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Introduction

The theme of this PhD Thesis is related to the study of certain classes of equations in spaces of

multivalued functions. More speci�cally, after a study of some operatorial equations with multivalued

operators in metric context and a presentation of several existence theorems, �xed and semi�xed

sets for set operators, in the second part of the thesis, we study qualitative properties (existence,

uniqueness, data dependence, Hyers-Ulam-Rassias stability) for di�erential and integral equations in

spaces of multivalued functions. The study is motivated by actuality of the topic (41 articles and 17

books in the last 10 years) and its importance: many problems of applied mathematics reduce to the

study of such equations in spaces of multivalued functions.

The paper is divided into four chapters, followed by references.

The �rst chapter, entitled "Preliminaries", has the aim to remind some notions and basic results

which are necessary for the following chapters of this Ph.D. thesis. In writing this chapter, we used

the following bibliographical sources: J.-P. Aubin, A. Cellina [4], M. C. Anisiu [1], [2], K. Deimling

[23], [24], J.-P. Aubin, H. Frankowska [5], M. Kisielewicz [44], G. Beer [9], S. Hu �si N.S. Papageorgiou

[40], J. Dugundji, A. Granas [37], A. Petru�sel [66], I. A. Rus [75], [77].

The second section of the �rst chapter presents concepts and results of the theory of multival-

ued operators. The notions and the results presented appear in classical works such as: J.-P. Aubin,

H.Frankovska [5], G. Beer [9], C. Berge [10], C. Castaing, M. Valadier [13], F.S. De Blasi [19], L.

G�orniewicz [35], L. G�orniewicz [36], C. J. Himmelberg [38], S. Hu, N. S. Papageorgiou [40], V. Laksh-

mikantham, T. Gnana Bhaskar, J. Vasundhara Devi [49], A. Petru�sel, G. Petru�sel [70], I.A. Rus, A.

Petru�sel, G. Petru�sel [86].

The third section of this chapter entitled "Derivative and integrability of multivalued operators"

presents concepts considered by many authors in their books: J.-P. Aubin, H.Frankovska [5], H.T.

Banks, M.Q. Jacobs [8], F. S. De Blasi [19], G.N. Galanis, T.G. Bhaskar, V. Lakshmikantham and

P.K.Palamides [31], V. Lakshmikantham, T. Gnana Bhaskar, J. Vasundhara Devi [49]. They are
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considered in di�erent ways depending on the applications which involved them. The purpose of this

paragraph is to present the concept of derivative and integration of the multivalued operator, in the

sense of Hukuhara. The concept of derivative for multivalued operators was given in 1967 by Hukuhara

[41], [42].

In the fourth section of the �rst chapter we present basic notions and results from the theory of

Picard and weakly Picard operators.

Chapter two is entitled "Semi�xed sets for multivalued contractions". In this chapter we present

results concerning existence and uniqueness of semi�xed sets for set-operators which satisfy some

contraction conditions and some topological conditions. The results in this chapter extend some

results presented in the following works: A.J. Brandao [12], A. Constantin [16], H. Covitz, S.B. Nadler

jr.[17], F.S. De Blasi [19], [20], [21], [22], M. Frigon [27], [28], S. Kakutani [43], V. Lakshmikantham,

A.N. Tolstonogov [47], V. Lakshmikantham, T. Gnana Bhaskar, J. Vasundhara Devi [49], A. Muntean

[60].

Thus, in the �rst section, "Semi�xed sets for multivalued operators", are presented some concepts

relative to the semi�xed sets for set-operators, notions introduced F.S. De Blasi in [21], [22].

In the second part of the chapter, in paragraph "Semi�xed sets for multivalued '-contractions",

are proved some results on the existence of semi�xed sets for set '-contractions. The results which

belong to the author are: Theorem 2.2.13, Theorem 2.2.14, Theorem 2.2.15 which are published in the

paper I.C. Ti�se [96]. In the last part is presented the generalized Hyers-Ulam stability in: Theorem

2.2.7 and Theorem 2.2.17, which are published in the paper I.C. Ti�se [100].

The third chapter of this paper is called "Integral equations in spaces of multivalued functions".

Here are presented some existence, uniqueness and data dependence results of solutions for integral

equations and di�erential equations for multivalued function spaces and their applications.

In the �rst section, "Integrals equations in spaces of multivalued functions" are presented, with

respect to integral equations in spaces of multivalued functions, existence theorems and uniqueness

of solution of equations and continuous data dependence. Contributions of the author are: Theorem

3.1.3, Theorem 3.1.4, Theorem 3.1.7, Theorem 3.1.9, and they are published in the paper I.C. Ti�se

[98].

In the second part of the chapter is presented the notion of the Cauchy problem for di�erential

equations in spaces of multivalued functions and are obtained results of existence and uniqueness for

this problem through the �xed point method. Our contributions are Theorem 3.2.4, Theorem 3.2.5

appeared in the paper I.C.Ti�se [99].

In the last part of the chapter, "Functional-integral equations in spaces of multivalued functions", we

5



present the case of some functional-integral equations and we prove results of existence and uniqueness

of the solution.

The contributions are Theorem 3.3.1, Theorem 3.3.2, Theorem 3.3.4 and are published in the paper

I.C. Ti�se [99].

Some Hyers-Ulam-Rassias stability results in the generalized sense for integral equations in spaces

of multivalued functions are presented: Theorem 3.1.6, Theorem 3.1.11, Theorem 3.3.5, which are

contained in the paper I.C. Ti�se [100].

Chapter four is titled "Qualitative properties of solutions of di�erential equations in multivalued

function spaces. The �rst paragraph of this chapter is dedicated to Gronwall type Lemmas and

comparison theorems. In following section we discuss data dependence of the solution of di�erential

equations in spaces of multivalued functions.

The contributions from this chapter are Theorem 4.1.3, Theorem 4.1.7, Theorem 4.1.9, Theorem

4.1.11, Theorem 4.2.1, results contained in the papers I.C Ti�se [95], [97].

In conclusion, the contributions of this thesis appear in the following papers:

I.C. Ti�se, Data dependence of the solutions for set di�erential equations, Carpathian J. Math., 23

(2007), No. 1-2, 192-195;

I.C. Ti�se, Semi�xed sets for multivalued '-contractions, Creative Math.& Inf., 17 (2008), No. 3,

516-520;

I.C. Ti�se, Gronwall lemmas and comparison theorems for the Cauchy problem associated to a set

di�erential equation, Studia Universitatis Babes-Bolyai Mathematica, 54 (2009), No. 3, 161-169;

I.C. Ti�se, Set integral equations in metric spaces, Mathematica Moravica, 13 (2009), 95-102;

I.C. Ti�se, A �xed point approach for functional-integral set equations, accepted for publication in

Demonstratio Mathematica, Vol. 44 (2011), No. 2, va ap�area;

I.C. Ti�se, Ulam-Hyers-Rassias stability for set integral equations, trimis�a spre publicare.

I would like to thank to my scienti�c advisor, Prof. univ. dr. Adrian Petru�sel, for his careful

guidance and permanent encouragement I received during this period, to all the members of the

Department of Applied Mathematics chair. My formation as a teacher and a researcher was made at

the Faculty of Mathematics and Computer Science from "Babe�s-Bolyai" University Cluj-Napoca. I

want to thank to all my teachers once again.

Cluj-Napoca, 2010.
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1

Preliminaries

1.1 Functional parts of a space metric space

1.2 Multivalued operators

1.3 Derivative and integrability of multivalued operators

The derivative for multivalued operators is considered by many authors in their works: J.-P. Aubin,

H.Frankovska [5], H.T. Banks, M.Q. Jacobs [8], F. S. De Blasi [19], G.N. Galanis, T.G. Bhaskar, V.

Lakshmikantham and P.K.Palamides [31], V. Lakshmikantham, T. Gnana Bhaskar, J. Vasundhara

Devi [49]. They work in di�erent ways, which depend of the applications.

The main purpose of this section is to present the concept of derivative in the sense of Hukuhara.

We mention that the notion of derivative for a nonempty and compact set from a continuous function

space was given from Bridgland in 1970. Banks and Jacobs also de�ne in 1970 a notion of derivative for

multivalued operators in normed spaces and present some results which are like the usual di�erential

calculus, see [8].

In 1967 Hukuhara [41], [42] gave a de�nition for derivative for multivalued operators.

Definition 1.3.1 (Hukuhara [41]) Let X an Banach spaces and A;B 2 Pcp;cv(X) is called di�erence

sets A and B (note A�B) a set C 2 Pb;cl;cv(X) (if it exist) with properties C +B = A.

This de�nition was called while the di�erence Hukuhara.

7



Definition 1.3.2 (Hukuhara [41]) Let I � R and F : I ! Pcp;cv(R
n) multivalued operators. Then F

is called H-di�erentiable (Hukuhara di�erentiable) in t0 2 I, if exist DHF (x0) 2 Pcp;cv(R
n) such that

the limits:

lim
�t!0+

F (t0 +�t)� F (to)

�t
(1.3.1)

lim
�t!0+

F (t0)� F (t0 ��t)

�t
(1.3.2)

both exist and are equal to DHF (t0).

Clearly, implicit in the de�nition of DHF (t0) is the existence of the di�erences F (to+�t)�F (t0),

F (t0)� F (t0 ��t) for all �t > 0 su�ciently small.

1.4 Picard operators and weakly Picard operators
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2

Semi�xed sets for multivalued

contractions

In this chapter we will prove some existence (and eventually uniqueness) results of the semi�xed

sets for set-operators which satisfy some contractive conditions and some topological conditions.

The results of this chapter extend and generalize some theorems from works by A.J. Brandao [12],

A. Constantin [16], H. Covitz, S.B. Nadler jr.[17], F.S. De Blasi [19], [20], [21], [22], M. Frigon [27],

[28], S. Kakutani [43], V. Lakshmikantham, A.N. Tolstonogov [47], V. Lakshmikantham, T. Gnana

Bhaskar, J. Vasundhara Devi [49], A. Muntean [60].

The �rst part of the chapter presents some basic notions regarding semi�xed sets for set-operators,

notions introduced by de F.S. De Blasi in his works [21], [22]. In the second part of the chapter we prove

some results regarding the existence of semi�xed sets in the case of multivalued set-'-contractions.

The results belonging to the author from this chapter are: Theorem 2.2.13, Theorem 2.2.14, Theorem

2.2.15 and they are published in the paper I.C. Ti�se [96]. In the last part the generalized Ulam-Hyers

stability is presented in Theorem 2.2.7 and Theorem 2.2.17 and can be found in I.C. Ti�se [100].

2.1 Semi�xed sets for multivalued operators

In this section we present the notion of semi�xed sets for multivalued operators, a concept introduced

by F.S. De Blasi.

Let (X; jj � jj) be a real Banach space, and A;B be tow families of nonempty subsets of X and let

P (B) the family of all nonempty subset of B.
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We introduce in Pcp;cv(X) the usual operations of addition and multiplication by nonnegative

scalars, for A;B 2 Pcp;cv(X) and � � 0 we have:

A+B = fa+ bja 2 A; b 2 Bg,

�A = f�aja 2 Ag.

Clear, we have A+B; �A 2 Pcp;cv(X).

Moreover, if A;B;C 2 Pcp;cv(X) and �; � � 0 we have:

(i) A+ f0g = A, where 0 the zero of Banach space X;

(ii) A+B = B +A;

(iii) A+ (B + C) = (A+B) + C;

(iv) 1 �A = A;

(v) �(�A) = (��)A;

(vi) �(A+B) = �A+ �B;

(vii) (�+ �)A = �A+ �A.

It is worth noticing that the above properties, except (vii), remain valid in the space Pcp(X).

Definition 2.1.1 A set A � Pcp;cv(X) is called convex if A;B 2 A and t 2 [0; 1], imply (1�t)A+tB 2

A.

Let X be a Banach space. The space Pcp(Pcp(X)) endowed with the Pompeiu-Hausdor� metric H

induced by the metric H of Pcp(X),

H(A;B) := maxfe(A;B); e(B;A)g;

where e(A;B) := sup
A2A

inf
B2B

H(A;B), and e(B;A) := sup
B2B

inf
A2A

H(B;A):

Remark 2.1.2 Pcp;cv(Pcp;cv(X)) � Pcp(Pcp(X)).

Definition 2.1.3 Let (X;H) be a metric space. The multivalued operator � : X ! Pcp(Pcp(X)), is

called upper semicontinuous (resp. lower semicontinuousif, for every x0 2 X and " > 0 there exists an

open neighborhood V of x0 such that H(�(x); �(x0)) < " (resp. H(�(x0); �(x)) < "), for every x 2 V .

� is called continuous if it is both, upper and lower semicontinuous.
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Let (X; jj � jj) be a norm space. For A;B 2 Pcp(X) note:

D(A;B) = inffjja� bjj ja 2 A; b 2 Bg:

We have the next properties for � 2 R and A;A0; B;B0 2 Pcp(X):

1. D(A;B) = D(B;A);

2. D(A;B) = 0 if and only if A \B 6= ;;

3. D(�A; �B) = j�jD(A;B);

4. D(A;B) � D(A0; B0) +H(A;A0) +H(B;B0);

5. H(A;B) � diam(A) + diam(B) +D(A;B):

6. the function D is continuous on Pcp(X)� Pcp(X):

jsup
B2B

D(A;B)� sup
B2B

D(A0; B)j � H(A;A0):

De�ne set

�(A;B) = maxff(B;A); f(A;B)g;

for A;B 2 Pcp(Pcp(X)),

where f(A;B) = inf
A2A

sup
B2B

D(A;B) and f(B;A) = inf
B2B

sup
A2A

D(B;A):

Remark, if �(A;B) = 0 then exist A0 2 A and B0 2 B such that A0 \B 6= ;, for every B 2 B and

B0 \A 6= ;, for every A 2 A.

The purpose of this section is to present some semi�xed set teorems for multivalued operators with

compact and convex vales, for X a Banach space, de�ned by:

� : Pcp;cv(X) �! Pcp;cv(Pcp;cv(X)):

Definition 2.1.4 Let � : A ! P (B) such that there exists on F 2 �(A) satisfying a relation of the

type

A � F;A � F;A \ F 6= ;;

for any set A 2 A is called a semi�xed set of multivalued �:

Moreover, a �xed set for � is any set A 2 A satisfying A 2 �(A).
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Proposition 2.1.5 (F.S. De Blasi[22]) Let A be a nonempty compact convex subset of Pcp;cv(X), and

let � : A ! Pcp;cv(Pcp;cv(X)) be an upper semicontinuous multifunction with values �(X) � A, for

every X 2 A. Then there exists at least one set A 2 A such that A 2 �(A):

Theorem 2.1.6 (F.S. De Blasi[22]) Let A be a nonempty compact convex subset of Pcp;cv(X) and let

� : A ! Pcp;cv(Pcp;cv(X)) be an upper semicontinuous multivalued operators satisfying the following

condition:

(i) for every X 2 A, there exists a set F 2 �(X) such that F \ (
S

Z2A

Z) 6= ;.

Then there exists at least one set A 2 A such that:

A \ F 6= ;; for some F 2 �(A): (2.1.1)

Theorem 2.1.7 (F.S. De Blasi[22]) Let A be a nonempty compact convex subset of Pcp;cv(X), � : A !

Pcp;cv(Pcp;cv(X)) be an upper semicontinuous multivalued operators satisfying the following condition

for every X 2 A, there exist F 2 �(X) and Z 2 A such that: F \ (
S

Z2A

Z) 6= ; and Z � F (resp.

Z � F ).

Then there exists at least one set A 2 A such that

A � F (resp. A � F ) for some F 2 �(A): (2.1.2)

2.2 Semi�xed sets for multivalued '-contractions

In the �rst part of this paragraph we present the �xed point theorem Matkowski-Rus ([54], [81])

for '-contractions. Our results extend some previous theorems given by F. S. De Blasi in [21], [22],

M. Frigon [29], M. Frigon, A. Granas [30].

Definition 2.2.1 (I.A. Rus [77]) A function ' : R+ ! R+ is a comparison function if it satis�es:

(i) ' is monotone increasing;

(ii) ('n(t))n2N converges to 0, for all t > 0:

Definition 2.2.2 (I.A. Rus [77]) A comparison function ' : R+ ! R+ is said to be:

(i) a strict comparison function if it satis�es t� '(t)!1, for t!1;

(ii) a strong function if it satis�es
1P
n=1

'n(t) <1, for all t > 0.
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Remark 2.2.3 If ' : R+ ! R+ is a comparison function then '(0) = 0 and '(t) < t, for all t > 0:

Example 2.2.4 (I.A. Rus [77]) The function '1 : R+ ! R+, '1(t) = at (where a 2]0; 1[) and

'2 : R+ ! R+, '2(t) =
t

1+t is a comparison function.

Let ' : R+ ! R+ be a comparison function. We note

'� := supft 2 R+j t� '(t) � �g:

Definition 2.2.5 (I.A. Rus [82]) Let (X; d) be a metric space. A mapping A : X ! X is a '-

contraction if ' is a comparison function and

d(A(x); A(y)) � '(d(x; y)); for all x; y 2 X:

We present the concept of generalized Ulam-Hyers stability.

Let (X; d) be a metric space, A : X ! X be a operator, and we consider the following di�erential

equation:

x = A(x); x 2 X (2.2.3)

and for " > 0 inequality

d(y;A(y)) � ": (2.2.4)

Definition 2.2.6 (I.A. Rus [82]) The equation (2.2.3) is generalized Ulam-Hyers stability if there

exists  : R+ ! R+ increasing and continuous in 0 with  (0) = 0, such that: for each " > 0 and for

each solution y� 2 X of (2.2.4) there exists a solution x� 2 X of (2.2.3) such that:

d(y�; x�) �  ("):

In the case that  (t) := ct, c > 0, for all t 2 R+, the equation (2.2.3) is said to be Ulam-Hyers

stability.

Theorem 2.2.7 (J. Matkowski [54], I.A. Rus [81], I.C. Ti�se [100])

Let (X; d) be a complete metric space and A : X ! X an '-contraction. Then:

(i) FA = fx�Ag and An(x)! x�A as n!1, for all x 2 X, i.e., A is a Picard operator.

(ii) FA = FAn = fx�Ag, for all n 2 N
�, i.e., A is Bessaga operator.

(iii) If ' is a strong comparison function, note �n :=
n�1P
k=0

'k(t) and s(d(x;A(x))) :=
P
k�0

'k(t) then

d(An(x); x�A) � s(t)� �n, for all x 2 X and n 2 N�.
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(iv) If ' is a strict comparison function then

d(x; x�A) � 'd(x;A(x)), for all x 2 X.

(v)
P
n2N

d(An(x); An+1(x)) � s(d(x;A(x)), for all x 2 X.

(vi) We have
P
n2N

d(An(x); x�A) � s(d(x; x�A)), for all x 2 X.

(vii) If the function  (t) = t � '(t) satis�es the condition  (un) ! 0, for n ! 1 then un !

0; when n ! 1 and if (xn)n2N � X such that d(xn; A(xn)) ! 0; n ! 1 then xn ! x�A 2

FA; for n!1, i.e., the �xed point problem is well posed.

(viii) Let (xn) � X such that (d(xn+1; A(xn)))n2N is converges to 0. Then exists x 2 X such that

d(xn; A
n(x))! 0; for n!1 (i.e. the operator A has the limit shadowing property).

(ix) If (xn)n2N � X is bounded sequence then An(xn)! x�A; for n!1:

(x) Let ' be a strict comparison function. If B : X ! X is such that there exists � > 0 with

d(A(x); B(x)) � � for all x 2 X. Then x�B 2 FB imply d(x�A; x
�
B) � '�.

(xi) If ' is a strict comparison function, An : X ! X, An
unif
! A, n!1: Let xn 2 FAn

, n 2 N and

fx�Ag = FA. Then xn ! x�A as n!1.

(xii) If (X; jj � jj) is a Banach space, then 1X , d(x; y) = jjx� yjj then 1X �A : X ! X is surjective.

(xiii) If  (t) = t� '(t) is strict increasing and surjective, then the �xed point equation

x = A(x); x 2 X

is generalized Ulam-Hyers stability.

Remark 2.2.8 If choose '(t) := at (where a 2 [0; 1)) then (iii) by last Theorem imply Theorem 1.1.

by I.A. Rus [81]. More speci�cally, because

d(An(x); x�A) �
X
k�0

'k(d(x;A(x)))�
n�1X
k=0

'k(d(x;A(x)))

=
X
k�0

akd(x;A(x))�
n�1X
k=0

akd(x;A(x))

= d(x;A(x))
1

1� a
� d(x;A(x))

an � 1

a� 1
=

an

1� a
d(x;A(x)):

imply d(An(x); x�A) �
an

1�ad(x;A(x)), for all x 2 X and n 2 N�.
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Remark 2.2.9 The results of this section extend and generalize some theorems from works by: A.

Petrusel, I.A. Rus [72], A. Petru�sel, A. Ŝ�nt�am�arian [73], I.A. Rus, S. Mure�san [84], I.A. Rus, A.

Petru�sel and A. Ŝ�nt�am�arian [85], J. Saint-Raymond [88].

Definition 2.2.10 The metric space (X; d) is precompact (totally bounded) if and only if for all " > 0

there exists a �nite cover (Fi)i2f1;:::;ng in X such that A � Fi we have diam(A) < ". Note F depend

on ".

The purpose is to presents existence for the solution of a semi�xed set theorem for set '-contraction.

Definition 2.2.11 (F.S. De Blasi[22]) A multivalued operator � : A ! Pcp(Pcp(X)) is said strong

compact if its range �(A) is precompact in Pcp(Pcp(X)).

Definition 2.2.12 (I.C. Ti�se [96]) Let A be a subset of Pcp(Pcp(X)). Then � : A ! Pcp(Pcp(X)) is

said to be a set '-contraction if ' : R+ ! R+ is a comparison function and

�(�(X); �(Y )) � '(D(X;Y )); for all X;Y 2 A:

The �rst main result is:

Theorem 2.2.13 (I.C. Ti�se [96]) Let X be a Banach space, A be a close subset of Pcp(Pcp(X)) and let

� : A ! Pcp(Pcp(X)) be a strong compact and upper semicontinuous multivalued, with values �(X) � A

for every X 2 A.

Suppose there exists a comparison function ' : R+ ! R+ such that satisfying the following condition:

�(�(X); �(Y )) � '(D(X;Y )) for every X;Y 2 A: (2.2.5)

Then there exists A 2 A and F 2 �(A) such that:

A \ F 6= ;: (2.2.6)

Another main result is:

Theorem 2.2.14 (I.C. Ti�se [96]) Let X be a Banach space, A � Pcp(X) and � : A ! A be a

continuous map satisfying the following conditions:

(i) �(B) is precompact in A for every bounded set B � A;

(ii) there exists M > 0 such that diam(�(X)) �M , for every X 2 A:
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(iii) there exists a comparison function ' : R+ ! R+ such that the function

 : R+ ! R+,  (t) = t � '(t) is strictly increasing, onto and for which the following assertion

is satis�ed:

D(�(X); �(Y )) � '(D(X;Y )) for all X;Y 2 A: (2.2.7)

Then there exists A 2 A such that A \ �(A) 6= ;.

We will use the �xed point Theorem of J. Matkowski and I.A. Rus as it is present in Theorem 2.2.7

(i).

We will present now an application of the integral equation in the spaces of multivaled functions.

Let Br := fX 2 Pcp;cv(R
n)jdiam(X) � rg, where r > 0.

The set Br endowed with the Pompeiu-Hausdor� metric, is convex and complete.

Let I = [a; b], �e F : I � I �Br ! Br=2, and a set A 2 Br=2:

Consider the integral equation

X(t) = A+

Z b

a

F (t; s;X(s))ds: (2.2.8)

By a solution of equation (2.2.8) we understand a continuous function X : I ! Br, which satis�es

(2.2.8) for every t 2 I.

Theorem 2.2.15 (I.C. Ti�se [96]) Let F : I � I �Br ! Br=2 be continuous and suppose there exist a

comparison function ' : R+ ! R+ and a function p : I � I ! R+ such that:

H(F (t; s;X); F (t; s; Y )) � p(t; s)'(H(X;Y ))

for every t; s 2 I; X; Y 2 Br; where max
t2I

R b
a
p(t; s) � 1:

Then, for each A 2 Br=2 the integral equation (2.2.8) has a unique solution X(�; A) : I ! Br with

depends continuously on A.

Definition 2.2.16 (I.C. Ti�se [100]) Let F : [a; b] � [a; b] � Pcp;cv(R
n) ! Pcp;cv(R

n) and A 2

Pcp;cv(R
n). Integral equation:

(2:2:8) X(t) = A+
R b
a
F (t; s;X(s))ds; t 2 [a; b]

is generalized Ulam-Hyers stability if there exists a function

 : R+ ! R+ increasing and continuous in 0 with  (0) = 0 such that for each " > 0 and for each

solution Y � 2 C([a; b]; Pcp;cv(R
n)) of

H(Y (t); A+

Z b

a

F (t; s; Y (s))ds) � "; t 2 [a; b]
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there exists a solution X� of the equation (2.2.8) such that we have

jjX� � Y �jjC([a;b];Pcp;cv(Rn)) �  ("):

In the case that  (t) = ct, c > 0 the equation (2.2.8) is said to be Ulam-Hyers stability.

Theorem 2.2.17 (I.C. Ti�se [100]) The assumptions Theorem 2.2.15, in addition assume the function

 : R+ ! R+,  (t) = t � '(t) is strict increasing and surjective. Then integral equation (2.2.8) is

generalized Ulam-Hyers stability.
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3

Integrals equations in spaces of

multivalued functions

The aim of this chapter is to present some existence, uniqueness and data dependence results of

solutions of integral and di�erential equations in multivalued function spaces.

There exist only a few works in the literature which study integral equations in multivalued func-

tion spaces, but there are many works regarding the problems associated to di�erential equations in

multivalued function spaces. The study of some Cauchy problems associated to di�erential equations

in multivalued function spaces can be regarded through the study of of some equivalent integral equa-

tion in such spaces. This is the way we will consider the Cauchy problem in this work. From this

perspective the study of integral equations in the multivalued function space is essential.

In the second part of the chapter is presented the notion of the Cauchy problem for di�erential

equations in spaces of multivalued functions and are obtained results of existence and uniqueness for

this problem through the �xed point method. Our contributions are Theorem 3.2.4, Theorem 3.2.5

appeared in the paper I.C.Ti�se [99].

In the �rst section, "Integrals equations in spaces of multivalued functions" are presented, with

respect to integral equations in spaces of multivalued functions, existence theorems and uniqueness

of solution of equations and continuous data dependence. Contributions of the author are: Theorem

3.1.3, Theorem 3.1.4, Theorem 3.1.7, Theorem 3.1.9, which are published in the paper I.C. Ti�se [98].

In the second part of the chapter is presented the notion of the Cauchy problem for di�erential

equations in spaces of multivalued functions and are obtained results of existence and uniqueness for

this problem through the �xed point method. Our contributions are Theorem 3.2.4, Theorem 3.2.5
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appeared in the paper I.C.Ti�se [99]

In the last part of the chapter, "Functional-integral equations in spaces of multivalued functions", we

present the case of some functional-integral equations and we prove results of existence and uniqueness

of the solution. Our contributions are: Theorem 3.3.1, Theorem 3.3.2, Theorem 3.3.4 and are published

in the paper I.C. Ti�se [99].

Some Hyers-Ulam-Rassias stability results in the generalized sense for integral equations in spaces

of multivalued functions are presented in Theorem 3.1.6, Theorem 3.1.11, Theorem 3.3.5, appeared in

the paper I.C. Ti�se [100].

The results of this section extend and generalize some theorems from works by: A. J. Brandao

Lopes Pinto, F. S. De Blasi, F. Iervillino [12], A. Cernea [14], F. S. De Blasi [22], T. Gnana Bhaskar, J.

Vasundhara Devi [33], C.J. Himmelberg, F.S. Van Vieck [39], V. Lakshmikantham, T. Gnana Bhaskar,

J. Vasundhara Devi [48], [49], N Lungu [50], [51], N. Lungu, I.A. Rus [52], V. Lupulescu [53], D.

O'Regan, A. Petru�sel [64], A. Petru�sel [67], [68], A. Petru�sel, G. Petru�sel, G. Mot� [71], R. Precup [74],

I.A. Rus, A. Petrusel, G. Petrusel [87].

3.1 Integrals equations in spaces of multivalued functions

We consider the following integral equations in spaces of multivalued functions:

X(t) =

Z b

a

K(t; s;X(s))ds+X0(t); t 2 [a; b] (3.1.1)

X(t) =

Z t

a

K(t; s;X(s))ds+X0(t); t 2 [a; b]; (3.1.2)

whereK : [a; b]�[a; b]�Pcp;cv(R
n)! Pcp;cv(R

n) is a continuous operator, andX0 2 C([a; b]; Pcp;cv(R
n)).

A solution of integral equations in spaces of multivalued functions (3.1.1) and (3.1.2) means a

continuous functionX : [a; b]! Pcp;cv(R
n) which satis�es (3.1.1) respectively (3.1.2), for each t 2 [a; b].

The aim of this section is to present some notices use in the chapter.

Lemma 3.1.1 (A. Petru�sel [66]) Let X be a Banach space. Then H(A + C;B + D) � H(A;B) +

H(C;D), for A;B;C;D 2 P (X).

Theorem 3.1.2 (V. Lakshmikantham [49]) Let F;G : [a; b]! Pcp;cv(R
n) Aumann integral operators.

Then

H(

Z b

a

F (t)dt;

Z b

a

G(t)dt) �

Z b

a

H(F (t); G(t))dt:
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We consider on C([a; b]; Pcp;cv(R
n)), the metrics:

HC
� (X;Y ) := max

t2[a;b]
H(X(t); Y (t)):

The pairs (C([a; b]; Pcp;cv(R
n)); HC

� ) has the complet metric space.

On �rst result is an existence and uniqueness theorem for the solution of the integral equation

(3.1.1).

Theorem 3.1.3 (I.C. Ti�se [98])

Let K : [a; b]� [a; b]� Pcp;cv(R
n)! Pcp;cv(R

n) be a multivalued operator. Suppose that:

(i) K is continuous on [a; b]� [a; b]� Pcp;cv(R
n) and X0 2 C([a; b]; Pcp;cv(R

n));

(ii) K(t; s; �) is Lipschitz, i.e. there exists LK � 0 such that:

H(K(t; s; A);K(t; s; B)) � LKH(A;B);

for all A;B 2 Pcp;cv(R
n) and for all t; s 2 [a; b];

(iii) LK(b� a) < 1:

Then the integral equation

X(t) =

Z b

a

K(t; s;X(s))ds+X0(t)

has a unique solution.

A data dependence result for the solution of integral equation (3.1.1) is:

Theorem 3.1.4 (I.C. Ti�se [98]) Let K1;K2 : [a; b]� [a; b]�Pcp;cv(R
n)! Pcp;cv(R

n), be a continuous

and X0; Y0 2 C([a; b]; Pcp;cv(R
n)). Consider the following equations:

X(t) =

Z b

a

K1(t; s;X(s))ds+X0(t); (3.1.3)

Y (t) =

Z b

a

K2(t; s; Y (s))ds+ Y0(t): (3.1.4)

Suppose:

(i) there exists LK1
� 0 such that

H(K1(t; s; A);K1(t; s; B)) � LK1
H(A;B);

for all A;B 2 Pcp;cv(R
n), t; s 2 [a; b] with LK1

(b � a) < 1 (denote by X� the unique solution of

the equation (3.1.3));
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(ii) there exists �1; �2 > 0 such that:

(a) H(K1(t; s; U);K2(t; s; U)) � �1; for all (t; s; U) 2 [a; b]� [a; b]� Pcp;cv(R
n),

(b) H(X0(t); Y0(t)) � �2; for all t 2 [a; b];

(iii) there exists Y � 2 C([a; b]; Pcp;cv(R
n)) a solution of the a equation (3.1.4).

Then

HC
� (X

�; Y �) �
�2 + �1(b� a)

1� LK1
(b� a)

:

An auxiliary result.

Lemma 3.1.5 (I.A.Rus [83])Let h 2 C([a; b];R+) and � > 0 with �(b � a) < 1. If u 2 C([a; b];R+)

satis�es

u(t) � h(t) + �

Z b

a

u(s)ds; for all t 2 [a; b];

then

u(t) � h(t) + �(1� �(b� a))�1
Z b

a

h(s)ds; for all t 2 [a; b]:

A result for generalized Ulam-Hyers-Rassias stability for integral equation (3.1.1)is:

Theorem 3.1.6 (I.C. Ti�se [100]) Consider equations (3.1.1).

We suppose that:

(i) K : [a; b] � [a; b] � Pcp;cv(R
n) ! Pcp;cv(R

n) is continuous multivalued operator and X0 2

C([a; b]; Pcp;cv(R
n));

(ii) K(t; s; �) is Lipschitz, i.e. there exists LK � 0 such that:

H(K(t; s; A);K(t; s; B)) � LKH(A;B);

for all A;B 2 Pcp;cv(R
n) and for all t; s 2 [a; b];

(iii) LK(b� a) < 1;

(iv) ' 2 C([a; b]; (0;+1)):

Then integral equation (3.1.1) has the generalize Ulam-Hyers-Rassias stability, i.e., if X 2 C([a; b]; Pcp;cv(R
n))

have the property

H(X(t);

Z b

a

K(t; s;X(s))ds) � '(t); for all t 2 [a; b]
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there exists c' > 0 such that

H(X(t); X�(t)) � c' � '(t); for all t 2 [a; b]

(where X� denote a unique solution of a equation (3.1.1) obtained according to Theorem 3.1.3).

We will prove now an existence result for the solution of the integral equation (3.1.2).

We consider on C([a; b]; Pcp;cv(R
n)) the metric of Bielecki type:

HB
� (X;Y ) := max

t2[a;b]
[H(X(t); Y (t))e��(t�a)]; with � > 0 is arbitrary:

The pair (C([a; b]; Pcp;cv(R
n)); HB

� ) forms a complete metric space.

Theorem 3.1.7 (I.C. Ti�se [98]) Consider an integral equation (3.1.2).Let K : [a; b]�[a; b]�Pcp;cv(R
n)!

Pcp;cv(R
n) be a multivalued operator and X0 2 C([a; b]; Pcp;cv(R

n)). Suppose that:

(i) K is continuous on [a; b]� [a; b]� Pcp;cv(R
n);

(ii) K(t; s; �) is Lipschitz, i.e. there exists LK � 0 such that

H(K(t; s; A);K(t; s; B)) � LKH(A;B);

for all A;B 2 Pcp;cv(R
n) and t; s 2 [a; b].

Then the integral equation (3.1.2),

X(t) =

Z t

a

K(t; s;X(s))ds+X0(t)

has a unique solution.

Remark 3.1.8 Such results is obtained and other techniques for Hammersteins type equation appears

in the paper [94].

A data dependence result is:

Theorem 3.1.9 (I.C. Ti�se [98])

Let K1;K2 : [a; b]� [a; b]� Pcp;cv(R
n)! Pcp;cv(R

n) be continuous, X0; Y0 2 C([a; b]; Pcp;cv(R
n)).

Consider the following integral equations:

X(t) =

Z t

a

K1(t; s;X(s))ds+X0(t) (3.1.5)

Y (t) =

Z t

a

K2(t; s; Y (s))ds+ Y0(t): (3.1.6)

Suppose:
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(i) H(K1(t; s; A);K1(t; s; B)) � LK1
H(A;B); for all A;B 2 Pcp;cv(R

n) and t; s 2 [a; b], where

LK1
� 0 (denote by X� the unique solution of the equation (3.1.5));

(ii) there exists �1; �2 > 0, such that:

(a) H(K1(t; s; U);K2(t; s; U)) � �1, for all (t; s; U) 2 [a; b]� [a; b]� Pcp;cv(R
n);

(b) H(X0(t); Y0(t)) � �2; for all t 2 [a; b];

(iii) there exists Y � a solution of the equation (3.1.6).

Then

HB
� (X

�; Y �) �
�2 + �1(b� a)

1�
LK1

�

(where � > LK1
):

An auxiliary result.

Lemma 3.1.10 (I.A.Rus [83]) Let J be an interval in R, t0 2 J and h; k; u 2 C(J;R+). If

u(t) � h(t) +

����
Z t

t0

k(s)u(s)ds

���� ; for all t 2 J;
then

u(t) � h(t) +

����
Z t

t0

h(s)k(s)ej
R
t

s
k(�)d�jds

���� ; for all t 2 J:
A result of generalized Ulam-Hyers-Rassias stability for integral equation (3.1.2).

Theorem 3.1.11 (I.C. Ti�se [100]) Consider the equation (3.1.2).

Suppose:

(i) K : [a; b] � [a; b] � Pcp;cv(R
n) ! Pcp;cv(R

n) be continuous multivalued operator and X0 2

C([a; b]; Pcp;cv(R
n));

(ii) K(t; s; �) is Lipschitz, i.e. there exists LK � 0 such that:

H(K(t; s; A);K(t; s; B)) � LKH(A;B);

for all A;B 2 Pcp;cv(R
n) and for all t; s 2 [a; b];

(iii) there exists ' 2 C([a; b]; (0;+1)) and �' > 0 such that
R t
a
'(s)ds � �' � '(t) for all t 2 [a; b].

Then the integral equation (3.1.2) has the generalized Ulam-Hyers-Rassias stability, i.e., if X 2

C([a; b]; Pcp;cv(R
n)) has property

H(X(t);

Z t

a

K(t; s;X(s))ds) � '(t); for all t 2 [a; b]
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there exists c' > 0 such that

H(X(t); X�(t)) � c' � '(t); for all t 2 [a; b];

(denote by X� the unique solution of the equation (3.1.2) which is obtained according to Theorem

3.1.7).

3.2 Cauchy problem for the di�erential equations in space of

multivalued functions

In this paragraf we present an application of theorems the previous section the existence, uniqueness

and approximating the Cauchy problem solution.

We consider the following Cauchy problem with respect to a di�erential equation in spaces of

multivalued functions: 8<
:

DHU = F (t; U); t 2 J

U(t0) = U0
(3.2.7)

where U0 2 Pcp;cv(R
n); t0 � 0, J = [t0; t0 + a]; a > 0,

F 2 C(J � Pcp;cv(R
n); Pcp;cv(R

n)) and DH is the Hukuhara derivative of U .

Consider the following equations in spaces of multivalued functions:

U(t) = U0 +

Z t

t0

DH(U(s))ds; t 2 J; (3.2.8)

U(t) = U0 +

Z t

t0

F (s; U(s))ds; t 2 J: (3.2.9)

Definition 3.2.1 (V. Lakshmikantham [49]) U 2 C1(J; Pcp;cv(R
n)) is a solution of the problem

(3.2.7)() U satis�es (3.2.7) for all t 2 J:

Lemma 3.2.2 (V. Lakshmikantham [49]) If U 2 C1(J; Pcp;cv(R
n)), then (3:2:7) () (3:2:8) ()

(3:2:9):

We consider on C(J; Pcp;cv(R
n)) the metrics HC

� and HB
� de�ned by:

HC
� (U; V ) := max

t2J
H(U(t); V (t));

HB
� (U; V ) := max

t2J
[H(U(t); V (t))e��(t�t0)]; � > 0:
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The pairs (C(J; Pcp;cv(R
n)); HC

� ) and (C(J; Pcp;cv(R
n)); HB

� ) has the complete metric spaces and

the metrics HC
� and HB

� are equivalent.

Our �rst result is a global existence theorem for a Cauchy problem associated to a set di�erential

equation.

Theorem 3.2.3 (I.C. Ti�se [99]) Consider the problem (3.2.7) where

F : J � Pcp;cv(R
n) �! Pcp;cv(R

n) is a continuous operator and U0 2 Pcp;cv(R
n).

Suppose that: F (t; �) is Lipschitz, i.e. there exists L � 0, such that:

H(F (t; U); F (t; V )) � LH(U; V ) for all U; V 2 Pcp;cv(R
n) and t 2 J:

Then the problem (3.2.7) has a unique solution U� and U�(t) = lim
n!1

Un(t) for each t 2 J , where

(Un)n2N 2 C(J; Pcp;cv(R
n)) is recurrently de�ned by the relation:

8<
:

Un+1(t) = U0 +
R t
t0
F (s; Un(s))ds; n 2 N

U0 2 Pcp;cv(R
n):

(3.2.10)

The main result is a local existence and uniqueness theorem for a Cauchy problem associated to a

di�erential equation in spaces of multivalued functions is next.

Theorem 3.2.4 (I.C. Ti�se [99]) Consider the equation DHU = F (t; U) and 
 � R � Pcp;cv(R
n) be

an open set. Let F : 
 � R � Pcp;cv(R
n) ! Pcp;cv(R

n) be continuous. suppose that, for each t,the

operator F (t; �) is L-Lipschitz with constant L > 0.

Then for all (t0; U
0) 2 
 there exists a unique solution for the Cauchy problem (3.2.7), solution

U� : [t0; t0 + h] ! Pcp;cv(R
n) where h := minfa; b

M g, and a; b > 0 and M > 0 such that 
a;b :=

[t0; t0 + a]�B(U0; b) � 
 and jjF (t; U)jjH �M , for all (t; U) 2 
a;b.

By the Characterization Theorem for the weakly Picard operator we have:

Theorem 3.2.5 (I.C. Ti�se [99]) Consider the equation

DHU = F (t; U); t 2 [a; b] (3.2.11)

where F : [a; b] � Pcp;cv(R
n) ! Pcp;cv(R

n) is a continuous operator. Suppose that F (t; :) is L-

Lipschitz for each t 2 [a; b].

Then:

(i) the operator G : C([a; b]; Pcp;cv(R
n))! C([a; b]; Pcp;cv(R

n)) given by

GU(t) = U(a) +

Z t

a

F (s; U(s))ds
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is a weakly Picard operator;

(ii) the solution set S of the equation (3.2.11) is in�nite.

Remark 3.2.6 The results generalize the results of F.S. De Blasi [18].

3.3 Functional-integral equations in spaces of multivalued func-

tions

Let E be a Banach space and consider the following operators:

Q : C([a; b]; Pcp;cv(E))! C([a; b]; Pcp;cv(E)),

G 2 C([a; b]� Pcp;cv(E)
3; Pcp;cv(E)) and

K 2 C([a; b]� [a; b]� Pcp;cv(E); Pcp;cv(E)):

We will study the following functional-integral equation:

X(t) = G(t; Q(X)(t); X(t); X(a)) +

Z t

a

K(t; s;X(s))ds; t 2 [a; b]: (3.3.12)

By a solution of the above equation, we understand a function X 2 C([a; b]; Pcp;cv(E)) satisfying

the relation (3.3.12), for each t 2 [a; b].

For our next considerations, we consider the Banach space C([a; b]; Pcp;cv(E)) with the norm HB
� .

With respect to the equation (3.3.12) we suppose that:

(i) there exists L > 0 such that

H(Q(X)(t); Q(Y )(t)) � LH(X(t); Y (t));

for all X;Y 2 C([a; b]; Pcp;cv(E)), t 2 [a; b];

(ii) there exists L1 > 0; L2 > 0 such that

H(G(t; U1; V1;W ); G(t; U2; V2;W )) � L1H(U1; U2) + L2H(V1; V2);

for all t 2 [a; b]; Ui; Vi;W 2 Pcp;cv(E); i 2 f1; 2g;

(iii) L1L+ L2 < 1;

(iv) there exists L3 > 0 such that

H(K(t; s; U);K(t; s; V )) � L3H(U; V );
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for all t; s 2 [a; b] and U; V 2 Pcp;cv(E);

(v) G(a;Q(X)(a); X(a); X(a)) = X(a), for all X 2 C([a; b]; Pcp;cv(E)):

Using again the Characterization Theorem, we have the following result.

Theorem 3.3.1 (I.C. Ti�se [99]) Consider the equation (3.3.12) under the conditions (i)-(v). If S �

C([a; b]; Pcp;cv(E)) is the solution set of this equation, then card(S) = card(Pcp;cv(E)) and hence the

solution set S of the equation (3.3.12) is in�nite.

A data dependence theorem for equation (3.3.12).

Theorem 3.3.2 (I.C. Ti�se [99]) Consider the equations

X(t) = G1(t; Q1(X)(t); X(t); X(a)) +

Z t

a

K1(t; s;X(s))ds; t 2 [a; b]; (3.3.13)

X(t) = G2(t; Q2(X)(t); X(t); X(a)) +

Z t

a

K2(t; s;X(s))ds; t 2 [a; b] (3.3.14)

where the operators G1; G2; Q1; Q2;K1;K2 satisfy the conditions (i)-(v).

Let S1 be the solution set of the equation (3.3.13) and S2 be the solutions set of the equation

(3.3.14). We suppose that there exist �1; �2; �3 > 0; such that:

(a) H(G1(t; U1; U2; U3); G2(t; U1; U2; U3)) � �1 for all t 2 [a; b],

U1; U2; U3 2 Pcp;cv(E);

(b) HC
� (Q1(X); Q2(X)) � �2, for all X 2 C([a; b]; Pcp;cv(E))

(c) H(K1(t; s; U);K2(t; s; U)) � �3; for all t; s 2 [a; b],

U 2 Pcp;cv(E):

Then

HB
� (S1; S2) � [�1 + �2L1 + (b� a)�3] �maxfc1; c2g

where ci :=
1

1�LAi
with LAi

== Li1L
i + Li2 +

Li3
� , i 2 f1; 2g.

Remark 3.3.3 The above results extend the results of the unequivocal case given by I.A. Rus [76].

For the �nal part of this section, we will move our attention to a functional-integral Cauchy problem

arising in biomathematics.
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Let 8<
:

X(t) =
R t
t��

F (s;X(s))ds; t 2 [0; T ]

X(t) = '(t); t 2 [��; 0]
(3.3.15)

where F : [��; T ] � Pcp;cv(R+) ! Pcp;cv(R+), ' : [��; 0] ! Pcp;cv(R+) are continuous operators.

We also suppose that '(0) =
R 0
��
F (s; '(s))ds.

As a conclusion, we have the following result:

Theorem 3.3.4 (I.C. Ti�se [99]) Consider the Cauchy problem (3.3.15).

Suppose that:

(i) F : [��; T ]� Pcp;cv(R+)! Pcp;cv(R+), ' : [��; 0]! Pcp;cv(R+) are continuous;

(ii) '(0) =
R 0
��
F (s; '(s))ds;

(iii) there exists k 2 L1[��; T ] such that H(F (s;A); F (s;B) � k(s)H(A;B), for all A;B 2 Pcp;cv(R+) and s 2

[��; T ].

Then the problem (3.3.15) has a unique solution.

We present the result of generalized Ulam-Hyers-Rassias stability.

Theorem 3.3.5 (I.C. Ti�se [100]) Let be the equation

X(t) =

Z t

t��

F (s; '(s))ds; where � > 1; t; s 2 [��; T ]: (3.3.16)

Suppose that:

(i) F : [��; T ]� Pcp;cv(R+)! Pcp;cv(R+), are continuous;

(ii) there exists k 2 L1[��; T ] such that H(F (s;A); F (s;B) � k(s)H(A;B), for all A;B 2 Pcp;cv(R+) and s 2

[��; T ];

(iii) ' 2 C((��; T ); Pcp;cv(R+));

(iv) there exists �' > 0 such that:
R t
t��

'(s)ds � �' � '(t):

Then the integral equation (3.3.16) is a generalized Ulam-Hyers-Rassias stability for ', i.e., there exists

cF;' > 0 such that for each solution Y 2 C1([��; T ]; Pcp;cv(R+)) of a inequality

H(Y (t);

Z t

t��

F (s; Y (s))ds) � '(t); for all t 2 [��; T ]
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with have the properties Y (0) =
R 0
��
F (s; Y (s))ds, there exists a solution X� 2 C1([��; T ]; Pcp;cv(R+))

of equation (3.3.16) such that:

H(Y (t); X�(t)) � cF;' � '(t); for all t 2 [0; T ]:

Remark 3.3.6 The above results extend the results of the unequivocal case given by: R. Precup [74],

J. Vasundhara Devi, A.S Vatsala [102].

29



4

Qualitative properties of solutions

of di�erential equations in space of

multivalued functions

The aim of this chapter is to present some properties for a set solutions of di�erential equations in

space of multivalued functions.

The �rst paragraph of this chapter is dedicated to Gronwall type Lemmas and comparison theorems.

In following section we discuss data dependence of the solution of di�erential equations in spaces of

multivalued functions.

The contributions from this chapter are Theorem 4.1.3, Theorem 4.1.7, Theorem 4.1.9, Theorem

4.1.11, Theorem 4.2.1, results contained in the papers I.C Ti�se [95], [97].

The results of this chapter extend and generalize some theorems from works by: J.P. Aubin, H.

Frankovska [5], A. J. Brandao Lopes Pinto, F. S. De Blasi, F. Iervillino [12], C. Chifu, G. Petru�sel

[15], A. Filippov [25], G. N. Galanis, T. G. Bhaskar, V. Lakshmikantham [32], M. Hukuhara [42], N.D.

Phua, L.T. Quang, T.T. Tung [62], D. O'Regan, R. Precup [63], A. Petru�sel [65], I.A. Rus [76], [79],

[80], M.A. S�erban [92], N.N. Tu, T.T. Tung [101].
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4.1 The properties obtained by Gronwall type Lemmas

We consider the following Cauchy problem with respect to a di�erential equation in space of mul-

tivalued functions:

8<
:

DHU = F (t; U); t 2 J

U(t0) = U0
(4.1.1)

where U0 2 Pcp;cv(R
n); t0 � 0, J = [t0; t0 + a], a > 0, DH is the Hukuhara derivative of U and

F : J � Pcp;cv(R
n)! Pcp;cv(R

n) continuous multivalued operator.

U : J ! Pcp;cv(R
n) is a solution of the problem (4.1.1), it is equivalent whit U satis�es (4.1.1) for

all t 2 J .

For a Cauchy problem (4.1.1) associate to a integral equation:

U(t) = U0 +

Z t

t0

F (s; U(s))ds; t 2 J (4.1.2)

where integral is Hukuhara (see [42]).

Lemma 4.1.1 (V. Lakshmikantham [49]) If U : J ! Pcp;cv(R
n) is di�erentiable continuous, then we

have:

U(t) = U0 +

Z t

to

DHU(s)ds; t 2 [a; b]:

Lemma 4.1.2 (V.Lakshmikantham [49]) The problem (4.1.1) and equation (4.1.2) are equivalent.

On C(J; Pcp;cv(R
n)) consider the metric HB

� de�ned by:

HB
� (U; V ) := max

t2[t0;t0+a]
[H(U(t); V (t))e��(t�t0)]; � > 0:

The pair (C(J; Pcp;cv(R
n)); HB

� ) has the complete metric spaces.

Existence Theorem for a Cauchy problem.

Theorem 4.1.3 (I.C. Ti�se [97]) Consider the problem (4.1.1) and

F : J � Pcp;cv(R
n) �! Pcp;cv(R

n) is a continuous operator multivalued.

Supose that:

(i) F is continuous on J � Pcp;cv(R
n) and U0 2 Pcp;cv(R

n);
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(ii) F (t; �) is Lipschitz, i.e. there exists L � 0 such that

H(F (t; U); F (t; V )) � LH(U; V )

for all U; V 2 Pcp;cv(R
n) and t 2 J .

Then the problem (4.1.1) has a unique solution U� and U�(t) = lim
n!1

Un(t), where Un 2 C(J; Pcp;cv(R
n))

is recurrently de�ned by the relation:

8<
:

Un+1(t) = U0 +
R t
t0
F (s; Un(s))ds; n 2 N

U0 2 Pcp;cv(R
n):

Let us consider the following integral equations:

U(t) = U0 +

Z t

t0

DH(U(s))ds; t 2 J (4.1.3)

U(t) = U0 +

Z t

t0

F (s; U(s))ds; t 2 J: (4.1.4)

Lemma 4.1.4 (V.Lakshmikantham [49]) If U 2 C1(J; Pcp;cv(R
n)), then (4:1:1) () (4:1:3) ()

(4:1:4):

We consider on Pcp;cv(R
n) the order relation " �m " de�ned by:

U; V 2 Pcp;cv(R
n) : U �m V () U � V:

Definition 4.1.5 The operator F (t; �) : J � Pcp;cv(R
n)! Pcp;cv(R

n), is called increasing if:

A;B 2 Pcp;cv(R
n); A �m B ) F (t; A) �m F (t; B); for all t 2 J:

De�ne on C(J; Pcp;cv(R
n)) an order relation " � " de�ned by:

X;Y 2 C(J; Pcp;cv(R
n)); X � Y , X(t) �m Y (t); for all t 2 J:

The space (C(J; Pcp;cv(R
n)); HB

� ;�) being an order an complete metric space is also an ordered

L-space.

Let (X; d;�) be an order metric space and T : X ! X an operator.

We note:

(UF )T := fx 2 XjTx � xg the upper �xed point set for T;

(LF )T := fx 2 XjTx � xg the lower �xed point set for T:

In what follows we will present the Abstract Gronwall Lemma:
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Lemma 4.1.6 (I. A. Rus [78]) Let (X; d;�) be an ordered L-space and T : X ! X an operator. We

suppose that:

(i) T is Picard operator;

(ii) T is increasing.

Then (LF )T � x�T � (UF )T ; where x
�
T is the unique �xed point of the operator T .

We will apply this abstract lemma to the Cauchy problem (4.1.1).

Theorem 4.1.7 (I.C. Ti�se [97]) Let Cauchy problem (4.1.1).

Suppose that:

(i) F (t; �) : J � Pcp;cv(R
n)! Pcp;cv(R

n) is L-Lipschitz for all t 2 J ;

(ii) F (t; �) : J � Pcp;cv(R
n)! Pcp;cv(R

n) is increasing monotone operator for all t 2 J ;

(iii) F is continuous on J � Pcp;cv(R
n) and U0 2 Pcp;cv(R

n).

Then we have:

(LS)(1) � U� � (US)(1)

where U� is the unique solution for problem (4.1.1) and (LS)(1) respectively (US)(1) represents the set

of lower solution respectively the set of upper solution for the problem (4.1.1).

In what follows an abstract comparison lemma will be presented

Theorem 4.1.8 (I. A. Rus [78]) Let (X; d;�) be an ordered L-space and T1; T2 : X ! X two opera-

tors. We suppose that:

(i) T1 and T2 are Picard operators;

(ii) T1 is increasing;

(iii) T1 � T2:

Then x � T1x) x � x�T2 :

We have the following theorem.
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Theorem 4.1.9 (I.C. Ti�se [97]) Let F;G : J � Pcp;cv(R
n)! Pcp;cv(R

n). Consider the following tow

Cauchy problem: 8<
:

DHU = F (t; U); t 2 J

U(t0) = U0
(4.1.5)

8<
:

DHV = G(t; V ); t 2 J

V (t0) = V 0
(4.1.6)

where U0; V 0 2 Pcp;cv(R
n); t0 � 0, J = [t0; t0 + a]; a > 0:

Supose that:

(i) F is continuous on J � Pcp;cv(R
n) and F (t; �) is Lipschitz;

(ii) G is continuous on J � Pcp;cv(R
n), V 0 2 Pcp;cv(R

n) and G(t; �) is Lipschitz;

(iii) F (t; �) is increasing for all t 2 J ;

(iv) F � G.

Then DHU �m F (t; U) =) U � V � where V � is the unique solution for the problem (4.1.6).

We recall the following abstract Gronwall lemma for the case of weakly Picard operators.

Lemma 4.1.10 (I. A. Rus [78]) Let (X; d;�) be an ordered L-space and T : X ! X an operator. We

suppose that:

(i) T is weakly Picard operator;

(ii) T is increasing.

Then

(a) x � Tx) x � T1x;

(b) x � Tx) x � T1x;

(b) if there exists x 2 (LF )T and y 2 (UF )T such that x � y then

x � T (x) � ::: � Tn(x) � ::: � T1(x) � T1(y) � ::: � Tn(y) � ::: � T (y) � y.

We will apply the above lemma to the Cauchy problem (4.1.1).
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Theorem 4.1.11 (I.C. Ti�se [97]) Let us consider the equation

DHU = F (t; U); t 2 J (4.1.7)

We suppose that:

(i) F (t; :) : J � Pcp;cv(R
n)! Pcp;cv(R

n) is Lipschitz, for all t 2 J ;

(ii) F (t; :) : J � Pcp;cv(R
n)! Pcp;cv(R

n) is increasing, for all t 2 J ;

(iii) F is continuous on J � Pcp;cv(R
n).

Then

(i) if V is a lower solution of the equation (4.1.7) ) V � U�V ;

(ii) if V is a upper solution of the equation (4.1.7) ) V � U�V ,

where U�V is the uniform limited of the subset and recurrently de�ned by the relation

8<
:

Un+1(t) = V (t0) +
R t
t0
F (s; Un(s))ds; t 2 J

U(t0) = V ;

(iii) if U1; U2 2 C
1(J; Pcp;cv(R

n)) are two spaces for (4.1.7) such that U1(t0) �m U2(t0) then U1 � U2.

4.2 Data dependence of the solutions for di�erential equations

in spaces of multivalued functions

We consider the following Cauchy problems:
8<
:

DHU = F (t; U)

U(a) = U0
(4.2.8)

8<
:

DHU = G(t; U)

U(a) = V 0
(4.2.9)

where F : [a; b]�Pcp;cv(R
n)! Pcp;cv(R

n) is a continuous multivalued operator, U0; V 0 2 Pcp;cv(R
n).

We consider on C([a; b]; Pcp;cv(R
n)) the metric HC

� de�ned by:

HC
� (U; V ) := max

t2[a;b]
H(U(t); V (t)):
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The pairs (C([a; b]; Pcp;cv(R
n)); HC

� ) has the Banach space.

A data dependence result is:

Theorem 4.2.1 (I.C. Ti�se [95]) Let F;G : [a; b]�Pcp;cv(R
n)! Pcp;cv(R

n), continuous. Consider the

following problems (4.2.8) and (4.2.9). Suppose:

(i) there exists k1 > 0 such that H(F (t; U); F (t; V )) � k1H(U; V ), for all U; V 2 Pcp;cv(R
n), for all

t 2 [a; b]: Denote by U�F the unique solution of the problem (4:2:8);

(ii) there exists �i > 0, i = 1; 2 such that:

H(F (t; U); G(t; U)) � �1, for all (t; U) 2 [a; b]� Pcp;cv(R
n)

and H(U0; V 0) � �2;

(iii) there exists U�G a solution of the problem (4:2:9):

Then

HC
� (U

�
F ; U

�
G) �

�2 + �1(b� a)

1� k1(b� a)
:

Remark 4.2.2 Similar results in case of impulsive di�erential equations in spaces of multivalued func-

tions appear in the article of F.A. McRae, J Vasundhara Devi [56].
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