamilton-Poisson realization of (3.2.1) is (R6,Π, H), where

Π =




0 −m3 m2 0 −γ3 γ2

m3 0 −m1 γ3 0 −γ1

−m2 m1 0 −γ2 γ1 0

0 −γ3 γ2 0 0 0

γ3 0 −γ1 0 0 0

−γ2 γ1 0 0 0 0




, (3.2.2)

H(m1,m2,m3, γ1, γ2, γ3) =
1

2
(m2

1 +m2
2 + 4m2

3)− 2γ1 (3.2.3)

The Poisson structure generated by the matrix Π on R6 is in fact the minus Lie-
Poisson structure on (se(3,R))∗ ∼= R6 generated by the matrix Πe3,−.

Proposition 3.2.3 The configuration (R6,Π) has the Casimirs C1, C2 ∈ C∞(R6,R):

C1(m, γ) = m1γ1 +m2γ2 +m3γ3, C2(m, γ) =
1

2
(γ2

1 + γ2
2 + γ2

3).

The functions H,C1, C2 ∈ C∞(R6,R) are constants of motion for (3.2.1).
Remark 3.2.5 On co-adjoint orbit (O0,1, ωO0,1) , where

O0,1 = {(m, γ) ∈ R6 |
{
m1γ1 +m2γ2 +m3γ3 = 0

γ2
1 + γ2

2 + γ2
3 = 2

}

ωO0,1 =
1

2γ3

(dm2 ∧ dγ1 − dm1 ∧ dγ2) +
m3

2γ2
3

dγ1 ∧ dγ2,
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the system (3.2.1) has another first integral, namely:

K(m, γ) = m3(m2
1 +m2

2) + 2m1γ3. (3.2.4)

Moreover, the Hamiltonian system (O0,1, ωO0,1 , H) is completely integrable with both
independent first integrals in involution H and K.

G-C top system and Lax formulation

Proposition 3.2.6 The Dynamics G-C top (3.2.1) has a Lax formulation, that is:

L̇ = [L,B], where

L =




0 m2 − im1 m1 + im2 0 0 0 0 0 0

−m2 + im1 0 −1 0 0 0 0 0 0

−m1 − im2 1 0 0 0 0 0 0 0

0 0 0 0 −im3 m3 0 0 0

0 0 0 im3 0 −1 0 0 0

0 0 0 −m3 1 0 0 0 0

0 0 0 0 0 0 0 γ3 γ1

0 0 0 0 0 0 −γ3 0 γ2

0 0 0 0 0 0 −γ1 −γ2 0




and

B =




0 −2iγ3 2γ3 0 0 0 0 0 0

2iγ3 0 3m3 0 0 0 0 0 0

−2γ3 −3m3 0 0 0 0 0 0 0

0 0 0 0 2γ2 2iγ2 0 0 0

0 0 0 −2γ2 0 0 0 0 0

0 0 0 −2iγ2 0 0 0 0 0

0 0 0 0 0 0 0 −4m3 −m1

0 0 0 0 0 0 4m3 0 −m2

0 0 0 0 0 0 m1 m2 0




.

Corollary 3.2.7 The flow of the dynamics G-C top (3.2.1) is iso-spectral.

Stability problem and periodic solutions for the dynamics (3.2.1)
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Proposition 3.2.8 The dynamics G-C top has the following equilibrium states:

e12 = (M,N, 0, 0, 0, 0), e14 = (M, 0, 0, N, 0, 0), e1346 = (M, 0, N,−3M2

8
, 0,−3MN

2
),

for all M,N ∈ R.
In Propositions 3.2.9 - 3.2.11 is studied the spectral stability of equilibrium states

for the dynamics (3.2.1). These states have the following behavior:

− e1346 is spectrally stable if M2 < 2N2, and unstable if M2 ≥ 2N2;

− e14 is spectrally stable if N > 0, and unstable if N ≤ 0;

− e12,M,N ∈ R is spectrally stable.
Nonlinear stability of states e14 and e1346 is analyzed in the following propositions.
Proposition 3.2.12 e14 for M,N ∈ R, N > 0, is nonlinear stable.
Proposition 3.2.13 e1346 is nonlinear stable, if M,N ∈ R,M2 < 2N2,M < 0.
Remark 3.2.14. It is an open problem to decide the nonlinear stability for the

equilibrium states e12,M,N ∈ R and e1346,M,N ∈ R,M2 < 2N2,M ≥ 0.
The system (3.2.1) reduced to the co-adjoint orbit OM,N , where

OM,N = {(m, γ) ∈ R6 |
{
m1γ1 +m2γ2 +m3γ3 = MN

γ2
1 + γ2

2 + γ2
3 = N2

}

gives rise to a classical Hamiltonian system. Then the following proposition holds.
Proposition 3.2.15 Near to e14,M,N ∈ R, N > 0, the reduced system has for each

sufficiently small value of the reduced energy at least two periodic solutions.

Numerical integration of the dynamics (3.2.1)

We shall discuss the numerical integration of the dynamics G-C top, using the Lie-
Trotter integrator ([51]).

The vector field XH associated to Hamiltonian H of the dynamics (3.2.1) splits as:

XH = XH1 +XH2 +XH3 +XH4 , where

H1(m, γ) =
1

2
m2

1, H2(m, γ) =
1

2
m2

2, H3(m, γ) = 2m2
3, H4(m, γ) = −2γ1.

Their corresponding integral curves are respectively given by:




m1(t)
m2(t)
m3(t)
γ1(t)
γ2(t)
γ3(t)




= Ai ·




m1(0)
m2(0)
m3(0)
γ1(0)
γ2(0)
γ3(0)



,
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where Ai is the matrix of operator exp(tXHi), for i = 1, 4.
Determine the matrix Ai of operator exp(tXHi) for i = 1, 4 and we obtains:

A1 =




1 0 0 0 0 0

0 cosm1(0)t sinm1(0)t 0 0 0

0 − sinm1(0)t cosm1(0)t 0 0 0

0 0 0 1 0 0

0 0 0 0 cosm1(0)t sinm1(0)t

0 0 0 0 − sinm1(0)t cosm1(0)t




, (3.2.5)

A2 =




cosm2(0)t 0 − sinm2(0)t 0 0 0

0 1 0 0 0 0

sinm2(0)t 0 cosm2(0)t 0 0 0

0 0 0 cosm2(0)t 0 − sinm2(0)t

0 0 0 0 1 0

0 0 0 sinm2(0)t 0 cosm2(0)t




, (3.2.6)

A3 =




cos 4m3(0)t sin 4m3(0)t 0 0 0 0

− sin 4m3(0)t cos 4m3(0)t 0 0 0 0

0 0 1 0 0 0

0 0 0 cos 4m3(0)t sin 4m3(0)t 0

0 0 0 − sin 4m3(0)t cos 4m3(0)t 0

0 0 0 0 0 1




, (3.2.7)

A4 =




1 0 0 0 0 0

0 1 0 0 0 −2t

0 0 1 0 2t 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




. (3.2.8)

Then via [51], the Lie-Trotter integrator is given by:




mn+1
1

mn+1
2

mn+1
3

γn+1
1

γn+1
2

γn+1
3




= A1A2A3A4




mn
1

mn
2

mn
3

γn1
γn2
γn3



, (3.2.9)
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where Ai, i = 1, 4 are given by the relations (3.2.5) - (3.2.8).
Proposition 3.2.16 The Lie-Trotter integrator (3.2.9) has the following properties:
(i) it is a Poisson integrator and it preserves the Casimirs C1, C2.
(ii) it doesn’t preserve the Hamiltonian H.
Proposition 3.2.17 The restriction of the Lie-Trotter integrator to the generic co-

adjoint orbits:
m1γ1 +m2γ2 +m3γ3 = constant and γ2

1 + γ2
2 + γ2

3 = constant
give rise to a symplectic integrator.

3.3 Study of the dynamics Kowalevski top

The contents of this paragraph is based on the author’s results contained in [6] (Aron,
Puta, Şuşoi et al., 2006).

The Kowalevski top [30] (Kowalevski, 1989) is a rigid body rotating about a fixed
point with principal moments of inertia I1, I2, I3 satisfying I1 = I2 = 2I3 = I, and with
center of mass lying in the equatorial plane. For simplicity, we consider I = 1.

The dynamics Kowalevski top is described by the differential system:




ṁ1 = m2m3, ṁ2 = −m1m3 − 1

2
γ3, ṁ3 =

1

2
γ2,

γ̇1 = 2γ2m3 − γ3m2, γ̇2 = γ3m1 − 2γ1m3, γ̇3 = γ1m2 − γ2m1.
(3.3.1)

Proposition 3.3.1 (R6,Π, H) is an Hamilton-Poisson realization for (3.3.1), where

Π =




0 −m3 m2 0 −γ3 γ2

m3 0 −m1 γ3 0 −γ1

−m2 m1 0 −γ2 γ1 0

0 −γ3 γ2 0 0 0

γ3 0 −γ1 0 0 0

−γ2 γ1 0 0 0 0




, (3.3.2)

H(m1,m2,m3, γ1, γ2, γ3) =
1

2
(m2

1 +m2
2 + 2m2

3 − γ1) (3.3.3)

Proposition 3.3.2 The configuration (R6,Π) has the Casimirs C1, C2 ∈ C∞(R6,R):

C1(m, γ) = m1γ1 +m2γ2 +m3γ3, C2(m, γ) =
1

2
(γ2

1 + γ2
2 + γ2

3). �
One prove that:

− H,C1, C2 ∈ C∞(R6,R) are constants of motion for (3.3.1)( Proposition 3.3.3);
− the dynamics Kowalevski top (3.3.1) has a Lax formulation and the flow of the
dynamics Kowalevski top is iso-spectral (Proposition 3.3.4, Corollary 3.3.5).
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Stability problem and the existence of periodic solutions. The dynamics
Kowalevski top has the following equilibrium states:

e12 = (M,N, 0, 0, 0, 0), e14 = (M, 0, 0, N, 0, 0), e1346 = (M, 0, N,M2, 0,−2MN),
for all M,N ∈ R (Proposition 3.3.6).

In Propositions 3.3.7− 3.3.11 one studies the stability problem and we find that:
− e12,M,N ∈ R is spectrally stable;
− e1346 is nonlinear stable if M2 < 2N2,M < 0 and unstable if M2 ≥ 2N2;
− e14 is nonlinear stable if M,N ∈ R, N > 0, and unstable if N ≤ 0.
Remark 3.3.12 It is an open problem to decide stability for the equilibrium states

e12,M,N ∈ R and e1346,M,N ∈ R,M2 < 2N2,M ≥ 0. �
The system (3.3.1) reduced to co-adjoint orbit OM,N , where

OM,N = {(m, γ) ∈ R6 |
{
m1γ1 +m2γ2 +m3γ3 = MN

γ2
1 + γ2

2 + γ2
3 = N2

}

gives rise to a classical Hamiltonian system. Then the following proposition holds.
Proposition 3.3.13 Near e14,M,N ∈ R, N > 0, the reduced system has for each

sufficiently small value of the reduced energy at least two periodic solutions.
Numerical integration of the dynamics (3.3.1) is realized by two methods.
The Lie-Trotter integrator of the dynamics (3.3.1) is given in the relations (3.3.13),

and its properties are established in Propositions 3.3.14 and 3.3.15.
Proposition 3.3.16 For the Kowalevski top system (3.3.1), the Kahan integrator is

given by the recurrent equations:




mk+1
1 −mk

1 = h
2
(mk+1

2 mk
3 +mk+1

3 mk
2)

mk+1
2 −mk

2 = −h
2
(mk+1

1 mk
3 +mk+1

3 mk
1)− h

4
(γk+1

3 − γk3 )

mk+1
3 −mk

3 = h
4
(γk+1

2 − γk2 )

γk+1
1 − γk1 = h(γk+1

2 mk
3 +mk+1

3 γk2 )− h
2
(γk+1

3 mk
2 +mk+1

2 γk3 )

γk+1
2 − γk2 =

h

2
(γk+1

3 mk
1 +mk+1

1 γk3 )− h(γk+1
1 mk

3 +mk+1
3 γk1 )

γk+1
3 − γk3 =

h

2
(γk+1

1 mk
2 +mk+1

2 γk1 )− h(γk+1
2 mk

1 +mk+1
1 γk2 )

(3.3.4)

where mk
i = m0

i + k · h, γki = γ0
i + k · h, i = 1, 2, 3.

A long but straightforward computation or using, eventually, MATHEMATICA soft-
ware leads to: the Kahan integrator does not preserves the Poisson structure and not
also the Casimirs C1, C2 and doesn’t an energy-integrator (Proposition 3.3.17).

Remark. It is easy to conclude by numerical simulation that the Lie-Trotter in-
tegrator and the Kahan integrator approximates only ”small” portions the dynamics
Kowalevski top. It is an open problem for to argument this behavior.
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Chapter 4

Control dynamical systems on Lie
group SO(4)

Chapter 4 is structured in two paragraphs. Original contributions of the author are
included in Paragraph 4.2.

4.1 Control systems on matrix Lie groups

This paragraph contains basic definitions and properties concerning the control systems
on Lie groups. We have analyzed an optimal control problem for the dynamics of mobile
robot Hilare resp. the dynamics of spacecraft.

The main bibliographic sources used are: [25](Jurdjevic and Sussmann, 1972), [29]
(Khrisnaprasad, 1993), [32](Leonard, 1994), [47](Struemper, 1997), [28](Khalil, 2002).

We start with recalling of some elements of optimal control on matrix Lie
groups.

Let G be an n−dimensional matrix Lie group and g its Lie algebra. A left invariant
vector field on G takes the form XA, with X ∈ G and A ∈ g. Let B = {E1, E2, ..., En}
be the basis of constant matrices in the Lie algebra g.

A drift-free left invariant control system on G is a system of the form:

Ẋ(t) = X(t)U(t) = X(t)
m∑
i=1

ui(t)Ai, m ≤ n, (4.1.1)

where X(t) is a curve in G, U(t) is a curve in g and {A1, A2, ..., Am} ⊆ B. A choosing
of set {A1, A2, ..., Am} is called control authority of system (4.1.1).
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Remark. Left invariance signifies the fact that, if it is known the solution XIn(t)
of the system (4.1.1) with initial condition X(0) = In, then every solution X(t) of the
system (4.1.1) with initial condition X0 is of the form X(t) = X0 ·XIn(t). �

Let U denote the set of admissible controls, that is the set of set of locally bounded,
measurable functions defined on [0,∞] with values in Rm.

Definition4.1.1 The left invariant system (4.1.1) is called controllable, if for all
X0, Xf ∈ G there exist a time t > 0 and an admissible control

u(t) = (u1(t), u2(t), ..., um(t)) ∈ U , t ∈ [0, tf ],

such that the solution X(t) of the system (4.1.1) satisfy the conditions:

X(0) = X0 and X(t) = Xf . (4.1.2)

The problem of controllability of a left invariant control system on G of the form
(4.1.1) can be reduced by studying algebraic properties of the corresponding Lie algebra
g and topological properties of the manifold G, [25](Jurdjevic and Sussmann, 1972).

Let C denote the set of Lie brackets generated by {A1, A2, ..., Am} and defined as:

C = {η | η = [ηk+1, [ηk, [..., [η2, η1]...]]], ηi ∈ {A1, A2, ..., Am}, i = 1, k + 1.

Theorem 4.1.2.([25]) (Jurdjevic-Sussmann). Let S be a control system of the
form (4.1.1) on a connected Lie group G. Then S is controllable iff span C = g.

If the system (4.1.1) is controllable, then an interesting problem is to find the optimal
controls. More exactly:

to determine the controls ui(t), i = 1,m that steer the system (4.1.1) from X(0) = X0

at t = 0 to X(tf ) = Xf at t = tf and minimize a cost function:

J(u1, u2, ..., um) =
1

2

∫ tf

0

[
m∑
i=1

ciu
2
i (t)]dt, ci > 0, i = 1,m. (4.1.3)

Theorem 1.1.5 ([29]) (Krishnaprasad) Let a left invariant controllable system on
Lie group G given by (4.1.1) with restrictions (4.1.2). The controls ui, i = 1,m which
minimize the cost function J defined by (4.1.3) are given by the relations:

ui =
1

ci
Pi, i = 1,m, (4.1.4)

where Pi are solutions of the reduced Hamilton’s equations on (g∗, {·, ·}−), that is:

Ṗi = {Pi, Hopt}−, i = 1,m, (4.1.5)

where Hopt is the reduced (or optimal) Hamiltonian given by:

Hopt(P1, P2, ..., Pm) =
1

2

m∑
i=1

1

ci
P 2
i . (4.1.6)
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• Mobile robot Hilare as left invariant control system on SE(2,R)

The space of the configurations is R2 × S1, and its dynamics is described by the
system of differential equations ([52]):

ẋ1 = u1 cosx3, ẋ2 = u1 sinx3, ẋ3 = u2, (4.1.7)

where (x1, x2) represent the position of the robot in the plane, and x3 is its orientation,
see the figure:

u1

u2
(x1, x2)

x3

A basis in the Lie algebra se(2,R) of the Lie group SE(2,R) is {E1, E2, E3}, see
Paragraph 1.2. Choose the control authority {A1, A2}, where A1 = E2, A2 = E1.

The system (4.1.7) can be written in the equivalent form:

Ẋ = X(A1u1 + A2u2), where X =




cosx3 − sinx3 x1

sinx3 cosx3 x2

0 0 1


 . (4.1.8)

The system (4.1.8) is a controllable system on SE(2,R) with the control authority
{A1, A2} (we apply Jurdjevic-Sussmann’s Theorem).

Consider the cost function J , given by:

J(u1, u2) =
1

2

∫ tf

0

[c1u
2
1(t) + c2u

2
2(t)]dt, c1 > 0, c2 > 0. (4.1.9)

Proposition 4.1.6 The controls which minimize the cost function J given by (4.1.9)
and steers the system (4.1.8) from X(0) = X0 at t = 0 to X(tf ) = Xf at t = tf are

given by u1 =
P1

c1

, u2 =
P2

c2

where Pi, i = 1, 3 are solutions of the system:

Ṗ1 = − 1

c2

P2P3, Ṗ2 =
1

c1

P1P3, Ṗ3 = − 1

c1

P1P2. (4.1.10)
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The system (4.1.10) is a Euler top system (we apply the results from Chap. 2).
The system (4.1.10) has the Hamilton-Poisson realization (R3, Hrh, Prh)(v. Propo-

sition 2.2.3), where:

Prh =




0 −P3 P2

P3 0 0

−P2 0 0




and Hrh(P1, P2, P3) =
1

2

(
P 2

1

c1

+
P 2

2

c2

)
.

Proposition 4.1.7 The equilibrium states e0 = (0, 0, 0), em1 = (m, 0, 0), em3 = (0, 0,m)
for m ∈ R∗ are nonlinear stable, and em2 , m ∈ R∗ is unstable.

Proposition 4.1.8 The Lie-Trotter integrator for the system (4.1.10) is given by:





x1(n+ 1) = x1(n)− t

c2

x2(0) · x3(n)

x2(n+ 1) = cos(
t

c1

x1(0)) · x2(n) + sin(
t

c1

x1(0)) · x3(n)

x3(n+ 1) = − sin(
t

c1

x1(0)) · x2(n) + cos(
t

c1

x1(0)) · x3(n)

(4.1.11)

• Spacecraft dynamics as left invariant control system on SO(3)

We consider a spacecraft free to move in R3, [44] (Puta, 1997). Let (b1, b2, b3) be
an orthonormal frame fixed on the body and let (r1, r2, r3) = (x, y, z) define an inertial
frame with the origin coincident with the origin of the body-fixed frame, see the figure:

b

b
b

2

1

3

x

y

z

We define a matrix X(t) ∈ SO(3) such that

ri = X(t) · bi, i = 1, 3,

40



that is X(t) determines the attitude of the spacecraft at time t.
Let {ei|i = 1, 2, 3} the canonical basis of R3 and define Ei = Φ(ei), i = 1, 3, where

Φ, is the isomorphism between the Lie algebras (R3,×) and (so(3), [·, ·]).
Then X(t) satisfies the equation:

Ẋ = X · ω̂, ω̂ =
3∑
i=1

ωi(t)Ei, (4.1.12)

where ω = (ω1, ω2, ω3) is the angular velocity of the spacecraft in the body-fixed coor-
dinates.

If we let ui = ωi, i = 1, 3, that is we interpret the components of the angular velocity
as our control, then the system (4.1.12) takes in the form:

Ẋ = X ·
(

3∑
i=1

ui(t)Ei

)
. (4.1.13)

We consider the case when only two components of the angular velocity can be
controlled. For example, if we can control the angular velocity about the b1 and b2 axes,
then X(t) ∈ SO(3) satisfy the system:

Ẋ = X(A1u1 + A2u2), where A1 = E1, A2 = E2. (4.1.14)

The system (4.1.14) is a left invariant controllable system on SO(3) with control
authority {A1, A2} (we apply Jurdjevic-Sussmann’s Theorem). This realization of the
spacecraft dynamics is due to Leonard [32].

For the controllable system (4.1.14), we consider the cost function J , given by (4.1.9).
Proposition 4.1.10 The controls which minimize the cost function J given by (4.1.9)

and steers the system (4.1.15) from X(0) = X0 at t = 0 to X(tf ) = Xf at t = tf are

given by u1 =
P1

c1

, u2 =
P2

c2

, where Pi, i = 1, 3 are solutions of the system:

Ṗ1 = − 1

c2

P2P3, Ṗ2 =
1

c1

P1P3, Ṗ3 =

(
1

c2

− 1

c1

)
P1P2. (4.1.15)

The system (4.1.15) is a Euler top system and has the Hamilton-Poisson realization
(R3, Hns, Pns), where:

Pns =




0 −P3
c2 − c1

c2

P2

P3 0 0

c1 − c2

c2

P2 0 0




and Hns(P1, P2, P3) =
1

2

(
P 2

1

c1

+
P 2

2

c2

)
.
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Proposition 4.1.11 The equilibrium states e0 = (0, 0, 0), em1 = (m, 0, 0), em2 =
(0,m, 0) and em3 = (0, 0,m) for m ∈ R∗, of the system (4.1.15), have the following
behavior:

(i) e0, e
m
3 is nonlinear stable.

(ii) if c1 < c2 (resp. c1 > c2), then em1 (resp. em2 ) is nonlinear stable (unstable), and
em2 (resp. em1 ) is unstable.

Proposition 4.1.12 If c1 < c2 and δ =

√
c2 − c1

c2

, then the Lie-Trotter integrator

of the system (4.1.15) is given by:





x1(n+ 1) = x1(n)− t

c2

x2(0) · x3(n)

x2(n+ 1) = cos(
δ

c1

tx1(0)) · x2(n) +
1

δ
sin(

δ

c1

tx1(0)) · x3(n)

x3(n+ 1) = −δ sin(
δ

c1

tx1(0)) · x2(n) + cos(
δ

c1

tx1(0)) · x3(n).

(4.1.16)

4.2 Controllable systems on the Lie group SO(4)

The original results in this direction have published in the papers [42](Pop, Puta and
Şuşoi, 2005) and [7](Puta, Şuşoi et al., 2006).

Let SO(4) be the set of all matrices A ∈ M4×4(R) such that AT · A = I4 and
det(A) = 1.

SO(4) is a Lie group of dimension 6 with Lie algebra so(4) given by:

so(4) =








0 a1 a2 a3

−a1 0 a4 a5

−a2 −a4 0 a6

−a3 −a5 −a6 0




∣∣∣∣∣∣∣∣
a1, a2, a3, a4, a5, a6 ∈ R





Let {Ai|i = 1, 6} be the standard basis of Lie algebra so(4).
A drift-free left invariant control system on Lie group SO(4) with fewer controls than

state variables can be written in the following form:

.

X = X

(
m∑
i=1

Aiui

)
, (4.2.1)

where X ∈ SO(4), and ui, i = 1,m are the controls with m < 6.
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Proposition 4.2.1 There exists 37 drift-free left invariant controllable systems on
SO(4) with fewer controls than 6.

Let us we shall study only the following drift-free left invariant control-
lable system on SO(4) with 3 controls:

.

X = X (A1u1 + A2u2 + A3u3) (4.2.2)

Proposition 4.2.2 The system (4.2.2) is controllable.

Remark. An other drift-free left invariant controllable system on SO(4) with control
authority {A2, A3, A4} has studied in the paper [8](Aron et al., 2009).

4.2.1 An optimal control problem on SO(4)

Let J to be the cost function given by:

J(u1, u2, u3) =
1

2

∫ tf

0

[c1u
2
1 (t) + c2u

2
2 (t) + c3u

2
3 (t)]dt, c1 > 0, c2 > 0, c3 > 0.

Proposition 4.2.3 The controls that minimize the cost function J and steers the
system (4.2.2) from X = X0 at t = 0 to X = Xf at t = tf are given by

u1 =
1

c1

P1, u2 =
1

c2

P2, u3 =
1

c3

P3, where Pi, i = 1, 6 are solutions of the system:





Ṗ1 =
P2P4

c2

+
P3P5

c3

, Ṗ2 = −P1P4

c1

+
P3P6

c3

, Ṗ3 = −P1P5

c1

− P2P6

c2

Ṗ4 =

(
1

c1

− 1

c2

)
P1P2, Ṗ5 =

(
1

c1

− 1

c3

)
P1P3, Ṗ6 =

(
1

c2

− 1

c3

)
P2P3

(4.2.3)

Applying Krishnaprasad’s theorem [29], it follows that the optimal Hamiltonian is:

Hopt(P1, P2, P3, P4, P5, P6) =
1

2

(
P 2

1

c1

+
P 2

2

c2

+
P 2

3

c3

)
. (4.2.4)

The minus Lie-Poisson structure on (so(4))∗ ' R6 is generated by the matrix:

Π =




0 P4 P5 −P2 −P3 0

−P4 0 P6 P1 0 −P3

−P5 −P6 0 0 P1 P2

P2 −P1 0 0 P6 −P5

P3 0 −P1 −P6 0 P4

0 P3 −P2 P5 −P4 0




.
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Proposition 4.2.4 C1 and C2 are Casimirs for ((so(4))∗,Π) ' (R6,Π), where:

C1(P ) =
1

2

6∑
i=1

P 2
i , C2(P ) = P1P6 − P2P5 + P3P4.

4.2.2 Stability problem for the dynamics (4.2.5)

If we suppose that c1 = 1, c2 = 1, c3 = k, k > 0, the system (4.2.4) becomes:





Ṗ1 = P2P4 +
1

k
P3P5, Ṗ2 = −P1P4 +

1

k
P3P6, Ṗ3 = −P1P5 − P2P6

Ṗ4 = 0, Ṗ5 =

(
1− 1

k

)
P1P3, Ṗ6 =

(
1− 1

k

)
P2P3

(4.2.5)

Proposition 4.2.5 The dynamics (4.2.5) has the following equilibrium states:

eMN
12 = (M,N, 0, 0, 0, 0), eMN

25 = (0,M, 0, 0, N, 0), eMN
34 = (0, 0,M,N, 0, 0),

eMN
16 = (M, 0, 0, 0, 0, N), eMNP

345 = (0, 0,M,N, P, 0), M,N, P ∈ R;

eQMNP
1256 = (Q,M, 0, 0, N, P ), where Q = −MP

N
cu M,P ∈ R and N ∈ R∗. �

Proposition 4.2.6 [42](Pop, Puta and Şuşoi, 2006)The equilibrium state eMNP
345 ,

M2 + bN2 + bP 2 6= 0, where b =
1

k
is spectrally stable.

In Propositions 4.2.7− 4.2.10 [[7]( Aron, Pop. Puta and Şuşoi, 2006)] is studied the
spectral stability for the system (4.2.5) and are obtained the following results:

(1)(i) if (1− k)M2 < N2, then eMN
16 is spectral stable;

(ii) if (1− k)M2 > N2, then eMN
16 is unstable.

(2)(i) if (1− k)(M2 +N2) < 0, then eMN
12 is spectrally stable;

(ii) if (1− k)(M2 +N2) > 0, then eMN
12 is unstable.

(3) eQMNP
1256 is spectrally stable.

(4)(i) if (1− k)M2 < N2, then eMN
25 is spectrally stable;

(ii) if (1− k)M2 > N2, then eMN
25 is unstable.

Proposition 4.2.11 [42] eMN
34 ,M,N ∈ R∗ has the following behavior:

(i) if k ∈ (0, 1], then eMN
34 is spectrally stable.
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(ii) if k ∈ (1,∞) and a =
2

k

√
k − 1, b =

√
2

k

√
k − 1, then eMN

34 is spectrally stable

for
N

M
∈ (−∞,−a]∪{−b, b}∪ [a,∞) and unstable for

N

M
∈ (−a,−b)∪(−b, b)∪(b, a).

Proposition 4.2.12 [7] If

{
(−1 + k)M2 6= N2

(−1 + k)(M2 −N2) > 0
, then eQMNP

1256 for

Q = −MP

N
with M,P ∈ R and N ∈ R∗, is nonlinear stable.

4.2.3 Lax formulation and complete integrability for the dy-
namics (4.2.5)

Proposition 4.2.14 [7] The dynamics (4.2.5) has a Lax formulation, that is:

L̇ = [L,B], where

L =




0 `12 `13 0 0 0

−`12 0 `23 0 0 0

−`13 −`23 0 0 0 0

0 0 0 0 `45 `46

0 0 0 −`45 0 `56

0 0 0 −`46 −`56 0




, B =




0 b12 b13 0 0 0

−b12 0 b23 0 0 0

−b13 −b23 0 0 0 0

0 0 0 0 b45 b46

0 0 0 −b45 0 b56

0 0 0 −b46 −b56 0




,

and
`12 = 2P1

√
3− 2P2 + P5 + P6

√
3, b12 = P1

√
3− P2;

`13 = −4P3 − 2P4, b13 = −2P3 − P4;

`23 = 2P1 + 2P2

√
3− P5

√
3 + P6, b23 = P1 + P2

√
3;

`45 = −P2 − P5, b45 = −P2;

`46 = P3 − P4, b46 = P3 − P4;

`56 = P1 − P6, b56 = P1.

Corollary 4.2.15 The flow of the dynamics (4.2.5) is iso-spectral.
Consider now the co-adjoint orbit OM,N for the Poisson configuration ((so(4))∗ ∼=

(R6,Π) endowed with its Kirilov-Kostant-Souriau symplectic structure ωMN , where

OM,N = {P ∈ R6 |




6∑
i=1

P 2
i = M

P1P6 − P2P5 + P3P4 = N
}.
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Then (OM,N , ωMN , H|OM,N ) is a 4−dimensional completely integrable Hamiltonian

system ([7], Proposition 4.2.16), where

H|OM,N (P ) =
1

2

(
P 2

1 + P 2
2 +

1

k
P 2

3

)
.

4.2.4 Numerical integration of the dynamics (4.2.3)

The results of this section have published in [42] (Pop, Puta and Şuşoi, 2006).
The vector field XHopt associated to Hamiltonian Hopt of the dynamics (4.2.3) splits:

XHopt = XH1 +XH2 +XH3 , where

H1(P ) =
1

2c1

P 2
1 , H2(P ) =

1

2c2

P 2
2 , H3(P ) =

1

2c3

P 2
3 .

The Lie-Trotter integrator of (4.2.3) is given by the recurrent equations:




P n+1
1 = P n

1 cos a2t cos a3t+ P n
4 sin a2t+ P n

5 cos a2t sin a3t

P n+1
2 = P n

1 cos a3t sin a1t sin a2t+ P n
2 cos a1t cos a3t− P n

4 cos a2t sin a1t+

+ P n
5 sin a1t sin a2t sin a3t+ P n

6 cos a1t sin a3t

P n+1
3 = P n

1 sin a1t sin a3t+ P n
2 cos a1t sin a2t sin a3t+ P n

3 cos a1t cos a2t−
− P n

5 cos a3t sin a1t− P n
6 cos a1t cos a3t sin a2t

P n+1
4 = −P n

1 cos a1t cos a3t sin a2t+ P n
2 cos a3t sin a1t+ P n

4 cos a1t cos a2t−
− P n

5 cos a1t sin a2t sin a3t+ P n
6 sin a1t sin a3t

P n+1
5 = −P n

1 cos a1t sin a3t+ P n
2 sin a1t sin a2t sin a3t+ P n

3 cos a2t sin a1t+

+ P n
5 cos a1t cos a3t− P n

6 cos a3t sin a1t sin a2t

P n+1
6 = −P n

2 cos a2t sin a3t+ P n
3 sin a2t+ P n

6 cos a2t cos a3t
(4.2.6)

where a1 =
P1(0)

c1

, a2 =
P2(0)

c2

, a3 =
P3(0)

c3

.

The following proposition are proved.
Proposition 4.2.17 Lie-Trotter integrator (4.2.6) has the following properties:
(i) it is a Poisson integrator, i.e. it preserve the Poisson structure generated by Π.
(ii) its restrictions to the co-adjoint orbits:

6∑
i=1

P 2
i = constant, P1P6 − P2P5 + P3P4 = constant

give rise to a symplectic integrator.
(iii) it doesn’t preserve the energy Hopt of our system.
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Tom 51(65),2 (2006), 57–62.
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[13] W. L. Chow, Über systeme von linearen partiellen differentialgleichungen erster
ordnung, Math. Ann. 117 (1939), 98 - 105.

[14] M. Craioveanu, Introducere ı̂n Geometria Diferenţială. Editura Universităţii de
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