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Introduction

The cohomology of groups has a history which starts 100 years ago. Its origins are in

theory of groups and in number theory and then it became an important component

of algebraic topology. In the past 30 years group cohomology has developed a strong

connection with the representations of finite groups. If at the beginning the connec-

tions were around the 1 and 2 degree cohomology, latter the study of ring cohomology

became very important .

Representation theory has studied, initially the proprieties of abstract groups

through some linear maps of some vector spaces. The representations involved were

over the real field or over the complex field and they studied ordinary characters

of finite groups, defined by Frobenius in 1896. In the same time L. E. Dickson has

considered representations of finite groups with coefficients in a finite field. He proved

that if the scalar field has characteristic p and p doesn’ t divide the order of G then

the methods from ordinary representation theory can be successfully applied. If p

divides the order of G, Dickson proved that the theory is completely different and in

this case we have modular representation theory.

Modular representation theory has been developed by R. Brauer between 1935

and 1977 which built the basics of what is known today as modular representation

theory of finite groups. Brauer has defined and studied the basic concepts of block

theory. J. A. Green has introduced in the ’60 the notion of G-algebra where G is a

finite group, which can be used to study block theory and also module theory.

Another important step was realized in the ’70, by J. L. Alperin, M. Broué şi

L. Puig which start the study of p-local blocks and representations. Alperin and

Brouè introduced the Brauer pairs, and these were used by Brouè and Puig to study
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nilpotent blocks. A good selection of main results and open problems in modular

representation theory can be find in [24].

In [1] J. L. Alperin presents aspects of group cohomology which appears in modular

representation theory. Following this line and the prediction from the title of that

paper ”Cohomology is representation theory”, there were published numerous studies

which applies homological algebra in representation theory and reverse.

In 1999 M. Linckelmann has published 2 papers [17] and [18], where he studies the

properties of the cohomology ring associated with a block, defined similarly with the

cohomology ring of a finite group by Cartan-Eilenberg stable elements method from

[10]. Further, Linckelmann investigate the varieties associated to the cohomology

ring of a block and he proves a Quillen stratification, similarly to the stratification

obtained by G. S. Avrunin and L. L. Scott in [3], respectively by the creator of this

theory, D. Quillen in [27] and [28].

In this thesis we will approach the cohomology algebra of a finite group and the

cohomology algebra of a block. We will apply M. Linckelmann’s method of embedding

the cohomology algebra of a finite group into the Hochschild cohomology algebra of

the group algebra, through a generalized induction map which we will investigate.

We will define the cohomology algebra of a block of a normal subgroup of the

group G, which is G-stable, using generalized Brauer pairs and we will prove similar

results obtained by Linckelmann in [17]. In a specific situation for the fixed block, we

will obtain new results regarding the varieties associated to the cohomology algebra of

the block defined by Linckelmann and the cohomology algebra defined by the author

using generalized Brauer pairs.

The thesis is structured as follows. In Chapter 1 we will give notations, notions

and basic results which we will use in the following chapter. The main objectives

covered by this chapter are: symmetric algebra, symmetric form, stable elements

in group cohomology, Hochschild cohomology of symmetric algebra, blocks of group

algebras, Brauer pairs, pointed groups and block cohomology. Main source used are:

[4], [5], [11], [36] for homological algebra, [17], [22], [35] for modular representation

theory, and [12] for finite groups.

Chaper 2 is dedicated to characterize stable elements in Hochschild cohomology

of group algebras. We will prove that under some hypothesis, the results proved by
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M. Linckelmann in [17] remains true in a more general context of the generalized

diagonal induction map with domain the cohomology algebra of the centralizer in the

group G, of a representative of conjugacy class.

§2.1. In this section we define the normalized transfer TX associated with a

bounded complex of A− B-bimodules X, between HH∗(B) and HH∗(A) where A,B

are two symmetric R-algebras. Also we will define the set of X-stable elements in

HH∗(A), denoted by HH∗
X(A) and we will give proprieties satisfied by TX on HH∗

X(A),

which moreover is a graded algebra. At the end of this section we will recall the em-

bedding of the cohomology algebra of a finite group G into the subalgebra ofM -stable

elements HH∗
M(RG), where M = RG as RG−RH-bimodule and H is a subgroup of

G.

§2.2. Some of the above results we will explicite, by giving the definition of the

transfer and of the diagonal induction map δG. These objectives have been obtained

by the author in [33].

§2.3. In the same paper [33], the author gives explicitly the generalized diagonal

induction map, denoted γGxi
from H∗(CG(xi), R) to HH∗(RG), where xi is a represen-

tative of a conjugacy class of G. Next we will prove the compatibility of γGxi
with the

restrictions and transfers in group cohomology.

§2.4. Using results from the same article [33], we will fix a working situation which

we denote (†). In this situation [17, Proposition 4.8] is still true for γGxi
. The sections

2.2, 2.3 and 2.4 contains new results obtained by the author in [33].

Through chapter 3 we will work with k an algebraically closed field of character-

istic p, G is a finite group with a normal subgroup N and c is a block of kN which is

G-stable. We will define and analyze, using generalized Brauer pairs, the generalized

cohomology algebra of the block c and a restriction map from this algebra to the

usual cohomology algebra of the block c.

§3.1. In this section we will remind the main result from [17], that is Theorem 5.6,

which proves the embedding of the cohomology algebra of a block into the subalgebra

of stable elements in the Hochschild cohomology algebra of the block.

§3.2. We will define (c,G)-Brauer pairs (generalized Brauer pairs) and an order

relation based on [14]. There is a link between (c,G)-defect groups and defect pointed

groups of the G-algebra kN which we analyze and then we will define the generalized
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Brauer category, denoted F(P,eP )(G,N, c), where (P, eP ) is a generalized (c,G)-Brauer

pair. If N is equal to G we obtain the usual Brauer category.

§3.3. We will fix a working situation, denoted (∗), which always exists for the

block c and which allow us to find a defect pointed group Qδ of N{c} with Qδ ≤
Pγ, where Pγ is a pointed defect group of G{c}. Using generalized Brauer category

we can define the ”generalized” cohomology algebra of c associated to Pγ denoted

H∗(G,N, c, Pγ), and in situation (∗) we have a restriction map, called the restriction

in block cohomology, which we denote resG,N,c
N,c . Next we will prove the main result

of this section, Theorem 3.3.11, which proves that properties from [17, Teorem 5.6]

remains true for generalized cohomology algebra. In the end of this section, we

introduce a normal inclusion relation on (c,G)-Brauer pairs and we prove the third

main Brauer’s Theorem (Theorem 3.3.12) for (c,G)-Brauer pairs. Shortly, this says

that if c = c0 is the principal block of N then the (c0, G)-defect groups are the Sylow

p-subgroups of G.

§3.4. Under situation (∗) from section 3.3 we will investigate the properties of the

restriction map in block cohomology through a transfer map defined from Hochschild

cohomology algebra of kGc to Hochschild cohomology algebra of kNc. The funda-

mental result of this section is Theorem 3.4.10, which proves the compatibility of

resG,N,c
N,c through TX , where X = kGc as kNc− kGc-bimodule.

§3.5. In this section we analyze the variety of the generalized cohomology algebra

of c associated to a finitely generated kGc-module U , denoted VG,N,c(U). Generally,

considering the usual cohomology algebra of the block c, M. Linckelmann has studied

the variety associated to H∗(N, c,Qδ) in [18]. Keeping the notations and the hy-

pothesis of Theorem 3.4.10, we will prove that VN,c(U) = (r∗G,N,c)
−1(VG,N,c(U)). The

sections 3.4 and 3.5 contains original results obtained by the author in [32].

In Chapter 4 we will define a functor isomorphic with the functor HomkG(k,−)

which allows us to have a new approach for the definition of cohomology of finite

groups. The block cohomology doesn’t have a global approach, that is a definition

as a right (or left) derived functor of a specific functor, since the block algebra is not

an algebra with augmentation. The results from chapter 4 may represent the first

step for such an approach, which is realized by the author in [30]. In this chapter we

consider G a finite group, P a Sylow p-subgroup of G and k a field of characteristic
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p.

§4.1. Let A,B be two kG-modules. The main result of this section is the isomor-

phism between HomkG(A,B) and the k-submodule of stable elements in HomkP (A,B),

defined in Definition 4.1.2. This will be denoted by Homst
kP (A,B).

§4.2. We will define a functor FG from the category Mod(kG) to Modk by FG(A) =

HomkP (k,A), for any kG-module A. This is isomorphic with HomkG(k,−). We obtain

in the end the isomorphism RnFG(k) ∼= Hn(G, k). The sections 4.1, 4.2 are based on

the article [34].

⋄
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to my colleagues from the Department of Mathematics of Technical University for

the friendly atmosphere.

Finally i’m grateful to my parents, my brothers and my sister which help me in

various way.



Chapter 1

Preliminaries

In this chapter we will present the basic notions and properties of Hochschild coho-

mology for symmetric algebras , and of finite group cohomology and also the main

results regarding blocks of group algebras, which we will call shortly blocks. We

will end the chapter presenting block cohomology, defined by Markus Linckelmann

in 1999, in his paper [17]. In this chapter (and also in the entire thesis, if something

else is not specified), all the algebras and rings are associative with unity and all the

modules are finitely generated, left modules.

1.1 Hochschild cohomology of symmetric algebras

In this section we will present, shortly: the notion of symmetric algebra, two adjoint

functors, the notion of Hochschild cohomology algebra applied to the symmetric al-

gebra and we will end with the presentation of the transfer map between the two

Hochschild cohomology algebras for symmetric algebras. First we will defined two

pairs of adjoint functors associated with a bimodule over symmetric algebras and we

will define the corresponding unities and counities. In the second part of the section

we will give similarly results in a more general case of bounded chain complexes, of

bimodules over symmetric algebras and we will define the transfer map between the

Hoschild cohomology algebra of two symmetric algebras. We will exemplify with the

case of the group algebra

In this section we consider R a commutative ring, A,B,C are symmetric R-

algebras and X is a bounded chain complex, of A − B-bimodules, proiective as left
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A-modules and right B-modules .

1.1.1. The pair of adjoint functors (X ⊗B −, X∗ ⊗A −). The unity and counity

of (X ⊗B −, X∗ ⊗A −) are the chain maps of B − B-bimodules, respectively A− A-

bimodules

εX : B → X∗ ⊗A X, ηX : X ⊗B X
∗ → A.

1.1.2. The pair of adjoint functors (X∗ ⊗A −, X ⊗B −). The unity and counity

of (X∗ ⊗A −, X ⊗B −) are the chain maps of A− A-bimodules, respectively B − B-

bimodules

εX∗ : A→ X ⊗B X
∗, ηX∗ : X∗ ⊗A X → B.

The above and the following results include the case where X =M is considered

as a complex of A − B-bimodules concentrated in degree 0 (that is, X0 = M and

the other components are 0). Next we will give the arguments for the group algebra

to be a symmetric algebra (see [17, Example 2.6]). Let H be a subgroup of G and

M = RG as RG−RH-bimodule. The R-dual M∗ of M is isomorphic with RHRGRG.

Particularly, we have that M∗ ⊗RG M ∼= RG as RH − RH-bimodule. Using these

results we obtain the adjunction maps of M and M∗ (see [17, Example 2.6]).

1.1.3. The Hochschild cohomology of an R-algebra A. By [36, Chapter 9,

Corollary 9.1.5] we will consider the following definition of the Hochschild cohomology

of an algebra. The Hochschild cohomology of an R-algebra A is the algebra

HH∗(A) = Ext∗A⊗A0(A).

By standard results from homological algebra, when X is projective as left A-

module and right B-module, we obtain that the complex X∗⊗APA⊗X is a projective

resolution of X∗ ⊗A X in the abelian category of bounded complexes of A − B-

bimodules. Further we get that the adjunction map εX : B −→ X∗ ⊗A X lifts to a

chain map, unique up to homotopy, which will be denoted

εX : PB −→ X∗ ⊗A PA ⊗A X.

Similarly we have : ηX , εX∗ , ηX∗ .



8

Definition 1.1.4 (Definition 2.9, [17]). Let A,B be two symmetric R-algebras, s ∈

A∗, t ∈ A∗ the symmetric forms, AXB a bounded complex of bimodules, projective as

left and right bimodules. The transfer map associated to X is the only graded linear

map

tX : HH∗(B) −→ HH∗(A),

which, for any n ≥ 0, sends the homotopy class [ξ] of ξ : PB −→ PB[n] to the

homotopy class tX [ξ] = [ηX [n] ◦ (IdX ⊗ ξ⊗ IdX∗) ◦ εX∗ ], obtained by the composition

of chain maps

PA
εX∗ // X ⊗B PB ⊗B X

∗ IdX⊗ξ⊗IdX∗ // X ⊗B PB[n]⊗X∗ ηX [n] // PA[n] .

1.2 The cohomology of finite groups

The algebraic definition of cohomology of groups, will follow the line from [4], but we

remind also the approach of M. Linckelmann from [17]. In this section we consider

G to be a finite group, R as a commutative ring and the group algebra RG has a

structure of RG − RG-bimodule given by the multiplication in RG. An RG − RG-

bimodule M has also a structure of R(G × G)-module with (x, y) ∈ G × G acts on

m ∈M by xmy−1 (and reverse).

Definition 1.2.1. We call the cohomology algebra of G with coefficients in R the

algebra

H∗(G,R) = Ext∗RG(R,R),

where R is the trivial RG-module. Explicitly Ext∗RG(R,R) =
⊕

n≥0 Ext
n
RG(R,R),

with the multiplication in the ring given by the cup product (if we use cocycle) and

ExtnRG(R,R) = Hn(HomRG(PR, R)),

where PR is a projective resolution of R as trivial RG-module.
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We will use also, the alternative of chain maps in the definition of group cohomol-

ogy, since it is easy to compute the product. From now

Hn(G,R) ∼= HomK(RG)(PR,PR[n]).

1.2.2. The complex IndG×G
∆G (PR) is a projective resolution of RG, thus we identify

IndG×G
∆G (PR) ∼= PRG, where PRG is a projective resolution of RG as R(G×G)-module

or as RG−RG-bimodule.

Proposition 1.2.3 (Proposition 4.5,[17]). Let G be a finite group and PR a projective

resolution of R as trivial RG-module. The map which sends τ ∈ HomC(RG)(PR,PR[n])

to IndG×G
∆G (τ) induces a R-algebra injective map

δG : H∗(G,R) −→ HH∗(RG), δG([τ ]) = [IndG×G
∆G (τ)].

The map δG from the above proposition will be called ”the diagonal induction

map”. The restriction and the transfer are compatible with the transfer defined

between the Hochschild cohomology algebras of the group algebras through the di-

agonal induction map from Proposition 1.2.3, and these 2 results will be recalled in

this section as [17, Proposition 4.6, Proposition 4.7].

1.3 Blocks of group algebras, Brauer pairs and

pointed groups

In this section we will present the main results of blocks of group algebras. We are

interested with the properties which bounds defect groups and Brauer pairs and also

the approach with pointed groups of blocks. The initial sources of these results are

the articles of J. Alperin a̧nd M. Broué, respectively M. Broué and L. Puig that is [2]

and [8]. All these are exposed in [35], whose notations we will follow. First we will

approach idempotents and blocks of group algebra and the notions of G-algebra and

pointed groups. Secondly we will present the proprieties of blocks from [35], recalling

from time to time the general context of pointed groups associated to blocks.
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Let G be a finite group, k be a field of characteristic p, which divides the order

of G and A a G-algebra. We will remind in this section: the relative trace map TrGH
with H a subgroup of G; pointed groups ; the inclusion of pointed groups; the Brauer

map BrAP where P is a p-subgroup of G; b-Brauer pairs where b is a block of kG; the

inclusion of b-Brauer pairs; the principal block, which we denote b0.

The properties of the defect group of the principal block are exposed in the third

main Brauer’s Theorem which we recall in this thesis by [35, Theorem 40.17].

1.4 The cohomology of blocks of finite groups

The first part of this section describes the fusion systems of p-groups which have as

basic examples: the fusion system associated with a Sylow p-subgroup of a group and

that associated with a block of a finite group algebra. The originally definition was

given by L. Puig (which called them full Frobenius systems), and these were developed

by Broto, Levi şi Oliver and [7] (who called them saturated fusion systems). We will

follow the notion of fusion system and the results from [21]. In the last years, the

theory of fusion systems (saturated fusion systems) represents a growing domain

which creates an interaction between group theory and algebraic topology.

Most of the properties of fusion systems were systemized by their inventator, L.

Puig in [26]. Next we give the most important concept of this thesis , that is the

cohomology algebra of a block, defined by M. Linckelmann in [17]. We will also give

some properties of this algebra.

1.4.1. The fusion system associated with a block. Let b be a block of kG and

(P, e) maximal b-Brauer pair. For any Q, a subgroup of P there is a block eQ of

kCG(Q) such that (Q, eQ) ≤ (P, e). We will denote by F(P,e)(G, b) the category on P

with morphisms the group homomorphisms φ : Q→ R for which there is x ∈ G with

x(Q, eQ) ≤ (R, eR) (equivallently
xeQ = exQ) such that φ(u) = xux−1, for any u ∈ Q.

By [21, Theorem 2.4] we have that F(P,e)(G, b) is a fusion system on P . If b is the

principal block, by third main Brauer’s theorem we get that F(P,e)(G, b) = FP (G),

where FP (G) is the fusion system on P with maps fromQ to R induced by conjugation
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with elements in x ∈ G such that xQ ≤ R.

Next we give the definition of the cohomology algebra of a block.

Definition 1.4.2 (Definition 5.1, [17]). Let b be a bloc of kG and Pγ un defect

pointed group of G{b}. We call the cohomology algebra of the block b associated with

Pγ the subalgebra

H∗(G, b, Pγ)

of H∗(P, k), which consists in all elements [ζ] ∈ H∗(P, k) which satisfy resPQ([ζ]) =

resφ([ζ]), for any subgroup Q in P and any φ ∈ HomF(P,eP )(G,b)(Q,P ).



Chapter 2

Stable elements in Hochschild
cohomology of group algebra

The second chapter is dedicated to apply some of the above results to group algebra.

We will define the notion of stable element in Hochschild cohomology algebra and

explicitly will give the adjunction and transfer map for group algebra, defined in

section 1.1. In section 2.3, using the language of chain map we will explicate the

generalization of the diagonal induction map, defined in [29] with cocycles. A new

result will be proved, which show that the image of such a map (a generalization of

diagonal induction map) is in the subalgebra of stable elements. We obtain a similar

result to Linckelmann’s from [17]. The sections 2.3, 2.4 contains original results

published by the author in [33].

2.1 Stable elements in Hochschild cohomology of

symmetric algebras

We will present basic results which characterize stable elements in Hochschild coho-

mology of symmetric algebras and we study their link with transfer maps.

Definition 2.1.1. Let A,B be two symmetric R-algebras with symmetric forms s ∈

A∗, t ∈ B∗ and X a bounded complex of A−B-bimodules with projective components

as left and right modules.

12
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i) The element πX = (ηX ◦ εX∗)(1A) ∈ Z(A), the image of 1A under the composi-

tion:

A
εX∗ // X ⊗B X

∗ ηX // A

is called the projectiv element relative to X.

ii) If πX is invertible in Z(A) we denote by TX : HH∗(B) −→ HH∗(A) the graded

linear map defined by TX([τ ]) = π−1
X tX([τ ]), τ ∈ HH∗(B), which we call the

normalized transfer associated to X.

iii) An element [ζ] ∈ HH∗(A) is called X-stable if there is [τ ] ∈ HH∗(B) such that

for all positive n ∈ Z, the next diagram is commutative up to homotopy

PA ⊗A X
∼= //

ζn⊗IdX
��

X ⊗B PB

IdX⊗τn
��

PA[n]⊗A X
∼= // X ⊗B PB[n]

, (2.1.1)

where ζn, τn are the degree n components of ζ, τ and the horizontal maps are

the natural homotopy equivalences PA⊗AX ∼= X⊗BPB which lifts the natural

isomorphisms A ⊗A X ∼= X ⊗B B. We denote by HH∗
X(A) the set of X-stable

elements in HH∗(A).

In [17] there are some results which give us the proprieties of stable elements. That

is: a lemma which give us equivalent conditions to the condition 2.1.1 of defining a

stable element and a proposition which proves that the transfer maps stable elements

to stable elements.

We end this section with three, very useful results: [17, Corollary 3.8], [17, Ex-

ample 3.9], [17, Proposition 4.8] .
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2.2 The transfer map between Hochschild coho-

mology algebras of group algebras

The main scop of this section is to give explicily, using element definitions, the char-

acterization of unity and counity map associated to M = RG and M∗ = RG as

RG−RH-bimodule, respectively RH −RG-bimodule, where H is a subgroup of G.

In the same manner we will explicite the transfer maps tM and tM∗ .

We take PR a projective resolution of R as trivial RG-module. Since RG is free as

left RH-module we have that ResGHPR remains a projective resolution of R as trivial

RH-module. Thus any element [τ ] ∈ Hn(H,R) can be represented by a chain map

τ : ResGHPR −→ ResGHPR[n]. By 1.2.2, any element [τ ] ∈ HHn(RG) is considered as

represented by a chain map τ : IndG×G
∆G PR −→ IndG×G

∆G PR[n]. We take IndH×H
∆H R as

RH −RH-bimodule by

h1 · [(x, y)⊗R∆H 1R] · h2 = (h1x, h
−1
2 y)⊗R∆H 1R,

where h1, h2, x, y ∈ H.

We explicite the unity εM∗ and counity ηM such that we have the detailed definition

of tM :

Definition 2.2.1. The transfer associated to M is the unique graded linear map

tM : HH∗(RH) −→ HH∗(RG),

which sends the homotopy class [τ ], of the chain map

τ : IndH×H
∆H PR −→ IndH×H

∆H PR[n]

to the homotopy class [ηM [n] ◦ (IdM ⊗RH τ ⊗RH IdM∗) ◦ εM∗ ], for any n ≥ 0.

Similarly we will characterize the lifting to resolutions of εM and ηM∗ .

Definition 2.2.2. The transfer associated to M∗ is the unique graded linear map

tM∗ : HH∗(RG) −→ HH∗(RH),
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which sends the homotopy class [τ ], of the chain map

τ : IndG×G
∆G PR −→ IndG×G

∆G PR[n]

to the homotopy class [ηM∗ [n] ◦ τ ◦ εM ], for any n ≥ 0.

2.2.3. The explicitness of ”diagonal induction map δG”. By Proposition 1.2.3

there is an injective homomorphism of R-algebras

δG : H∗(G,R) −→ HH∗(RG), δG([τ ]) = [IndG×G
∆G (τ)],

where [τ ] ∈ Hn(G,R) corresponds to τ : PR −→ PR[n].

2.3 The generalization of the diagonal induction

map

Using cocycle language S.F. Siegel and S.W. Witherspoon give an additive decom-

position of the cohomology algebra of a group (which acts as automorphisms on a

second group) with coefficients in group algebra. They describe the isomorphism

which determine this decomposition and when the groups are equals and we have the

conjugation action we obtain the decomposition from [5, Theorem 2.11.2] extended

to graded algebras. In this section we will characterize, using the language of chain

maps, the injective homomorphisms of algebras which appear in [29, Lemma 4.2], de-

noted γi. Through this chapter for G a finite group we choose {xi | i ∈ {1, . . . , r}} a

system of representatives of those r conjugacy classes of G, with a fixed representative

xi, for i ∈ {1, . . . , r}.
If [τ ] ∈ Hn(CG(xi), R) is represented by a chain map

τ : ResGCG(xi)
PR −→ ResGCG(xi)

PR[n]

we define the next chain map between projective resolutions of RG as R(G × G)-

modules

γGxi
(τ) : IndG×G

∆G PR −→ IndG×G
∆G PR[n],
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γGxi
(τ)((x, y)⊗R∆G z) = (x, y)

∑
g∈[G/CG(xi)]

(gxi, g)⊗R∆G τ(g
−1z) (2.3.1)

pentru x, y ∈ G, z ∈ PR.

Proposition 2.3.1. i) For any τ a chain map as above, the map γGxi
(τ) is well

defined and is a chain map.

ii) For any class [τ ] ∈ Hn(CG(xi), R) we have that γGxi
([τ ]) = [γGxi

(τ)] well defined.

The proposition 2.3.1 allow us to give the following definition of the graded de

R-algebras homomorphisms from (2.3.1).

Definition 2.3.2. Let G be a finite group and xi is a representative of a conjugacy

class of G. The homomorphism of R-algebras

γGxi
: H∗(CG(xi), R) −→ HH∗(RG)

is the unique graded linear map γGxi
([τ ]) = [γGxi

(τ)], where [τ ] ∈ Hn(CG(xi), R) is

represented by a chain map τ : ResGCG(xi)
PR −→ ResGCG(xi)

PR[n]. This homomorphism

is called the generalized diagonal induction map relative to xi.

It is clear that if xi = 1 then CG(1) = G and by 2.2.3 we obtain that γG1 = δG. The

next proposition is a translation of [17, Proposition 4.7] to the generalized diagonal

induction map.

Proposition 2.3.3. Let G be a finite group and xi a representative of a conjugacy

class of G, H a subgroup of G such that xi ∈ H. Then xi is a representative of a

conjugacy class of H, CH(xi) ≤ CG(xi) and the next diagram is commutative

H∗(CH(xi), R)
tr

CG(xi)

CH (xi) //

γH
xi

��

H∗(CG(xi), R)

γG
xi

��
HH∗(RH)

tM // HH∗(RG)

.



17

2.4 Stable elements in Hochschild cohomology of

the group algebra

In this section we add to the above hypothesis the following situation:

Situation (†). Let G be a finite group, H a subgroup of G and xi an element

of H, a representative of a G-conjugacy class. We suppose that there is a system of

representatives of left cosets of CH(xi) in H which remains a system of representatives

of left cosets of CG(xi) in G.

We ask now if there are groups in situation (†). Next we give an example of a

group and a subgroup which are in this situation.

Example 2.4.1. Let G be the dihedral group of order 4n denoted D2n, where n is

an odd positive integer. We have the explicit description

D2n = {1, x, x2, . . . , x2n−1, y, xy, x2y, . . . , x2n−1y}.

We choose xi = y and H = {1, y, x2, x4, . . . , x2n−2, x2y, x4y, . . . , x2n−2y} a subgroup

of G.

Moreover as we can notice from Example 2.4.1 we have the next lemma.

Lemma 2.4.2. If we are in situation (†) then any system of representatives of left

cosets of CH(xi) in H is a system of representatives of left cosets of CG(xi) in G.

In situation (†) we have that γGxi
is compatible with a specific restriction.

Proposition 2.4.3. If we are in situation (†) then we have the following commutative

diagram

H∗(CG(xi), R)
res

CG(xi)

CH (xi) //

γG
xi

��

H∗(CH(xi), R)

γH
xi

��
HH∗(RG)

tM∗ // HH∗(RH)

.
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In the next theorem, which is the main result of this section, we prove that in

situation (†) we have a similar embedding to [17, Proposition 4.8] ImγGxi
⊂ HH∗

M(RG),

where M is the regular RG−RH-bimodule.

Theorem 2.4.4. In situation (†) the following statements are true:

i) For any positive integer n, and any chain map τ ∈ HomC(RG)(PR,PR[n]) we

have that the following diagram is a commutative homotopy:

RG⊗RH IndH×H
∆H

(PR)⊗RH RG
ηM //

IdM⊗RHγH
xi
(τ)⊗RHIdM∗

��

IndG×G
∆G (PR)

γG
xi
(τ)

��
RG⊗RH IndH×H

∆H
(PR[n])⊗RH RG

ηM [n] // IndG×G
∆G (PR[n])

.

ii) Im γGxi
⊂ HH∗

M(RG).



Chapter 3

The restriction map in cohomology

of blocks of finite groups

We investigate in this chapter the cohomology algebra of a block, defined by M.

Linckelmann in [17], in a similar way to group cohomology, using the ”stable ele-

ments Cartan-Eilenberg method”. We will use for this the language of fusion systems

reminded in section 1.4. Through this chapter we consider k an algebraically closed

field of characteristic p (a prime number) and G a finite group. Let N be a normal

subgroup of G and c a G-stable block of kN , under conjugation. In this situation,

using results noticed by R. Kessar and R. Stancu in [14], we define the ”generalized”

cohomology algebra of the block c and a restriction map to the usual cohomology

algebra of the block c. We will analyze this restriction map through transfer maps

between Hochschild cohomology of the algebra kGc and the usual Hochschild coho-

mology algebra of the block c.

The first section of this chapter presents basic results obtained by M. Linckelmann

in [17] regarding block cohomology and the embedding of this into the subalgebra of

some stable elements of Hochschild cohomology algebra of the block. The second

section contains original results with proprieties of generalized Brauer pairs, obtained

by the author in [31] and [32]. In the third section we will study the generalized block

cohomology. The sections four and five decries the compatibility of the restriction

map in block cohomology with the transfer map between Hochschild cohomology

19



20

algebras in some situations, and also the proprieties of the varieties associated to the

generalized cohomology of blocks. The last three sections contains original results

obtained by the author in [32].

3.1 Stable elements in Hochschild cohomology of

blocks

In this section we will give the main result from [17], which proves the embedding of

the block cohomology algebra into the subalgebra of stable elements in Hochschild

cohomology algebra of that block. For some families of blocks this embedding is

studied in [25]. We will give the proofs of these results in section 3.3, in a more

general case, by imitating the proofs of Linckelmann from [17].

3.2 Generalized Brauer pairs and pointed groups

In this section we describe the proprieties of the generalized Brauer pairs, which are

associate to a block of a normal subgroup in G. The generalized Brauer pairs forms

a fusion system which has as a normal subsystem the usual Brauer category. We will

give some proprieties which connects generalized Brauer pairs with pointed groups

and we will end with the third main Theorem of Brauer for generalized Brauer pairs.

Many of these results are obtained by the author in [31] and [32].

Let N be a normal subgroup of G, c be a block of kN , which is G-stable and k an

algebraically closed field. We will denote by: A = kG as interior G-algebra, A1 = kN

as G-algebra and kN is the usual interior N -algebra. We know that N{c} and G{c}

are pointed groups on A1.

3.2.1. Brauer map on A1. For any p-subgroup Q of G, the canonical projection

from kN to kCN(Q) induces a surjective homomorphism of algebras from (kN)Q to

kCN(Q), the Brauer map for A1, denoted BrNQ . Explicitly BrNQ (x) = x if x ∈ CN(Q)

and BrNQ (x) = 0 if x /∈ CN(Q).
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Definition 3.2.2. A (c,G)-Brauer pair (generalized Brauer pair) is a pair (Q, eQ)

where Q is a p-subgroup of G such that BrNQ (c) ̸= 0 and eQ is a block of kCN(Q) such

that BrNQ (c)eQ ̸= 0. If G = N then we obtain that a (c,G)-Brauer pair becomes a

c-Brauer pair.

Definition 3.2.3. If (R, eR) and (Q, eQ) are two (c,G)-Brauer pairs, we say that

(Q, eQ) is included in (R, eR) and we denote (Q, eQ) ≤ (R, eR), if Q ≤ R and for any

primitive idempotent i ∈ (kN)R such that BrNR (i)eR ̸= 0 we have that BrNQ (i)eQ ̸= 0.

3.2.4. (c,G)-defect groups. By [8, Theorem 1.14] we know that G acts transitively

on the set of maximal (c,G)-Brauer pairs. Equivalently, all maximal (c,G)-Brauer

pairs are G-conjugate. If (P, eP ) is a maximal (c,G)-Brauer pair then P is called

(c,G)-defect group, and if N = G we obtained that P is the defect group of c.

We notice that N{c} and G{c} are pointed groups on A1, with the property N{c} ≤
G{c}. We are now in [15, Proposition 5.3], which we apply to obtaine the following

situation.

3.2.5. Defect pointed groups on A1. Pγ is the defect pointed group of G{c} on

A1 if and only if P = PN/N is a Sylow p-subgroup of G = G/N and there is Qδ a

pointed defect group of N{c} on kN as N -algebra such that Qδ ≤ Pγ. In this case

Q = P ∩N .

Proposition 3.2.6. Let Pγ be a pointed defect group of G{c} on A1. Then there is a

unique (c,G)-Brauer pair (P, eP ) such that BrNP (i)eP ̸= 0, for any i ∈ γ. Moreover

(P, eP ) is a maximal (c,G)-Brauer pair, thus P is a (c,G)-defect group.

Definition 3.2.7 (Definition 3.3, [14]). Let N be a normal subgroup G, c a G-stable

block of kN and (P, eP ) is a maximal (c,G)-Brauer pair. For a subgroup Q of P let eQ



22

be the unique block kCN(Q) such that (Q, eQ) ≤ (P, eP ). We denote F(P,eP )(G,N, c)

the category on P with morphisms HomF(P,eP )(G,N,c)(Q,R) given by the set

{φ : Q −→ R | φ(u) = gug−1,∀u ∈ Q, g ∈ G,g (Q, eQ) ≤ (R, eR)}.

F(P,eP )(G,N, c) is called the generalized Brauer category and is a fusion system by

[14, Theorem 3.4]. If N = G we obtain the fusion system associated to the block c of

kG denoted F(P,eP )(G, c), by 1.4.1.

In the next proposition we keep the notations and the working situation given by

3.2.5.

Proposition 3.2.8. Let Pγ be the pointed defect group of G{c} on A1 and Qδ = (P ∩

N)δ ≤ Pγ defect pointed group corresponding to N{c}, by Remark 3.2.5. Then there

is a maximal (c,G)-Brauer pair (P, eP ) such that BrNP (i)eP ̸= 0, for any i ∈ γ, and a

unique maximal c-Brauer pair (Q, eQ) such that BrNQ (j)eQ ̸= 0, for any j ∈ δ. More-

over (Q, eQ) ≤ (P, eP ) and F(Q,eQ)(N, c) is a normal subsystem in F(P,eP )(G,N, c).

Lemma 3.2.9. Let c be a G-stable block of kN and Pγ is a defect pointed group of

G{c} with i ∈ γ. Then the homomorphism of kGc− kGc-bimodules

kGi⊗kP ikG −→ kGc

given by the multiplication in kGc, splits.

Under the hypothsesis 3.2.5 let Aδ = jAj where j ∈ (ckN)Q is a primitive idempo-

tent such that BrNQ (j) ̸= 0. Then Aδ is a k-subalgebra of A and the interior Q-algebra

jA1j is called the source algebra of cA1. Aγ is the interior P -algebra ikGi, where

i ∈ γ. With these notations we have the following proposition, which can be obtained

as a consequence of [23, Proposition 3.2]. We will give a different proof here.

Proposition 3.2.10. If Pγ is a defect pointed group of G{c} on A1 then Aγ as interior

P -algebra is Morita equivalent with A{c}.
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In [23] A. Mărcuş noticed that M. Linckelmann’s results from [19, 7.1, 7.7] gener-

alizes for twisted group algebras case. Similar results are proved in [16]. In our case

we have the following two propositions, whose proofs follow Linckelmann’s approach.

Proposition 3.2.11. Let Pγ be a defect pointed group G{c} on A1 and i is a source

idempotent. For any two subgroups R, S of P and any indecomposable direct summand

W of ikGi as kR−kS-bimodule there is an element x ∈ G and φ : T → S with φ(u) =

x−1ux, for any u ∈ T , where T = R ∩ xS such that W ∼= k[RxS] ∼= kR⊗kTφ (kS).

Corollary 3.2.12. Any indecomposable direct summand of ikGi as kP−kP -bimodule

is kP ⊗kTφ (kP ) unde φ : T → P cu φ(u) = x−1ux, for all u ∈ T and T = P ∩ xP .

Proposition 3.2.13. Let Pγ be a defect pointed group of G{c} on A1 and i a source

idemptent. Let R, S be two subgroups of P . If φ : T → S is a group homomorphism

such that the kR− kS-bimodule kR⊗kTφ (kS) is an indecomposable direct summand

of ikGi then φ is injective homomorphism φ ∈ HomF(P,eP )(G,N,c)(T, S).

3.3 The generalized block cohomology

In this section, using results obtained in the above section, we will fix a working

situation in which the definition of block cohomology of c using generalized Brauer

pairs is possible. Moreover in this situation is possible to define a restriction map

between these two cohomology. For principal blocks, as we expect, this restriction

becomes the usual restriction map from the cohomology of G to that of N . In the

end of this section we will prove, that in our situation, results from section 3.1, which

links cohomology of c with Hochschild cohomology of the block algebra kNc are still

true.

By 3.2.5 and Proposition 3.2.8 in the next sections we will work under the hy-

pothesis of the following situation:
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Situation(∗). Let G be a finite group, N be a normal subgroup of G and c a G-stable

block of kN . Let Pγ be a pointed defect group of G{c} on A1 and Qδ = (P ∩N)δ ≤ Pγ

the corresponding defect pointed group of N{c}. Then there is a unique maximal (c,G)-

Brauer pair (P, eP ) such that BrNP (i)eP ̸= 0, for any i ∈ γ, and there is a unique

maximal c-Brauer pair (Q, eQ) such that BrNQ (j)eQ ̸= 0, for any j ∈ δ. Moreover we

have that (Q, eQ) ≤ (P, eP ). Similarly, in situation (∗), we can define the generalized

block cohomology of c, which if N = G becomes the usual cohomology H∗(N, c,Qδ).

Definition 3.3.1. The generalized cohomology algebra of the block c of N associated

to Pγ is the subalgebra

H∗(G,N, c, Pγ)

of H∗(P, k) which consists of the elements [ζ] ∈ H∗(P, k) satisfying the stability con-

dition resφ[ζ] = resPR[ζ], for any subgroup R of P and any group homomorphism

φ : R → P ı̂n F(P,eP )(G,N, c).

Since all defect groups of G{c} are G-conjugate, it follows that the above algebra,

is up to an isomorphism independent of choosing Pγ.

Proposition 3.3.2. In situation (∗), for any [ζ] ∈ H∗(G,N, c, Pγ) we have that

resPQ([ζ]) ∈ H∗(N, c,Qδ).

Using Proposition 3.3.2, we define a restriction map from generalized block coho-

mology of c to block cohomology of c.

Definition 3.3.3. In situation (∗) we define the restriction in block cohomology

resG,N,c
N,c : H∗(G,N, c, Pγ) −→ H∗(N, c,Qδ),

by resG,N,c
N,c ([ζ]) = resPQ([ζ]), for any [ζ] ∈ H∗(G,N, c, Pγ).
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3.3.4. The multiplicity algebra; the multiplicity module. We consider B =

kNc, which is a primitive G-algebra (the unity of B, that is c is a primitive idempotent

of BG, thus BG is a local ring). Moreover B is the localization of G{c} in A1 and Pγ

is a defect of B. We remind that S(γ) = BP/mγ is a simple k-algebra which we call

the multiplicity algebra, where mγ = J(BP ) is the only maximal ideal BP such that

γ * mγ. Then S(γ) ≃ Endk(V (γ)), where V (γ) is a simple BP -module which we call

the multiplicity module.

In the following section we denote by N = NG(Pγ)/P and we can consider C =

CN(P )/Z(P )∩N . We notice that C = CN(P )/P ∩CN(P ) ≃ PCN(P )/P , which is a

subgroup of N .

Lemma 3.3.5. Under the conditions 3.3.4 it is true that the multiplicity module V (γ)

is simple and projective as kC-modul. Moreover we have that p doesn’t divide | N/C |.

Proposition 3.3.6. Let Pγ be a defect pointed group of G{c} and (P, eP ) the only

maximal (c,G)-Brauer pair with the property that BrNP (i)eP ̸= 0. Then it follows that

Z(P ) ∩ N is a pointed defect group of eP . Particularly eP is a nilpotent block of

kCN(P ).

Proposition 3.3.7. Let Pγ be a defect pointed group of G{c} and (P, eP ) the only

maximal (c,G)-Brauer pair with the property that BrNP (i)eP ̸= 0, for any i ∈ γ. Then

Pγ is the only pointed group on A1 with the above property and moreover we have that

NG(P, eP ) = NG(Pγ). In this situation NG(P, eP )/PCN(P ) ∼= N/C.

Proposition 3.3.8. Let N be a normal subgroup of G, let c be a G-stable block of kN ,

Pγ a pointed defect group of G{c} and i ∈ γ. We consider ikGi as kP − kP -bimodule

avd [ζ] ∈ H∗(G,N, c, Pγ).

i) We have that tikGi(δP ([ζ])) =
dimk(ikGi)

|P | δP ([ζ]); particularly πikGi =
dimk(ikGi)

|P | 1kP .
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ii) For any positive integer n the following diagram is commutative up to homotopy:

PkP
εikGi //

δP (ζn)
��

(ikGi)⊗kP PkP ⊗kP (ikGi)

Id⊗δP (ζn)⊗Id
��

PkP [n]
εikGi[n] // (ikGi)⊗kP PkP [n]⊗kP (ikGi)

,

where ζn is the degree n component of ζ. Particularly δP ([ζ]) is ikGi-stable.

Remark 3.3.9. Let N be a normal subgroup of G, let c be a G-stable block of kN

and Pγ pointed defect group of G{c} with i ∈ γ. Then there is an isomorphism of

kP − kGc-bimodule (kGi)∗ ∼= ikG.

We apply [17, 6.6] in the particular case of A = kGc,B = kP as symmetric k-

algebras with the usual symmetric forms s, respectively t and M = kGi, and obtain

descriptions of the unity an counity.

Lemma 3.3.10. Let N be a normal subgroup of G, let c be a G-stable block of

kN and Pγ pointed defect group of G{c} with i ∈ γ. Using the identification from

Remark 3.3.9 and since by Proposition 3.2.10 the multiplication in kGc induces an

isomorphism ikG ⊗kGc kGi ∼= ikGi it follows that the adjunction maps kGi and its

dual ikG are given as follows:

ϵkGi : kP −→ ikGi maps u ∈ P to ui;

ηkGi : kGi⊗kP ikG −→ kGc given by multiplication in kGc;

ϵikG : kGc −→ kGi⊗kP ikG maps a ∈ kGc to
∑

x∈[G/P ]

axi⊗ ix−1;

ηikG : ikGi −→ kP maps b ∈ ikGi to
∑
u∈P

s(bu−1)u.

Moreover we have that πkGi = TrGP (i) and πikG = s(i)1kP = dimk(ikG)
|G| 1kP .
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Next we will give the main result of this chapter, which says the the generalized

block cohomology algebra of a G-stable block embeds through the diagonal map into

the subalgebra of stable elements of Hochschild cohomology algebra of kGc. The

result is similar to [17, Teorema 5.6].

Theorem 3.3.11. Let N be a normal subgroup of G, let c be a G-stable block of kN

and Pγ pointed defect group of G{c} with i ∈ γ. Let (P, eP ) be the maximal (c,G)-

pereche Brauer and let kGi and ikG as kGc− kP respectively kP − kGc-bimodule.

i) We have that πkGi = TrGP (i) ∈ Z(kGc)× and πikG = dimk(ikG)
|G| 1kP ∈ k∗1kP .

ii) If [ζ] ∈ H∗(G,N, c, Pγ) then δP ([ζ]) is ikG-stable in HH∗(kP ).

iii) The homomorphism TkGi ◦ δP induces an injective homomorphism of graded

k-algebras

H∗(G,N, c, Pγ)
δP // HH∗

ikG(kP )
TkGi // HH∗

kGi(kGc)

We end this section with third main Brauer’s Theorem for (c,G)-Brauer pairs.

This result is the main result proved by the author in[31], and the proof just imitates

the proof from [35, Teorema 40.17]; we will use an normal inclusion relation between

(c,G)-Brauer pairs.

Theorem 3.3.12. Let c = c0 be the principal block of kN , where N is a normal

subgroup of G and Q is a p-subgroup of G. Then we have that:

a) The principal block c0 is G-stable.

b) BrNQ (c0) is an primitive idempotent in Z(kCN(Q)) and is the principal block of

kCN(Q).

c) (Q, eQ) is a (c0, G)-Brauer pair if and only if eQ is the principal block of kCN(Q).
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d) (c0, G)-defect groups are the Sylow p-subgroups of G.

3.4 Properties of the restriction map in block co-

homology

In this section we will analyze the proprieties of the generalized restriction map,

defined in section 3.3. If we are in situation (∗) we will study this restriction map

through the transfer map between Hochschild cohomology algebras of kGc and of

block ideal kNc.

First we remind some notations and results which are implicitly in 3.1 and 1.1.

Let A,B,C be three symmetric R-algebras, X be a bounded complex of finitely

generated A − B-bimodules, projective as left A-modules and right B-modules, Y

be a bounded complex of B − C-bimodules, projective as left B-module and right

C-module. We will denote that [ζ] ∈ HH∗(A) is X-stable with [ζ]⊗A 1X = 1X ⊗B [τ ],

where [τ ] ∈ HH∗(B) which satisfy Definition 2.1.1.

Proposition 3.4.1. With the above hypothesis:

i) πX⊗BY = t0X(πY ).

ii) If X ′ is a direct summand X then HH∗
X∗(B) ⊂ HH∗

X′∗(B). Moreover if πX , πX′

are invertible then the normalized transfer map TX′ coincides TX on HH∗
X∗(B).

The next proposition follows from [13].

Proposition 3.4.2. If πX , πY , πX⊗BY are invertible then TX ◦ TY coincides with

TX⊗BY on HH∗
Y ∗⊗BX∗(C).

3.4.3. Particular case of complex in situation (∗). Let A = kNc, B = kGc, and

X = ckGc = kGc as A − B-bimodule with X∗ = ckGc = ckG as B − A-bimodule.

Let M = kP as kP − kQ-bimodule with M∗ = kP respectively kQ − kP -bimodule.

We know that πM = [P : Q]1kP ∈ Z(kP ) is not invertible and πM∗ = 1kQ ∈ Z(kQ)×.
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Proposition 3.4.4. In the hypothesis 3.4.3 the following statements are true:

i) πX = c, πX∗ = [G : N ]c.

ii) πX ∈ Z(kNc) is invertible. πX∗ is invetible in Z(kGc) if and only if p doesn’t

divide [G : N ].

In situation (∗) since Qδ ≤ Pγ we choose i ∈ γ and j ∈ δ such that j = ij = j i.

Next we choose Y = kGi as B − kP -bimodule and Z = kNj as A − kQ-bimodule.

Then we have the following descriptions:

ikGj = ikG⊗B X
∗ ⊗A kNj = Y ∗ ⊗B X

∗ ⊗A Z;

jkGi = Z∗ ⊗A X ⊗B Y.

Lemma 3.4.5. The following statements are true:

a) HH∗
ikGj(kP ) ⊂ HH∗

Y ∗⊗BX∗(kP ).

b) TY (HH
∗
Y ∗⊗BX∗(kP )) ⊂ HH∗

X∗(kGc).

Lemma 3.4.6. With the above notations the following statements are true:

a) kQ− kQ-bimodulul jkNj is a direct summand of ikGj.

b) A− kP -bimodulul X ⊗B Y is a direct summand Z ⊗kQ jkGi.

c) We have that M is isomorphic with a direct summand of ikGj as kP − kQ-

bimodule.

3.4.7. A commutative diagram given by the restriction in block cohomol-

ogy. By c) from Lema 3.4.6 we will identify M with a direct summand ikGj. Since
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πM∗ = 1kQ the normalized transfer TM∗ is tM∗ . We suppose that we are in situa-

tion (∗), then by [17, Propoziţia 4.7] the following diagram of graded k-algebras is

commutative:

H∗(G,N, c, Pγ)
δP //

resG,N,c
N,c

��

HH∗(kP )

TM∗
��

H∗(N, c,Qδ)
δQ // HH∗(kQ)

.

We obtain a different diagram in the next remark, where abusively we denote by TM∗

the surjective map RM∗ .

Remark 3.4.8. With the hypothesis from 3.4.7 the following diagram of homomor-

phisms of graded k-algebras is commutative:

H∗(G,N, c, Pγ)
δP //

resG,N,c
N,c

��

HH∗
M(kP )

TM∗
��

H∗(N, c,Qδ)
δQ // HH∗

M∗(kQ)

.

Proposition 3.4.9. We suppose that δP (H
∗(G,N, c, Pγ)) ⊆ HH∗

ikGj(kP ), where ikGj

is kP − kQ-bimodule. Then the following diagram of homomorphisms of graded k-

algebras is commutative:

H∗(G,N, c, Pγ)
δP //

resG,N,c
N,c

��

HH∗
ikGj(kP ) ∩ HH∗

M(kP )

TM∗
��

H∗(N, c,Qδ)
δQ // HH∗

jkNj(kQ) ∩ HH∗
M∗(kQ)

.

Theorem 3.4.10. In situation (∗) we choose i ∈ γ and j ∈ δ such that j = ij = ji.

We suppose that δP (H
∗(G,N, c, Pγ)) ⊂ HH∗

ikGj(kP ). Then the following diagram of

homomorphisms of graded k-algebras is commutative::
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H∗(G,N, c, Pγ)
TkGi◦δP //

resG,N,c
N,c

��

HH∗
X∗(kGc)

TX

��
H∗(N, c,Qδ)

TkNj◦δQ // HH∗(kNc)

.

If c is the principal block of kN then δP (H
∗(G,N, c, Pγ)) ⊂ HH∗

ikGj(kP ), the prop-

erty from Theorem 3.4.10 is satisfied; in this case the above diagram is commutative.

3.5 Varieties in the generalized block cohomology

In this section we follow the notations and hypothesis from Theorem 3.4.10. The main

articles where is studied the variety associated to the usual block cohomology algebra

are: [18], [20], [6]. We will end with a theorem which links the varieties associated to

a module through the restriction in blocks cohomology.

3.5.1. Varieties associated to modules for generalized block cohomology.

The generalized block cohomology algebra H∗(G,N, c, Pγ) is a finitely generated

algebra, graded commutative. We denote the maximal ideal spectrum by VG,N,c, and

this is called the variety of this algebra. Let U be a finitely generated kGc-module

and let I∗G,N,c,Pγ
(U) be the kernel of the composition of graded k-algebras

H∗(G,N, c, Pγ)
TkGi◦δP // HH∗(kGc)

αU // Ext∗kGc(U,U) ,

where αU is the functor induced by −⊗kGcU . The variety VG,N,c(U) is defined as the

subvariety of VG,N,c, which consists of the maximal ideals containing I∗G,N,c,Pγ
(U). We

will denote still by U the structure of U as kNc-module and by I∗N,c,Qδ
the kernel of

the composition

H∗(N, c,Qδ)
TkNj◦δQ // HH∗(kNc)

αU // Ext∗kNc(U,U) .
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The variety VN,c(U) is the subvariety of VN,c which consists in all maximal ideals con-

taining I∗N,c,Qδ
. The cohomology variety VG(U) associated to U , introduced by Carlson

in [9], is defined as the subvariety of the maximal ideals spectrum of H∗(G, k) (de-

noted with VG) determined by I∗G(U). Here I
∗
G(U) is the kernel of the homomorphism

of graded k-algebras H∗(G, k) −→ Ext∗kGc(U,U) induced by the functor −⊗k U .

Next we prove the following proposition which is an analogous result to [20, The-

orem 2.1] and a lemma which provides us a stratification of the variety VG,N,c(U).

These two results allow us to prove the main theorem of this section.

Theorem 3.5.2. We keep the notations and the assumptions from Theorem 3.4.10.

(a) The restriction map in block cohomology resG,N,c
N,c : H∗(G,N, c, Pγ) −→ H∗(N, c,Qδ)

induces a finite map (resG,N,c
N,c )∗, which we denote by r∗G,N,c : VN,c −→ VG,N,c.

b) For any finitely genrated kGc-module U , we have that

VN,c(U) = (r∗G,N,c)
−1(VG,N,c(U)).



Chapter 4

An equivalent definition of

cohomology of finite groups

Let G be a finite group, k a field of characteristic p and P a Sylow p-subgroup of G.

The fusion system of P in G is defined by 1.4.1. In the first chapter of this section we

will obtained a similar result to the embedding of the cohomology of a finite group

into the submodule of stable elements in the cohomology of a Sylow subgroup, but

for kG-modules. In the second section we will prove an isomorphism of the functor

Hom, a left exact functor which appear in the definition of group cohomology, with

a new functor defined by stable elements in the k-submodule of homomorphisms of

kP -modules.

The chapter is entirely developed on the results obtained by the author ı̂n [34].

4.1 Stable elements in the module of homomor-

phisms

Let A,B be two kG-modules. If φ : H −→ G is a homomorphism of finite groups,

where H,G are two groups, then there is the restriction through φ

resφ : HomkG(A,B) −→ HomkH(A,B) f 7→ resφ(f),
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where resφ(f) is f considered as homomorphisms of RH-modules. The structure of

RH-module is given by φ (i.e. ha = φ(h)a, for a ∈ A and h ∈ H).

First we prove a similar proposition to [11, Corollary 4.2.7]

Proposition 4.1.1. Let P be a Sylow p-subgroup of G and A,B be two kG-modules.

Then f is in ImresGP if and only if

resPP∩gP (f) = res
gP
P∩gP (g

∗(f)), ∀g ∈ G. (4.1.1)

Definition 4.1.2. A homomorphism f ∈ HomkP (A,B) which satisfy condition (4.1.1)

is called stable. We denote by Homst
kP (A,B) the k-submodule of stable elements.

Since TrGP ◦ resGP = [G : P ]id and [G : P ] is invertible in k, by Proposition 4.1.1

we obtain the following corollary.

Corollary 4.1.3. With the above hypothesis the following statements are true:

1) HomkG(A,B) is isomorphic to the k-submodule of stable elements in Homst
kP (A,B).

2) Homst
kP (A,B) = {f ∈ HomkP (A,B) | resPR(f) = resφ(f), ∀φ ∈ HomFP (G)(R,P )}.

4.2 An equivalent definition of cohomology of fi-

nite groups

The usual definition of group cohomology is Hn(G, k) = RnHomkG(k,−)(k) as the

right n-th derived functor of the covariant functor Hom, which is in this case, the left

exact, covariant and additive functor

HomkG(k,−) : Mod(kG) −→ Modk.

Using Corollary 4.1.3 we will define a new functor FG : Mod(kG) −→ Modk.



35

4.2.1. An isomorphic functor to HomkG(k,−).

If A is a kG-module we denote by FG(A) the k-submodule of stable elements in

HomkP (k,A), that is

FG(A) = {f ∈ HomkP (k,A) | resPR(f) = resφ(f), ∀φ ∈ HomFP (G)(R,P )}.

If ∂ : A −→ B is a homomorphism of kG-modules we define by FG(∂) the homomor-

phism of k-modules

FG(∂) : FG(A) −→ FG(B), FG(∂)(f) = ∂ ◦ f.

It follows that FG(A) is an additive covariant functor. The Corollary 4.1.3 allow us

to obtain the natural isomorphism of functors FG
∼= HomkG(k,−), which implies that

FG is a left exact functor.

The relevance of the following proposition is given by the isomorphism from the

proof. We hope that this approach allow us to apply the same method to block

cohomology. This is analyzed in [30].

Proposition 4.2.2. There is the well defined homomorphism of k-modules

ψ : RnFG(k) −→ Hn
st(FP (G)),

cu ψ(f + ImFG(δ
n−1)) = [f ], for any f ∈ KerFG(δ

n).

Now it is easy to check the following corollary.

Corollary 4.2.3. There is the isomorphism of k-modules RnFG(k) ∼= Hn(G, k).
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