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LUMINIŢA–IOANA COTÎRLĂ
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Introduction

The complex analysis is a field of research in which romanian school of mathematics has had an

important contribution and it is also a part of mathematics with multiple applications in other domains of

science and technique.

The geometric theory of the functions of one complex variables is an special branch for complex

analysis. The basis of this theory was put on in the early twenty century once with the papers of P. Koebe,

T. H. Gromwall and L. Bieberbach. In 1916 L. Bieberbach was spoken the notorious conjecture which was

prove in 1984 by Louis de Branges.

G. Călugăreanu is the creator of the romanian school of univalent functions theory and P. T. Mocanu

was introduced the class of α− convex functions, he has approached the injectivity problem of non-analytic

functions and with S. S. Miller created the method of admissible functions, the method of differential

subordinations and the theory of differential superordinations.

We remember papers dedicated the domains of theory of univalent functions by: P. Duren, A. W.

Goodman, S.S. Miller and P. T. Mocanu, P. Montel, C. Pommerenke.

The paper has 5 chapters, an introduction and a bibliography with 124 titles, 12 of which are signed by

the author (10 as unique author and 2 in collaboration).

I would like to use this opportunity to thank my scientific supervisor, Ph. D. Professor G. St. Sălăgean

for his guidance and constant support and help.

I would also want to thank to all the mathematicians that are part of Cluj-Napoca school of Geometric

function theory.
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1 Concepts and preliminary results

This chapter contains two paragraphs and it present preliminary results from the geometric theory of

univalent functions.

Definition 1.1.1.[51] Let be D an open set in the complex plane C. A complex function f is holo-

morphic on D if f is derivative in all point z0 from D. The set of holomorphic functions on D is denoted

byH(D).

Definition 1.1.2.[51] A complex function f is holomorphic on a some set A ⊂ C, if exists an open

set D which include A such that f is holomorphic on D.

Definition 1.1.3.[51] The function f is holomorphic in the point z0 if exists a neighborhood V ∈

V (z0) such that f is derivable in this neighborhood.

An holomorphic function on C is an integer function.

Definition 1.1.4.[51] An holomorphic function (or meromorphic) and injective on the domainD from

C is univalent on D. We denote byHu(D) the set of univalent functions on the domain D.

Definition 1.1.5.[51] An holomorphic function (or meromorphic) on the domain D is p− valent in

this domain, if some values is compute at most p single points from D and exists at least a value compute

in p single points.

Definition 1.1.6.[51] Let be f : D → C, z0 ∈ D. We say that the function f is analytic in the point

z0 if exists an disc U(z0, R) ⊂ D such that

f(z) =
∞∑
n=0

an(z − z0)n, z ∈ U(z0, R).

We say that the function f is analytic on D if it is analytic in all point of D.

The notion of analytic function is matter of great concern in geometric theory of analytic functions.

The first paper is due to P. Koebe [61] and it was publicated in 1907. Now exists many papers dedicated to

univalent functions to rank among Montel [89], Z. Nehari [94], L.V. Ahlfors [2], Ch. Pommerenke [100],

A.W. Goodman [38], P.L. Duren [30], D.J. Hallenbeck, T. H. MacGregor [48], S.S. Miller and P.T. Mocanu

[79], I. Graham and G. Kohr [39].

Definition 1.1.7. Let beD and ∆ domains from C. An univalent function f fromD such that f(D) =

∆ is worthy representation of D on ∆. The domains D and ∆ are worthy equivalently if exists an worthy

representation of D on ∆.

We use the notations:

U = {z ∈ C : |z| < 1} (the unit disc in the complex plane);

Ur = {z ∈ C : |z| < r} for r ∈ (0, 1) (the interior of the unit disc from the complex plane);

U− = {z ∈ C : |z| > 1} (the exterior of the unit disc from the complex plane).
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Let for a ∈ C and n ∈ N∗, the set

H[a, n] = {f ∈ H(U) : f(z) = a+ anz
n + an+1z

n+1 + ...},

An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + ...}

şi

A = A1.

In the second paragraph are presented some special classes of univalent functions.

A. The classes S and Σ

We denote by S = {f ∈ A : f ∈ Hu(U)} the class of univalent functions in the unit disc and

normalized , by the condition f(0) = 0 and f ′(0) = 1, for which

(1.1) f(z) = z + a2z
2 + ..., |z| < 1.

The study of the meromorphic and univalent functions could be done parallel with the class S, con-

sidering the class Σ and the class Σ0

Σ =
{
ϕ ∈ Hu(U−) : ϕ(ζ) = ζ + α0 +

α1

z
+ ...+

αn
zn

+ ..., |ζ| > 1
}

and

Σ0 = {ϕ ∈ Σ : ϕ(ζ) 6= 0, ζ ∈ U−}.

Remark 1.2.1. Between the classes S and Σ0 there is a bijection, therefore the class Σ is larger than

the class S.

B. The class of starlike functions

Definition 1.2.2.[87] Let be the function f ∈ H(U) with f(0) = 0. We say that the function f is

starlike if f is univalent in U and f(U) is a starlike domain with respect to origin.

The notion of starlike function was introduced by J.Alexander [5] in 1915.

Definition 1.2.3.[87] We denote by S∗ the class of functions f ∈ A which are starlike in the unit disc,

S∗ =
{
f ∈ A : Re

zf ′(z)
f(z)

> 0
}
.

We have that S∗ ⊂ S.

Definition 1.2.4.[87] We define the class of starlike functions of order α, α < 1, by

S∗(α) =
{
f ∈ A : Re

zf ′(z)
f(z)

> α, z ∈ U}.

C. The class of convex functions

The notion of convex function was introduced by E. Study [118] in 1913.
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Definition 1.2.5. The function f ∈ H(U) is convex in U (or convex) if f is univalent in U and f(U)

is an convex domain.

Theorem 1.2.6.[87](Analytic characterization of convexity theorem) Let f ∈ H(U). Then f is convex

if and only if f ′(0) 6= 0 and

(1.2) Re
zf ′′(z)
f ′(z)

+ 1 > 0, z ∈ U.

Theorem 1.2.7.[5](Alexander duality theorem) The function f is convex in U if and only if the func-

tion F (z) = zf ′(z) is starlike in U.

Definition 1.2.8. We denote by K the class of functions f ∈ A which are convex and normalized in

the unit disc U ,

K =
{
f ∈ A : Re

zf ′′(z)
f ′(z)

+ 1 > 0, z ∈ U
}
.

Definition 1.2.9.[87] We define the class of convex function of order α, α < 1, by

K(α) =
{
f ∈ A : Re

zf ′′(z)
f ′(z)

+ 1 > α, z ∈ U
}
.

We have: K(α) ⊂ K.

D. The class of the functions Sm

Definition 1.2.10.[111] The differential Sălăgean operator Dm : A → A, is defined as

D0f(z) = f(z)

D1f(z) = zf ′(z),

Dmf(z) = D1(Dm−1f(z)),m ∈ N∗.

Definition 1.2.11.[111] The integral Sălăgean operator Im : A → A, is defined as

I0f(z) = f(z);

I1f(z) = If(z) =
∫ z

0

f(t)t−1dt;

Imf(z) = I(Im−1f(z)), f ∈ A,m ∈ N∗.

Remark 1.2.12. If f ∈ A, f(z) = z +
∞∑
n=2

anz
n, z ∈ U, then

Dmf(z) = z +
∞∑
n=2

nmanz
n, z ∈ U.

Definition 1.2.13.[111] We say that the function f ∈ A is m− starlike, m ∈ N, if

Re
Dm+1f(z)
Dmf(z)

≥ 0, z ∈ U.

We denote by Sm the class of this functions.
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Remark 1.2.14. We can see that S0 = S∗ and S1 = K.

The class of m− starlike functions was introduced by G.Ş. Sălăgean in [111]. G. Ş. Sălăgean proof

that Sm+1 ⊂ Sm ⊆ S0,m ∈ N, which follows that Sm ⊂ S, where m ∈ N.

E. The class of Km functions

Definition 1.2.15. If we have f, g ∈ A, of the form f(z) = z +
∞∑
n=2

anz
n and g(z) = z +

∞∑
n=2

bnz
n,

the product of convolution (or the product Hadamard) of f and g is defined as

(f ∗ g)(z) = z +
∞∑
n=2

anbnz
n.

Definition 1.2.16.[109] We defined the operator Dm : A → A, m ∈ N, as

Dmf(z) =
z

(1− z)m+1
∗ f(z) =

z(zm−1f(z))(m)

m!
, z ∈ U.

Definition 1.2.17.[109] We say that the function f ∈ A is in the class Km if

Re
Dm+1f(z)
Dmf(z)

>
1
2
, z ∈ U.

Remark 1.2.18. We see that K0 = S∗(1/2) and K1 = K.

The class Km ⊂ A was studied by S. Ruscheweyh in [109], which prove in this paper that Km+1 ⊂

Km ⊆ K0, m ∈ N. It follows that Km ⊂ S,∀m ∈ N.

F. The class of spiralike functions

The class of spiralike functions was introduced by L. Spacek in 1932.

Definition 1.2.19.[87] The region D ⊂ C, was contains the origin, is an region spirallike of type γ,

with |γ| < π/2, if for all point w0 ∈ D \ {0} the arc of the γ− scroll associate the point w0 with the origin

is including in D.

Definition 1.2.20.[87] We say that the function f ∈ H(U), with f(0) = 0, is a spirallike function of

type γ in the unit disc U if f is univalent in U and the domain f(U) is spirallike of type γ.

Definition 1.2.21.[87] We say that the function f ∈ H(U),with f(0) = 0, is spirallike if exist an

number γ, with |γ| < π/2, such that f is spirallike of type γ.

Definition 1.2.22.[87] 1. For γ ∈ (−π/2, π/2), we denote by Ŝγ the class of spirallike functions of

type γ and normalized in the unit disc:

Ŝγ =
{
f ∈ A : Re

[
eiγ

zf ′(z)
f(z)

]
> 0, z ∈ U

}
.

2. We denote by Ŝ the class of spirallike functions and normalized in the unit disc,

Ŝ =
⋃

γ∈(−π/2,π/2)

Ŝγ .
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Theorem 1.2.23.[87](The formula of build for the class Ŝγ) The function f ∈ Ŝγ , γ ∈
(
− π

2 ,
π
2

)
if

and only if exists a function µ ∈M [0, 2π] such that

(1.3) f(z) = z exp
{
− 2 cos γe−iγ

∫ 2π

0

log(1− ze−it)dµ(t)
}
, z ∈ U,

where log 1 = 0.

Definition 1.2.24.[87] Let f ∈ A and n ∈ N. We say that f is a n−spirallike function of type

γ ∈ (−π/2, π/2) if Dnf(z) 6= 0, z ∈ U and

Re
[
eiγ

Dn+1f(z)
Dnf(z)

]
> 0, z ∈ U,

where Dn is the differential Sălăgean operator.

We denote this class by Sγ,n.
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2 Harmonic functions

This chapter has three paragraphs.

In first paragraph are given results well-known about harmonic functions.

Definition 2.1.1.[31] Let u : G→ R a function of C2 class on G. The function u is harmonic on G if

∆u ≡ 0 where

(2.1) ∆u =
∂2u

∂x2
+
∂2u

∂y2
.

∆u is the laplacean of the function u, and the equation ∆u = 0 is the equation of Laplace.

Theorem 2.1.2.[31](The principle of the extreme for harmonic functions) Let

u : G → R a harmonic function. If z0 ∈ G is an point of maxim (or minim) for the function u on G, then

u is constant on the conex component of G contained the point z0.

Theorem 2.1.3.[31](The Poison formula) Let r > 0 and u : U(0, r) → R an harmonic function on

U(0;R) and continuous on U(0; r). Then

(2.2) u(ρeiϕ) =
1

2π

∫ 2π

0

r2 − ρ2

r2 − 2ρr cos(θ − ϕ) + ρ2
u(reiΘ)dΘ,

for all ρ ∈ [0, r) and ϕ ∈ R.

Corollary 2.1.4.[31] Let be u : U(z0;R)→ R an harmonic function on U(z0;R) and continuous on

U(z0;R). Then

(2.3) u(z0 + reiϕ) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos(Θ− ϕ) + r2
u(z0 +ReiΘ)dΘ,

for all r ∈ [0, R) and ϕ ∈ R.

In the second paragraph are introduced new classes of harmonic functions defined by the integral

operator of Sălăgean.

Let H the class of functions f = h + g which are harmonic univalent and sense-preserving in the

unit disc U = {z : |z| < 1} , for which f = h+ g is normed-space and f(0) = h(0) = f ′z(0)− 1 = 0.

Ahuja and Jahangiri defined the class Hp(n) (p, n ∈ N), which contained the harmonic p-valent

functions f = h+ g, sense-preserving in U and h and g are of the form

(2.4) h(z) = zp +
∞∑
k=2

ak+p−1z
k+p−1, g(z) =

∞∑
k=1

bk+p−1z
k+p−1, |bp| < 1.

For f = h+ g of the form (2.4), the integral operator of Sălăgean, is defined as:

(2.5) Inf(z) = Inh(z) + (−1)nIng(z); p > n, z ∈ U,

where

Inh(z) = zp +
∞∑
k=2

( p

k + p− 1
)n
ak+p−1z

k+p−1
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and

Ing(z) =
∞∑
k=1

( p

k + p− 1
)n
bk+p−1z

k+p−1.

Definition 2.2.1.[25] For fixed positive integers n, p, and for 0 ≤ α < 1, β ≥ 0 we let Hp(n +

1, n, α, β) denote the class of multivalent harmonic functions of the form (2.4) that satisfy the condition

(2.6) Re
{ Inf(z)
In+1f(z)

}
> β

∣∣ Inf(z)
In+1f(z)

− 1
∣∣+ α.

Definiţia 2.2.2.[25] The subclassH−p (n+1, n, α, β) consists of functions fn = h+gn inHp(n, α, β)

so that h and g are of the form

(2.7) h(z) = zp −
∞∑
k=2

ak+p−1z
k+p−1, gn(z) = (−1)n−1

∞∑
k=1

bk+p−1z
k+p−1, |bp| < 1.

In the following result we introduce a sufficient condition for the coefficient bounded of harmonic

functions from Hp(n+ 1, n, α, β).

Theorem 2.2.3.[25] Let f = h+ g be given by (2.4). If

(2.8)
∞∑
k=1

{Ψ(n+ 1, n, p, α, β)|ak+p−1|+ Θ(n+ 1, n, p, α, β)|bk+p−1|} ≤ 2,

where

Ψ(n+ 1, n, p, α, β) =

(
p

k+p−1

)n(1 + β)− (β + α)
(

p
k+p−1

)n+1

1− α
,

and

Θ(n+ 1, n, p, α, β) =

(
p

k+p−1

)n(1 + β) +
(

p
k+p−1

)n+1(β + α)

1− α
,

ap = 1, 0 ≤ α < 1, β ≥ 0, n ∈ N, then f ∈ Hp(n+ 1, n, α, β).

The next theorem prove that the condition (2.8) is necessary for the function fn = h+ gn, where h and

gn are of the form (2.7).

Theorem 2.2.4.[25] Let fn = h+ gn be given by (2.7). Then fn ∈ H−p (n+ 1, n, α, β) if and only if

(2.9)
∞∑
k=1

[Ψ(n+ 1, n, p, α, β)ak+p−1 + Θ(n+ 1, n, p, α, β)bk+p−1] ≤ 2,

ap = 1, 0 ≤ α < 1, n ∈ N.

The following theorem gives the distortion bounds for functions in H−p (n+ 1, n, α, β) which yields

a covering results for this class.

Theorem 2.2.5.[25] Let fn ∈ H−p (n+ 1, n, α, β). For |z| = r < 1 we have

|fn(z)| ≤ (1 + bp)rp + [Φ(n+ 1, n, p, α, β)− Ω(n+ 1, n, p, α, β)bp]rn+1+p

and

|fn(z)| ≥ (1− bp)rp − {Φ(n+ 1, n, p, α, β)− Ω(n+ 1, n, p, α, β)bp}rn+p+1

9



where,

Φ(n+ 1, n, p, α, β) =
1− α(

p
p+1

)n(1 + β)−
(

p
p+1

)n+1(β + α)
,

Ω(n+ 1, n, p, α, β) =
(1 + β) + (α+ β)(

p
p+1

)n(1 + β)−
(

p
p+1

)n+1(β + α)
.

The following covering result follows from the left hand inequality in Theorem 2.2.5.

Corollary 2.2.6. Let fn ∈ H−p (n+ 1, n, α, β), then for |z| = r < 1 we have

{w : |w < 1− bp − [Φ(n+ 1, n, p, α, β)− Ω(n+ 1, n, p, α, β)bp] ⊂ fn(U)}.

Definition 2.2.7.[21] For 0 ≤ α < 1, n ∈ N, z ∈ U , we denoted by Hp(n, α) the family of harmonic

function f of the form(2.4) for which

(2.10) Re
( Inf(z)
In+1f(z)

)
> α.

Definition 2.2.8.[21] We denote by H−p (n, α) the subclass of harmonic functions fn = h+ gn from

Hp(n, α) for which h and gn are of the form

(2.11) h(z) = zp −
∞∑
k=2

ak+p−1z
k+p−1 şi gn(z) = (−1)n−1

∞∑
k=1

bk+p−1z
k+p−1

where ak+p−1, bk+p−1 ≥ 0, |bp| < 1.

Definition 2.2.9.[23] For 0 ≤ α < 1, n ∈ N, z ∈ U , H(n, α) is the family of harmonic function f of

the form (2.4), with p = 1 for which

(2.12) Re
{ Inf(z)
In+1f(z)

}
> α.

Definition 2.2.10.[23] Let we denote H−(n, α) the subclass of harmonic function fn = h+ gn from

H(n, α) for which h and gn are of the form

(2.13) h(z) = z −
∞∑
k=2

akz
k, gn(z) = (−1)n−1

∞∑
k=1

bkz
k,

where ak, bk ≥ 0, |b1| < 1.

In the following result we introduce a sufficient condition for the coefficient bounded of harmonic

functions from Hp(n, α).

Theorem 2.2.11.[21] Let f = h+ g given by (2.4). If

(2.14)
∞∑
k=1

{ψ(n, p, k, α)|ak+p−1|+ θ(n, p, k, α)|bk+p−1|} ≤ 2

where

ψ(n, p, k, α) =

(
p

k + p− 1

)n
− α

(
p

k + p− 1

)n+1

1− α

10



θ(n, p, k, α) =

(
p

k + p− 1

)n
+ α

(
p

k + p− 1

)n+1

1− α
,

ap = 1, 0 ≤ α < 1, n ∈ N,

then f is sense-preserving in U and f ∈ Hp(n, α).

For p = 1 in Theorem 2.2.11, we obtain:

Corollary 2.2.12.[23] Let f = h+ g given by (2.4) with p = 1. If

(2.15)
∞∑
k=1

{ψ(n, k, α)|ak|+ θ(n, k, α)|bk|} ≤ 2,

where

ψ(n, k, α) =
(k)−n − α(k)−(n+1)

1− α
şi θ(n, k, α) =

(k)−n + α(k)−(n+1)

1− α
,

a1 = 1, 0 ≤ α < 1, n ∈ N. Then f is sense-preserving in U and f ∈ H(n, α).

The next theorem prove that the condition (2.14) is necessary for the function fn = h + gn, where h

and gn are of the form (2.11).

Theorem 2.2.13.[21] Let fn = h+ gn be given by (2.11). Then fn ∈ H−p (n, α) if and only if

(2.16)
∞∑
k=1

{ψ(n, p, k, α)ak+p−1 + θ(n, p, k, α)bk+p−1} ≤ 2,

where ap = 1, 0 ≤ α < 1, n ∈ N.

For p = 1 in Theorem 2.2.13, we obtain:

Corollary 2.2.14.[23] Let fn = h+ gn be given by (2.13). Then fn ∈ H−(n, α) if and only if

(2.17)
∞∑
k=1

{ψ(n, k, α)ak + θ(n, k, α)bk} ≤ 2

where a1 = 1, 0 ≤ α < 1, n ∈ N.

In the following theorem we give the extreme points for the convex bounded hull from H−p (n, α), by

clcoH−p (n, α).

Theorem 2.2.15.[21] Let fn given by (2.11). Then fn ∈ H−p (n, α) if and only if

fn(z) =
∞∑
k=1

[xk+p−1hk+p−1(z) + yk+p−1gnk+p−1(z)],

where

hp(z) = zp, hk+p−1(z) = zp − 1
ψ(n, p, k, α)

zk+p−1, k = 2, 3, . . .

and

gnk+p−1(z) = zp + (−1)n−1 · 1
θ(n, p, k, α)

zk+p−1, k = 1, 2, 3, . . .

xk+p−1 ≥ 0, yk+p−1 ≥ 0, xp = 1−
∞∑
k=2

xk+p−1 −
∞∑
k=1

yk+p−1.
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In particular, the extreme points for H−p (n, α) are {hk+p−1} and {gnk+p−1}.

For p = 1 in theorem 2.2.15, we obtain

Corollary 2.2.16.[23] Let fn be given by (2.13). Then fn ∈ H−(n, α) if and only if

fn(z) =
∞∑
k=1

[xkhk(z) + ykgnk
(z)],

where

h(z) = z, hk(z) = z − 1
ψ(n, k, α)

zk, (k = 2, 3, . . . )

and

gnk
(z) = z + (−1)n−1 1

θ(n, k, α)
zk (k = 1, 2, 3, . . . )

xk ≥ 0, yk ≥ 0, xp = 1−
∞∑
k=2

xk −
∞∑
k=1

yk.

In particular, the extreme points of H−(n, α) are {hk} and {gnk}.

The following theorem gives the distortion bounds for functions inH−p (n, α),which yields a covering

results for this class.

Theorem 2.2.17.[21] Let fn ∈ H−p (n, α). Then, for |z| = r < 1 we have

|fn(z)| ≤ (1 + bp)rp + {φ(n, p, k, α)− Ω(n, p, k, α)bp}rp+1

and

|fn(z)| ≥ (1− bp)rp − {φ(n, p, k, α)− Ω(n, p, k, α)bp}rp+1,

where

φ(n, p, k, α) =
1− α(

p

p+ 1

)n
− α

(
p

p+ 1

)n+1 ,

Ω(n, p, k, α) =
1 + α(

p

p+ 1

)n
− α

(
p

p+ 1

)n+1 .

For p = 1 in the theorem 2.2.17, we obtain

Corollary 2.2.18.[23] Let fn ∈ H−(n, α). Then, for |z| = r < 1 we have

|fn(z)| ≤ (1 + b1)r + {φ(n, k, α)− Ω(n, k, α)b1}rn+1

and

|fn(z)| ≥ (1− b1)r − {φ(n, k, α)− Ω(n, k, α)b1}rn+1,

where

φ(n, k, α) =
1− α(

1
2

)n
− α

(
1
2

)n+1
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and

Ω(n, k, α) =
1 + α(

1
2

)n
− α

(
1
2

)n+1 .

The following covering result follows from the left hand inequality in Theorem 2.2.17.

Corollary 2.2.19.[23] Let fn ∈ H−p (n, α), for |z| = r < 1 we have

{w : |w| < 1− bp − [φ(n, p, k, α)− Ω(n, p, k, α)bp]} ⊂ fb(U).

In the second paragraph are introduced new classes of harmonic function defined by generalized

Sălăgean operator.

The differential Sălăgean operator was generalized by F. M. Al-Oboudi in [6]. It is defined as: let

f ∈ A and m ∈ N, then we consider

D0
λf(z) = f(z);

D1
λf(z) = (1− λ)f(z) + λzf ′(z), λ > 0;

Dm
λ f(z) = D1

λ(Dm−1
λ f(z)).

Definition 2.3.1.[58] For 0 ≤ α < 1, k ∈ N, λ ≥ 0 and z ∈ U, let H(k, α) the family of harmonic

functions f for which

(2.18) Re
( Dk

λf(z)
Dk+1
λ f(z)

)
> α.

Definition 2.3.2[58] We denote by H−(k, α) the subclass of harmonic functions fk = h + gk in

H−(k, α) for which h and gk are of the form

h(z) = z −
∞∑
n=2

anz
n , gk(z) = (−1)k−1

∞∑
n=2

bnz
n,

where an, bn ≥ 0, |bn| < 1.

Theorem 2.3.3.[58] Let f = h+ g. If

(2.19)
∞∑
n=1

{Ψ(k, n, α)|an|+ Θ(k, n, α)|bn|} ≤ 2,

where

Ψ(k, n, α) =
(1 + (n− 1)λ)k − α(1 + (n− 1)λ)k+1

1− α
,

Θ(k, n, α) =
(1 + (n− 1)λ)k + α(1 + (n− 1)λ)k+1

1− α
,

a1 = 1, 0 ≤ α ≤ 1, k ∈ N,

then f is sense-preserving in U and f ∈ H(k, α).
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Theorem 2.3.4.[58] Let fn = h+ gn given by (2.18). Then fn ∈ H−(k, α) if and only if

(2.20)
∞∑
n=1

{Ψ(k, n, α)an + Θ(k, n, α)bn} ≤ 2,

where a1 = 1, 0 ≤ α < 1, k ∈ N.

We give in the following theorem an result of distortion for the functions from the class H−(k, α).

Theorem 2.3.5.[58] Let fn ∈ H−(k, α). Then, for |z| = r < 1 we have

|fk(z)| ≤ (1 + b1)r + [ϕ(k, n, α)− Ω(k, n, α)b1]r2

and

|fk(z)| ≥ (1− b1)r − [ϕ(k, n, α)− Ω(k, n, α)b1]r2

where

ϕ(k, n, α) =
1− α

(1 + λ)k − α(1 + λ)k+1

and

Ω(k, n, α) =
1 + α

(1 + λ)k − α(1 + λ)k+1
.

The result is sharp for the functions

fk(z) = z + b1z + [ϕ(k, n, α)− Ω(k, n, α)b1]z2, 0 ≤ b1 <
1− α
1 + α

, z = r

fk(z) = z − b1z − [ϕ(k, n, α)− Ω(k, n, α)b1]z2, 1−α
1+α < b1 < 1, z = r.

14



3 Differential subordination and superordinations

This chapter has two paragraphs. First paragraph present the elementary notions about differential

subordinations and differential superordinations Briot-Bouquet.

Definition 3.1.1. Let f, g ∈ H(U).We say that the function f is subordinated to the function g or g is

superordinate to f and we denote

f ≺ g

or

f(z) ≺ g(z),

if exist a function Schwarz w ∈ (U), with w(0) = 0 and |w(z)| < 1, z ∈ U such that

f(z) = g(w(z)), z ∈ U.

Definition 3.1.2. We denote byQ the class of the functions q which are holomorphic and injective on

U \ E(q), where

E(q) =
{
ζ ∈ ∂U : lim

z→ζ
q(z) =∞

}
,

andq′(ζ) 6= 0 for ζ ∈ ∂U \ E(q).

E(q) is called the set of exception.

Lemma 3.1.3.[75] Let the functions q ∈ Q, q(0) = a, p /∈ H[a, n], p(z) 6= a and let the number

n ≥ 1. If exists the points z0 ∈ U and ζ0 ∈ ∂U \E(q) such that p(z0) = q(ζ0) and p(Ur0) ⊂ q(U), where

r0 = |z0|, then exists a real number m,m ≥ n, such that

z0p
′(z0) = mζ0q

′(ζ0)

and

Re
z0p”(z0)
p′(z0)

+ 1 ≥ mRe
{ζ0q”(ζ0)
q′(ζ0)

+ 1
}
.

We consider the disc UM = {w ∈ C : |w| < M} and q(z) = M · Mz + a

M + az
with M > 0 and

|a| < M , then q(U) = ∆, q(0) = a,E(q) = φ and q ∈ Q.

Definition 3.1.4.[75] Let Ω ⊂ C, let the function q ∈ Q and n ∈ N, n ≥ 1. We denote by Ψn[Ω, q]

the class of the functions ψ : C3 × U → C which satisfies

(1′) ψ(r, s, t; z) /∈ Ω

when

r = q(ζ), s = mζq′(ζ),Re
[ t
s

+ 1
]
≥ mRe

[ζq”(ζ)
q′(ζ)

+ 1
]
,

where z ∈ U, ζ ∈ ∂U \ E(q) and m ≥ n.

The set Ψn[Ω, q] is the class of the admissible functions, and the condition (1′) is the admissibility

condition.

15



In the second paragraph are presented differential subordinations and superordinations for analytic func-

tions defined by the integral operator of Sălăgean.

Similar results for differential Sălăgean operator are given in [93], [104].

Theorem 3.2.1.[20] Let q be an univalent function in U with q(0) = 1, γ ∈ C∗ such that:

Re
[
1 +

zq′′(z)
q′(z)

]
> max

{
0,−Re

1
γ

}
.

If f ∈ A and

(3.1)
In+1f(z)
Inf(z)

+ γ

{
1− In−1f(z)In+1f(z)

[Inf(z)]2

}
≺ q(z) + γzq′(z),

then

(3.2)
In+1f(z)
Inf(z)

≺ q(z)

and q is the best dominant of subordination (3.2).

Theorem 3.2.2.[20] Let q be a convex function in U , with q(0) = 1 and γ ∈ C such that Reγ > 0. If

f ∈ A,
In+1f(z)
Inf(z)

∈ H[1, 1] ∩Q,

In+1f(z)
Inf(z)

+ γ

{
1− In−1f(z) · In+1f(z)

[Inf(z)]2

}
is univalent in U and

(3.3) q(z) + γzq′(z) ≺ In+1f(z)
Inf(z)

+ γ

{
1− In−1f(z) · In+1f(z)

[Inf(z)]2

}
,

then

(3.4) q(z) ≺ In+1f(z)
Inf(z)

and q is the best subordinant of superordination (3.4).

Now, we give a result of ”sandwich” type.

Theorem 3.2.3.[20] Let q1 and q2 be convex function in the unit disc U , with q1(0) = q2(0) = 1,

γ ∈ C such that Re γ > 0. If f ∈ A,

In+1f(z)
Inf(z)

∈ H[1, 1] ∩Q, In+1f(z)
Inf(z)

+ γ

{
1− In−1f(z) · In+1f(z)

[Inf(z)]2

}
is univalent in U and

q1(z) + γzq′1(z)≺ In+1f(z)
Inf(z)

+ γ

{
1− In−1f(z) · In+1f(z)

[Inf(z)]2

}
≺q2(z) + γzq′2(z),

then

(3.5) q1(z) ≺ In+1f(z)
Inf(z)

≺ q2(z),
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and q1 and q2 are the best subordinant and the best dominant respectively of (3.5).

Theorem 3.2.4.[20] Let q be an univalent function in the unit disc U , with q(0) = 1, γ ∈ C∗ and

suppose that

Re
[
1 +

zq′′(z)
q′(z)

]
> max

{
0,−Re

1
γ

}
.

If f ∈ A and

(3.6) (1 + γ)z
Inf(z)

[In+1f(z)]2
+ γz

In−1f(z)
[In+1f(z)]2

− 2γz
[Inf(z)]2

[In+1f(z)]3
≺ q(z) + γzq′(z),

then

(3.7) z
Inf(z)

[In+1f(z)]2
≺ q(z)

and q is the best dominant of subordination (3.7).

Theorem 3.2.5.[20] Let q be a convex function in the unit disc U , q(0) = 1, γ ∈ C such that Reγ > 0.

If f ∈ A,

z
Inf(z)

[In+1f(z)]2
∈ H[1, 1] ∩Q,

(1 + γ)z
Inf(z)

[In+1f(z)]2
+ γz

In−1f(z)
[In+1f(z)]2

− 2γz
[Inf(z)]3

[In+1f(z)]3

is univalent in U and

(3.8) q(z) + γzq′(z) ≺ (1 + γ)z
Inf(z)

[In+1f(z)]2

+γz
In−1f(z)

[In+1f(z)]2
− 2γz

[Inf(z)]2

[In+1f(z)]3
,

then

(3.9) q(z) ≺ z Inf(z)
[In+1f(z)]2

and q is the best subordinant of superordination (3.9).

Theorem 3.2.6.[20] Let q1, q2 be convex function in U , with q1(0) = q2(0) = 1, γ ∈ C, such that

Reγ > 0. If f ∈ A,

z
Inf(z)

[In+1f(z)]2
∈ H[1, 1] ∩Q,

(1 + γ)z
Inf(z)

[In+1f(z)]2
+ γz

In−1f(z)
[In+1f(z)]2

− 2γz
[Inf(z)]2

[In+1f(z)]3

is univalent in U and

q1(z) + γzq′1(z) ≺ (1 + γ)z
Inf(z)

[In+1f(z)]2
+ γz

In−1f(z)
[In+1f(z)]2

− 2γz
[Inf(z)]2

[In+1f(z)]3

≺ q2(z) + γzq′2(z),
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then

(3.10) q1(z) ≺ z Inf(z)
[In+1f(z)]2

≺ q2(z)

and q1 and q2 are the best subordinant and the best dominant respectively of (3.10).

Theorem 3.2.7.[22] Let q be an univalent function in U with q(0) = 1, α ∈ C∗, δ > 0 and suppose

Re
[
1 +

zq′′(z)
q′(z)

]
> max

{
0,−Re

δ

α

}
.

If f ∈ A satisfies the subordination

(3.11) (1− α)
(
In+1f(z)

z

)δ
+ α

(
In+1f(z)

z

)δ
· Inf(z)
In+1f(z)

≺ q(z) +
α

δ
zq′(z),

then

(3.12)
(
In+1f(z)

z

)δ
≺ q(z)

and q is the dominant of (3.12) .

Theorem 3.2.8.[22] Let q be convex in U with q(0) = 1, α ∈ C, Re α > 0, δ > 0. If f ∈ A such that(
In+1f(z)

z

)δ
∈ H[1, 1] ∩Q,

(1− α)
(
In+1f(z)

z

)δ
+ α

(
In+1f(z)

z

)δ
· Inf(z)
In+1f(z)

is univalent in U and satisfies the superordination

(3.13) q(z) +
α

δ
zq′(z) ≺ (1− α)

(
In+1f(z)

z

)δ
+ α

(
In+1f(z)

z

)δ
· Inf(z)
In+1f(z)

,

then

(3.14) q(z) ≺
(
In+1f(z)

z

)δ
and q is the best subordinant of (3.14).

Theorem 3.2.9.[22] Let q1, q2 be convex in U with q1(0) = q2(0) = 1, α ∈ C, Re α > 0, δ > 0. If

f ∈ A such that (
In+1f(z)

z

)δ
∈ H[1, 1] ∩Q

(1− α)
(
In+1f(z)

z

)δ
+ α

(
In+1f(z)

z

)δ
· Inf(z)
In+1f(z)

is univalent in U and satisfies

q1(z) +
α

δ
zq′1(z) ≺ (1− α)

(
In+1f(z)

z

)δ
+ α

(
In+1f(z)

z

)δ
· Inf(z)
In+1f(z)
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≺ q2(z) +
α

δ
zq′2(z),

then

(3.15) q1(z) ≺
(
In+1f(z)

z

)δ
≺ q2(z)

and q1, q2 are the best subordinant and the best dominant respectively of (3.15).
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4 Class of analytic functions defined by operators

This chapter contains two paragraphs.

The first paragraph present properties of analytic functions defined by integral operators Sălăgean.

Let A the class of functions f normated,

(4.1) f(z) = z +
∞∑
k=2

akz
k,

which are analitics in the unit disc U .

Let Ω the class of functions w(z) from U which satisfies the conditions w(0) = 0 and |w(z)| < 1 for

z ∈ U .

Definition 4.1.1.[27] We say that f(z) ∈ A is in the class Fn(b,M) if and only if

(4.2) |1
b

(
Inf(z)
In+1f(z)

− 1) + 1−M | < M,

where M > 1
2 , z ∈ U and b 6= 0 is a complex number.

We know from [10] that f(z) ∈ Hn(b,M) if and only if z ∈ U

Inf(z)
In+1f(z)

=
1 + [b(1 +m)−m]w(z)

1−mw(z)
,

where m = 1− 1
M , (M > 1

2 ) şi w(z) ∈ Ω.

Between the first papers mean to the starlike functions or the convex functions of complex order are:

[9], [91], [92].

Theorem 4.1.2.[27] Let be the function f(z) defined by (4.1) . If

(4.3)
∞∑
k=2

{(1− 1
k

) + |b(1 +m)
k

+m(1− 1
k

)|} |ak|
kn
≤ |b(1 +m)|,

then f(z) is in the class Fn(b,M), where m = 1− 1
M (M > 1

2 ).

Theorem 4.1.3.[27] Let be the function f(z) defined by (4.1) in the class Fn(b,M), z ∈ U .

a).For

2m(1− 1
k

)Re{b} > (1− 1
k

)2(1−m)− |b|2(1 +m),

let

N = [
2m(1− 1

k )Re{b}
(1− 1

k )2(1−m)− |b|2(1 +m)
], k = 1, 2, 3, ..., j − 1.

Then

(4.4) |aj | ≤
1

1
jn (1− 1

j )!

j∏
k=2

|b(1 +m)
k

+ (
k − 2
k

)m|,

for j = 2, 3, ..., N + 2; and

(4.5) |aj | ≤
1

1
jn (1− 1

j )(N + 1)!

N+3∏
k=2

|b(1 +m)
k

+ (
k − 2
k

)m|,
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for j > N + 2.

b). If

2m(1− 1
k

)Re{b} ≤ (1− 1
k

)2(1−m)− |b|2(1 +m),

then

(4.6) |aj | ≤
(1 +m)|b|
1
jn (1− 1

j )
, forj ≥ 2,

where m = 1− 1
M (M > 1

2 ) and b 6= 0 complex number.

Theorem 4.1.4.[27] If a function f(z) defined by (4.1) is in the class Fn(b,M) and µ is an complex

number, then

(4.7) |a3 − µa2
2| ≤

3n+1

2
|b(1 +m)|max{1, |d|}

where

(4.8) d =
b(1 +m)
2 · 3n+1

[22n+4µ− 3n+1]− m

2
.

The result is sharp.

Theorem 4.1.5.[26] If f ∈ A satisfies

(4.9)
∣∣ Inf(z)
In+1f(z)

− 1
∣∣α∣∣z( Inf(z)

In+1f(z)
)′∣∣β < (1/2)β , (z ∈ U)

for all real α and β with α+ 2β ≥ 0 şi for all n ∈ N, then

Re
( Inf(z)
In+1f(z)

)
> 0 (z ∈ U).

Theorem 4.1.6.[26] If f ∈ A satisfies

(4.10)
∣∣ Inf(z)
In+1f(z)

− 1
∣∣α∣∣z( Inf(z)

In+1f(z)
)′∣∣β < (1/2)β(1− γ)α+β (z ∈ U),

for real α, β, γ and n ∈ N with α+ 2β ≥ 0 and 0 ≤ γ < 1, then

Re
( Inf(z)
In+1f(z)

)
> γ (z ∈ U).

Theorem 4.1.7.[26] If f ∈ A satisfies

(4.11)
∣∣ Inf(z)
In+1f(z)

− 1
∣∣α∣∣z( Inf(z)

In+1f(z)
)′∣∣β < (γ/2)β (z ∈ U)

for real α, β and γ = β/α+ β, then

Re
( Inf(z)
In+1f(z)

)1/γ
> 0 (z ∈ U).
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Definition 4.1.8.[24] We denote by Fbn+1,n(A,B) the class of functions f(z) in A which satisfies

(4.12) 1 +
1
b

(
Inf(z)
In+1f(z)

− 1
)
≺ 1 +Az

1 +Bz
, z ∈ U

b 6= 0 is an complex number, A and B are real fixed number, −1 ≤ B < A ≤ 1, n ∈ N0.

We denote by Ω1 the class of analytic bounded functions w(z) in U which satisfies the conditions

w(0) = 0 and |w(z)| < 1, for z ∈ U.

Theorem 4.1.9.[24] Let be the function f(z) defined by the relation (4.1) in the class Fbn+1,n(A,B),

z ∈ U and let be

G =
(A−B)2|b|2

(1− 1
k ){ 2B(A−B)Re{b}

k + (1−B2)(1− 1
k )}

, k = 2, 3, ..., n− 1

M = [G]( Gauss symbol ), and [G] the integer part of G.

(a) If

(A−B)2|b|2 > (1− 1
k

){2B(A−B)Re{b}
k

+ (1−B2)(1− 1
k

)},

then

(4.13) |aj | ≤ jn
∏j
k=2 |

(A−B)b
k −B[(1− 1

k )− 1
k ]|∏j

k=2(1− 1
k )

, for j = 2, 3, ...,M + 2

and

(4.14) |aj | ≤
jn
∏M+3
k=2 |

(A−B)b
k −B[(1− 1

k )− 1
k ]|

(1− 1
j )
∏M+3
k=2 (1− 1

k )
, j > M + 2.

(b) If

(A−B)2|b|2 ≤ (1− 1
k

){2B(A−B)Re{b}
k

+ (1−B2)(1− 1
k

)},

then

(4.15) |aj | ≤
jn(A−B)|b|

(1− 1
j )

, j ≥ 2.

Theorem 4.1.10.[24] Let be the function f(z) defined by (4.1). If

(4.16)
∞∑
k=2

{(1− 1
k

) + | (A−B)b
k

−B(1− 1
k

)|} |ak|
kn
≤ (A−B)|b|,

then f(z) is in the class Fbn+1,n(A,B).

We present a new subclass of analytic functions with negative coefficients in the unit disc U , used the

Ruscheweyh operator.

Let be T (n) the class of functions

(4.17) f(z) = z −
∞∑

k=n+1

akz
k, (ak ≥ 0, n ∈ N)

which are analytic in the unit disc U .
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Definition 4.2.1. A function f(z) ∈ T (1) is in the class of starlike functions of order α, T ∗(α) if

Re
{zf ′(z)
f(z)

}
> α, (z ∈ U, 0 ≤ α < 1).

Definition 4.2.2.[110] The derived Ruscheweyh of order β denoted by Dβf(z) of the function f(z)

from T (n) is defined as

Dβf(z) =
z

(1− z)1+β
~ f(z) = z −

∞∑
k=n+1

akBk(β)zk,

where

Bk(β) =
(β + 1)(β + 2) · ... · (β + k − 1)

(k − 1)!
.

Definition 4.2.3.[59] We say that a function f ∈ T (n) is in the class Jn(β, λ, µ;A,B) if satisfies

(4.18)
z(Dβf(z))′ + λz2(Dβf(z))′′

(1− µ)f(z) + µz(Dβf(z))′ + (λ− µ)z2(Dβf(z))′′
≺ 1 +Az

1 +Bz
,

(−1 ≤ A < B ≤ 1, 0 ≤ B ≤ 1, 0 ≤ µ ≤ 1, µ ≤ λ şi β > −1).

In particular, J1(0, 0, 0;−(1− 2α), 1) ≡ T ∗(α) and J1(0, 1, 1;−(1− 2α), 1) ≡ C(α), class which

are studied by Silverman in [112]. The class Jn(0, λ, λ;−(1 − 2α), 1) was studied by Altintas ı̂n [7], and

class J1(0, 0, 0;A,B) and J1(0, 1, 1;A,B) are studied by Padmanabhan and Ganesan [95].

Theorem 4.2.4.[59] A function f(z) ∈ T (n) given by (4.17) is in the class Jn(β, λ, µ;A,B) if and

only if

(4.19)
∞∑

k=n+1

[(k− 1)[k(µ(1 +A) +λ(B−A)) + (1−µ)]−A(1−µ) + k(B−Aµ)]Bk(β)ak ≤ B−A,

(−1 ≤ A < B ≤ 1, 0 ≤ B ≤ 1, 0 ≤ µ ≤ 1, µ ≤ λ, β > −1).

The result is sharp for the function f(z) give by

(4.20) f(z) = z−

B −A
{n[(n+ 1)(µ(1 +A) + λ(B −A)) + (1− µ)]−A(1− µ) + (n+ 1)(B −Aµ)}Bk(β)

zn+1,

n ∈ N.

Corollary 4.2.5.[59] Let be f(z) defined by (4.17) from the class Jn(β, λ, µ;A,B). Then

ak ≤
B −A

{(k − 1)[k(µ(1 +A) + λ(B −A)) + (1− µ)] + k(B −Aµ)−A(1− µ)}Bk(β)
,

(k = n+ 1, n+ 2, ..., n ∈ N).

Theorem 4.2.6.[59] If f ∈ Jn(β, λ, µ;A,B), then

r − (B −A)
n[(n+ 1)(µ(1 +A) + λ(B −A)) + (1− µ)] + (n+ 1)(B −Aµ)−A(1− µ)

rn+1 ≤

≤ |Dβf(z)| ≤
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(4.21) r +
B −A

n[(n+ 1)(µ(1 +A) + λ(B −A)) + (1− µ)] + (n+ 1)(B −Aµ)−A(1− µ)
rn+1,

(|z| = r < 1).

Theorem 4.2.7.[59] If f ∈ Jn(β, λ, µ;A,B), then f ∈ T ∗(δ), where

δ = 1−

− B −A
(n[(n+ 1)(µ(1 +A) + λ(B −A)) + (1− µ)] + (n+ 1)(B −Aµ)−A(1− µ))Bn+1(β)

.

Theorem 4.2.8.[59] Let be the function fn(z) = z and

fk(z) =

= z − B −A
{(k − 1)[k(µ(1 +A) + λ(B −A)) + (1− µ)] + k(B −Aµ)−A(1− µ)}Bk(β)

zk,

k ≥ n + 1, n ∈ N, −1 ≤ A < B < 1, 0 ≤ B ≤ 1, 0 ≤ µ ≤ 1, µ ≤ λ, β > −1. Then

f(z) ∈ Jn(β, λ, µ;A,B) if and only if it can be write

(4.22) f(z) =
∞∑

k=n+1

ηkfk(z),

where ηk ≥ 0, k ≥ n and
∞∑
k=n

ηk = 1.

Corollary 4.2.9.[59] The extreme points for the class of functions f ∈ Jn(β, λ, µ;A,B) are the

functions fn(z) = z and

fk(z) =

z − B −A
{(k − 1)[k(µ(1 +A) + λ(B −A)) + (1− µ)] + k(B −Aµ)−A(1− µ)}Bk(β)

zk,

(k ≥ n+ 1, n ∈ N).

Theorem 4.2.10.[59] For all i = 1, ...,m, let fi(z) defined by

fi(z) = z −
∞∑

k=n+1

ak,iz
k (ak,i ≥ 0, i = 1, ...,m, n ∈ N)

in the class Jn(β, λ, µ;A,B). Then the function h(z) defined by

h(z) =
m∑
i=1

tifi(z), (ti ≥ 0, (i = 1, ...,m);
m∑
i=1

ti = 1)

is in the class Jn(β, λ, µ;A,B).

Theorem 4.2.11.[59] Let be the function 0 ≤ µ ≤ 1, µ ≤ λ, β > −1,−1 ≤ A < B ≤ 1, 0 ≤ B ≤

1. Then

Jn(β, λ, µ;A,B) ⊆ Jn(β, 0, 0;A1, B1), where A1 ≤ 1− 2m,B1 ≥ A1+m
1−m and

m =

(4.23)
n(B −A)

{n[(n+ 1)(µ(1 +A) + λ(B −A)) + (1− µ)] + (n+ 1)(B −Aµ)−A(1− µ)}Bn+1(β)
.
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Theorem 4.2.12.[59] Let be 0 ≤ µ1 ≤ 1, 0 ≤ µ2 ≤ 1, µ1 ≤ µ2 ≤ λ2 ≤ λ1, β > −1, n ∈ N. Then

Jn(β, λ1, µ1;A,B) ⊆ Jn(β, λ2, µ2;A,B).

Theorem 4.2.13.[59] Let be the function f(z) ∈ Jn(β, λ, µ;A,B). Then the operator Jung-Kim-

Srivastava

Iσf(z) = z −
∞∑

k=n+1

( 2
n+ 1

)σ
akz

k, σ > 0

is in the class Jn(β, λ, µ;A,B).
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5 Generalized almost starlike functions

In this chapter, we introduce the notion of generalized almost starlikeness on the unit disc as well as

on the unit ball Bn in Cn, and we prove that this notion can be characterized in terms of Loewner chains.

Finally, we use the theory of Loewner chains to deduce that certain classes of generalized Roper-Suffridge

extension operators preserve generalized almost starlikeness.

In the geometric function theory of one complex variable , Loewner chains and the Loewner differen-

tial equation serve as a powerful tool in the study of univalent functions.The Loewner differential equation

was first established by Loewner [72] and by Kufarev [64].Pfaltzgraff [96] generalized Loewner chains

to higher dimensions.Later contributions permitting generalizations to the unit ball of a complex Banach

space by Poreda [101]. Some best-possible results concerning the existence and regularity theory of the

Loewner equation in several complex variables were obtained by I. Graham, H. Hamada and G. Kohr [43],

I. Graham, G. Kohr and M. Kohr [40], [41],and I. Graham and G. Kohr [39].

Definition 5.1.1. A mapping f : Bn × [0,∞) → Cn is called a Loewner chain if it satisfies the

following conditions:

(i)f(·, t) is holomorphic and univalent on Bn, f(0, t) = 0 and Df(0, t) = etI for each t ≥ 0;

(ii)f(·, s) ≺ f(·, t) whenever 0 ≤ s ≤ t <∞ and z ∈ Bn.

The subordination condition (ii) implies that there is a unique univalent Schwarz mapping v =

v(z, s, t), called the transition mapping associated to f(z, t), such that

f(z, s) = f(v(z, s, t), t), 0 ≤ s ≤ t <∞, z ∈ Bn.

Further, the normalization of f(z, t) implies the normalization

Dv(0, s, t) = es−tI, 0 ≤ s ≤ t <∞,

for the transition mapping.

A key role in our discussion is played by the Caratheodory sets:

P = {p ∈ H(U) : p(0) = 1,<p(z) > 0, z ∈ U}

M = {h ∈ H(Bn) : h(0) = 0, Dh(0) = I,<〈h(z), z〉 > 0, z ∈ Bn}.

In the case n = 1, f is in the setM if and only if f(z)
z is in the set P.

We introduce the notion of generalized almost starlikeness, prove a characterization of this notion in

terms of Loewner chains, and give an result for the compactness of the class of generalized almost starlike-

ness mappings.

Definition 5.1.2.[28] Let be a : [0,∞)→ C be of class C∞ with η ≤ <a(t) ≤ 0, t ∈ [0,∞), η < 0.

A normalized locally biholomorphic mapping f : Bn → Cn is said to be generalized almost starlike if

(5.1) <[(1− a′(t))e−a(t)〈[Df(ea(t)z)]−1f(ea(t)z), z〉] ≥ −<a′(t)‖z‖2,
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z ∈ Bn, t ∈ [0,∞).

It is easy to see that in the case of one variable, the above relation becomes

(5.2) <[(1− a′(t)) f(ea(t)z)
ea(t)zf ′(ea(t)z)

] ≥ −<a′(t), z ∈ U, t ≥ 0

Remark 5.1.3. If a′(t) = λ, t ∈ [0,∞),(in Definition 5.1.16.) where λ ∈ C, Re λ ≤ 0, one obtains

the notion of almost starlikeness of complex order λ. This notion has been recently introduced by M. Balaeti

and V. Nechita [14]. On the other hand, if a′(t) = α/α− 1, t ∈ [0,∞), where α ∈ [0, 1), we obtain the

notion of almost starlikeness of order α due to Feng [33].

Also, if a′(t) = −1 in Definition 5.1.2, we obtain the notion of almost starlikeness of order 1/2.

The following result provides a necessary and sufficient condition for generalized almost starlike on U

in terms of Loewner chains.

Theorem 5.1.4.[28] Let be f : U → C be a normalized holomorphic function and let a : [0,∞)→ C

be a function of class C∞, such that Re a(t) ≤ 0, t ∈ [0,∞). Assume that there exists µ < 0 such that Re

a(t) ≥ µ, t ≥ 0. Then f is a generalized almost starlike mapping if and only if

g(z, t) = et−a(t)f(ea(t)z), z ∈ U, t ≥ 0

is a Loewner chain. In particular, f is a starlike function (i.e., a(t)=0) if and only if g(z, t) = etf(z) is a

Loewner chain.

From Theorem 5.1.18 and the well known growth theorem for the class S (see [39], [100]) we obtain

the next corollary.

Corollary 5.1.5.[28] Let be f(z) be a generalized almost starlike function . Then

|z|
(1 + |z|)2

≤ |e−a(t)f(ea(t)z)| ≤ |z|
(1− |z|)2

, z ∈ U, t ≥ 0.

The following result proves the compactness of S∗g (Bn).

Theorem 5.1.6.[28] The set S∗g (Bn) is a compact set.

Definition 5.1.7. Let be f ∈ H(Bn) be a normalized mapping. We say that f has parametric repre-

sentation if there exists a Loewner chain f(z, t) such that {e−tf(·, t)}t≥0 is a normal family on Bn and

f = f(·, 0).

Let S0(Bn) be the set of mappings which have parametric representation on Bn.

Various properties of the Pfaltzgraff-Suffridge and Roper-Suffridge operators may be found in [40],

[97], [122], respectively.

Theorem 5.1.8.[29] Assume that f is a generalized almost starlike mapping. Then F = Φn(f) is also

a generalized almost starlike mapping.

Theorem 5.1.9.[29] The set Φn[S∗g (Bn)] is compact.
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[15] L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des

Einheitskreises vermitteln, Preuss. Akad. Wiss. Sitzungsb., (1916),940-955.

28



[16] L.D. Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152.
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