

Nanostructured TiO₂-based oxide layers sensitized with organic compounds having photoelectrocatalytic potential

- PhD thesis abstract -

Scientific Supervisor

Prof. Dr. Luminița Silaghi-Dumitrescu

Roşu Marcela-Corina *PhD student*

Cluj-Napoca, 2008-2011

Scientific supervisor

Prof. Dr. Silaghi-Dumitrescu Luminița

PhD Jury

President

Conf. Dr. Majdik Cornelia - *Dean*, Faculty of Chemistry and Chemical Engineering, Cluj-Napoca

Reviewers

Prof. Dr. Mureşan Liana - Faculty of Chemistry and Chemical Engineering, Cluj-Napoca
Conf. Dr. Vlascici Dana – West University, Timişoara
CS I, Dr. Ing. Almăşan Valer – Scientific manager, INCDTIM Cluj-Napoca

PhD thesis support:

December 9, 2011, 12 a.m., room no. 97

Faculty of Chemistry and Chemical Engineering, Cluj-Napoca,

IADLE OF CONTENT

INTRODUCTION	8
AIM OF THE THESIS	10
STATE OF THE ART	
Chapter 1. TITANIUM DIOXIDE (TiO ₂)	11
1.1. General aspects	11
1.2. Crystalline structure of TiO ₂	12
1.3. Electric/electronic and optic properties of TiO₂	14
1.4. TiO ₂ -nanostructured	15
1. 5. Preparation methods of titanium dioxide	15
1.6. TiO ₂ nanoparticles immobilization on various substrate	17
1.7. TiO ₂ photoactivity	17
1.7.1. Parameters that affect photoinduced processes	18
1.7.1.1. Physical-chemical properties of semiconductors	18
1.7.1.2. Methods and conditions of TiO_2 layers preparation	21
1.7.2. Improving TiO ₂ photoactivity	22
2.7.2.1. Coupling with narrow band gap semiconductors	22
2.7.2.2. Doping metals/nonmetals	24
2.7.2.3. Surface sensitization of TiO ₂ nanoparticles with organic compounds having	
photoelectrochemical potential	24
1.8. TiO ₂ -based layer applications	26
1.8.1. Solar cells DSSC type	26
1.8.2. Water-splitting processes	29
1.8.3. Heterogeneous catalytic photodegradation of pollutants	31
1.8.4. Other applications	33

ORIGINAL CONTRIBUTIONS

Chapter 2. THE INFLUENCE OF TiO ₂ CONTENT IN PREPARATION OF ITO/TiO ₂	
NANOSTRUCTURED FILMS	34
2.1. Materials and preparation methods	34
2.2. Characterization of TiO ₂ layers	34
2.3. Results and discussion	35
2.4. Conclusions	40
Chapter 3. THE INFLUENCE OF PEG/PPPG (POLYETHYLENE GLYCOL/	
POLYPROPYLENE GLYCOL) AND THE ANNEALING TEMPERATURE ON	
CATALYTIC ACTIVITY OF TiO ₂ PHOTOANODES	41
3.1. Materials and preparation methods	41
3.2. Characterization TiO ₂ layers	42
3.3. Results and discussion	42
3.4. Conclusions	48
Chapter 4. TiO ₂ /METHYLCELLULOSE NANOCOMPOSITE FILMS FOR	
PHOTOCATALYTIC APPLICATIONS	49
4.1. Materials and preparation methods	49
4.2. Characterization of TiO ₂ layers	50
4.3. Results and discussion	50
4.4. Conclusions	53
Chapter 5. IMPROVING PHOTOACTIVITY OF TiO ₂ -BASED LAYERS SENSITIZED	
WITH CARMINE AND MORIN DYES	54
5.1. Materials and preparation methods	55
5.2. Characterization of TiO ₂ layers and natural dyes	57

5.3. Results and discussion	57
5.4. Conclusions	66
Chapter 6. PHOTOCATALYTIC PROPERTIES EVALUATION OF TiO ₂ /CdS	
NANOCOMPOSITES SENSITIZED WITH PHTALOCYANINE AND	
MESO-TETRAPHENYLPORPHINE	67
6.1. Experimental details	69
8.1.1. Materials	69
8.1.2. TiO ₂ /CdS nanocomposites preparation	69
8.1.3. Sensitization of TiO ₂ /CdS nanocomposites	60
6.2. Characterization of TiO ₂ /CdS nanocomposites and solutions of Pc and TPP	70
6.3. Results and discussion	71
8.3.1. Morpho-structural properties evaluation	71
8.3.2. Opto-electronic characteristics	75
8.3.3. Physical-chemical properties determination	77
8.3.4. Mechanical properties testing	79
6.4. Conclusions	79
Chapter 7. ALIZARIN AND FLUORESCEIN EFFECTS ON PHOTOACTIVITY OF Ni, Pt	
AND Ru-DOPED TiO ₂ LAYERS	81
7.1. Experimental details	83
9.1.1. Materials	83
9.1.2. Preparation of Ni, Pt, Ru-doped TiO ₂ layers	83
9.1.3. Sensitization Ni, Pt, Ru-doped TiO ₂ layers with alizarin and fluoresceine dyes	85
7.2. Characterization of Ni, Pt, Ru-doped and sensitized TiO_2 materials and solutions of	
alizarin and fluoresceine	86
7.3. Results and discussion	86
7.4. Conclusions	98
Chapter 8. ADITIONAL STUDIES	100
8.1. Obtaining of gel electrolyte - matrix for quasi-solid electrolyte	100
8.2. Quasi-solid electrolyte preparation	107
8.3. Platinum counter electrodes preparation	111
Chapter 9. TESTING OF TITANIUM DIOXIDE-BASED OXIDIC SYSTEMS EFFICIENCY	116
Chapter 10. GENERAL CONCLUSIONS	122
PERSONAL CONTRIBUTIONS	125
REFERENCES	126
ANEXES	145
Scientific papers and communications	145
National/international projects participations	150
Design and testing of experimental models - prototypes	151
- congression and competition in a weak prototypes	

KEYWORDS:

TITANIUM DIOXIDE PHOTOELECTROCATALYTIC ACTIVITY DYES DSSC SOLAR CELLS

Introduction

Nanoscience field exploration led to the development of new materials with unique/special properties which can open opportunities of the most diverse range of application areas: bioscience (biophysics, biochemistry, biotronics, computational biology), biomedicine (diagnosis techniques, drugs, prosthesis and implants), materials science (nanomaterials), electric engineering (nanoelectronics, nanodevices), mechanical engineering ((NEMS – *nano-electro-mechanical system*), interface and colloidal chemistry (nanodispersions, nanoemulsions, aerosols), chemical engineering (nanopolimers, nanowires/nanotubes Zn, Si, Ti oxides), environmental science (purification air/water materials) [1].

Nanostructured materials, with particle size less than 100 nm, possesses special characteristic properties, referring to structural (network symmetry, unit cell size), electronic (band gap, quantum size effect) or physical-chemical (crystalline structure, particles size, surface area, chemical reactivity/stability).

Metal oxides play an important role in many areas of chemistry, physics and materials science being used in the field of microelectronic circuits, sensors, piezoelectric devices, catalysts and others [2]. The bulk state of the oxides usually leads to a robust and stable system with well-defined crystalline structures [2]. In the case of nanostructured materials, with particle size reduction, a number of physical properties (mechanical, electrical, optical, etc.) are very different in comparison with those of macroscopic systems [2-4] thanks to a big ratio between number of the surface and volume atoms (which leads to a larger contact area), the decrease of surface free energy and appearance of so-called *quantum size effect* [2, 5, 6].

The interest on titanium dioxide, in the photoelectrochemical field, is due to its special properties:

- chemical: chemical stability [7, 8], corosion/photocorosion rezistence, photocatalytic potential [9],
- electrical: high dielectric constant ($\varepsilon_r \approx 60-100$) [10-12], increased electrical conductivity [13],
- optical: sensitivity to UV field [1-16], favourable band gap [7, 8, 17], very high refractive index (2,6-2,9) [13, 14, 18];
- biological: non-toxicity, biocompatibility [13, 19];
- economical: availability at low cost, in the form of ilmenite (FeTiO₃) or TiO₂ rutile deposits in Norway, Finland, Canada, Russia, Australia, USA, India, South Africa [17-19].

 TiO_2 is presented in three stable polymorphic states: rutile (tetragonal), anatase (tetragonal) and brookite (orthorhombic) (Figure 1) [20, 21].

 TiO_2 is a *n*-type semiconductor due to oxygen vacancies, and its conductivity increases with the degree of oxygen loss in the lattice [18, 22-24].

TiO₂ has a wide band gap (3.2 eV - anatase, 3.00 eV - rutile and 3.13 eV - brookite) [25-27], which limits its absorption in the UV region of solar spectrum (~ 5% of the incoming solar energy on the earth's surface) [17, 28, 29].

In order to extend optical spectral response, quantum efficiency improvement and increasing photoactivity of titanium dioxide a number of methods have developed, such as coupling with narrow band gap semiconductors, doping metals/nonmetals or surface sensitization of TiO_2 nanoparticles with photosensitive organic compounds [9, 17, 18, 30, 31].

The coupling of TiO_2 with a narrow band gap semiconductor, with a level of energy more negative than band conduction (CB) of TiO_2 , so that the photogenerated electrons transition can take place from the CB of narrow band gap semiconductor in valence band (VB) of TiO_2 , induce positive effects (efficient charge separation, a diminution of recombination processes of them), translated by increasing the efficiency of titanium dioxide photoactivity [31, 32].

The embedment of metal or nonmetal ions in TiO_2 network creates intermediate allowed energy states located in the band gap of titanium dioxide which act as "traps" for electrons/holes leading to the extension of TiO_2 absorption in the visible field [32, 33].

Surface modification of semiconductor materials with dyes by sensitization processes involves: (i) adsorption of dyes molecules onto TiO_2 nanoparticles surface via physical or chemical interactions, (ii) under the influence of visible light the dye molecules go into an excited state thus generating electron-hole pairs and (iii) the photogenerated electrons are injected to the conduction band of the semiconductors causing an enhance photoactivity of semiconductor [34, 35, 36].

Aim of the thesis

The documentation, studies, experiments and materials which are the subject of this thesis, focuses on oxide materials based on TiO_2 nanoparticles arranged in layers, in order to rise their photoactivity by coupling with narrow band gap semiconductors, doping with transition metals and sensitization with different organic compounds having photoelectrocatalytic potential, with the main goal of improving titanium dioxide efficiency in the solar cells devices.

Experimental details

In all experiments, the materials used to prepare the TiO₂-based layers were: TiO₂ commercial powder P25 Degussa, kindly supplied by Degussa AG (Germany), methylcellulose (Serva, Germany), acetyl acetone (Merck, Germany), polyethylene glycol (Macherey-Nagel, Germany) and Triton X-100 (Fluka, Switzerland).

The pastes obtained by mixing the mentioned additives were spread onto ITO glass substrates (sheet resistance $\leq 20 \Omega$ /square, Praezision Glas & Optik, Germany) by spin-coating method. The samples were dried by lyophilization in order to develop porous materials with a higher surface area. In the next step the samples were heat-treated in air to remove the organic additives, to immobilize the semiconductor layer onto substrate, to establish the electrical contact between TiO₂ and conductive ITO glass, to determinate a better adherence on support, to improve the crystallinity of nanocomposite films and to induce higher degree of porosity and greater thickness [37, 38].

It was used different type of dyes for sensitizing TiO_2 layers only in the one concentration (2x10⁻⁴M).

The TiO_2 -based layers were evaluated in terms of morphostructural and optoelectronic characteristics of obtained oxidic systems, and finally it has tested their photoactivity efficiency by assembling *DSSC* solar cells and recording their functional parameters.

IMPROVING PHOTOACTIVITY OF TiO₂-BASED LAYERS SENSITIZED WITH CARMINE AND MORIN DYES

This chapter presents the preparation and characterization of sensitized TiO_2 -based layers with carmine and morin (Figure 2) in order to obtain new systems with photocatalytic potential.

The obtained TiO_2 layers (Figure 3) were named according to the dye used for sensitization, namely: TC - TiO_2 layer sensitized with carmine, TM - TiO_2 layer sensitized with morin, and TCM - TiO_2 layer sensitized with carmine/morin solution. The sample called T was used as a standard; in this case the TiO_2 layer was not sensitized.

Fig. 3 The prepared TiO₂-based layers.

UV-VIS spectra of sensitized TiO_2 layers (Figure 4) show a shift of absorption to the visible region; this effect is due to adsorption of dye molecules on the surface of oxide nanoparticles.

Fig. 4 UV-VIS absorption spectra of TiO₂-based layers.

The values of band gap energy are obtained by linear extrapolation from UV-VIS spectra and using the Tauc formula: $(\alpha hv)^2 = A (hv - E_g)$. In the case of sensitized layers, E_g decrease slightly compared with the known value $E_{g,TiO2} = 3.00-3.2$ eV, (Table 1).

Sample's name	Sample's description	E _g (eV)
Т	TiO ₂ layer nonsensitized (standard sample)	3.13
ТС	TiO_2 layer sensitized with carmine	2.95
ТМ	TiO_2 layer sensitized with morin	2.98
ТСМ	TiO ₂ layer sensitized with carmine/morin	3.05

Table 1. Band gap energy values for the investigated samples.

The fluorescence emission spectra of TiO_2 -based layers do not show notable changes between the fluorescence emissions of the investigated layers (Figure 5).

Fig. 5 Fluorescence spectra of T, TC, TM and TCM samples.

The XRD patterns of TiO_2 -based samples show the presence of crystalline anatase and rutile phases in optimal proportion (84% anatase and 16% rutile) for a high photocatalytic activity (Figure 6).

Fig. 6 X-ray diffraction patterns of T, TC, TM and TCM samples.

IR absorption spectra of the sensitized layers, compared with the corresponding absorption spectra of dyes are shown in Figure 7, and prove the presence of dye molecules on TiO_2 obtained layers.

Fig. 7 IR spectra of TiO_2 layers compared with: a) carmine, b) morin.

IR microscopy images obtained in transmission mode (Figure 8) show a relatively homogeneous surface ($300x300 \mu m$), uniform for all investigated samples; titanium dioxide appears opaque due to observation mode chosen for investigation.

Fig. 8 Images obtained by IR microscopy in transmission mode of TiO_2 samples: a) T, b) TC, c) TM, and d) TCM.

The nitrogen adsorption-desorption isotherms recording led to the determination of physicalchemical properties of TiO_2 -based material prepared, freeze-dried and heat-treated which proved superior than TiO_2 commercial P25 Degussa (Table 2)

Table 2. Physical-chemical properties of TiO_2 prepared materials versus TiO_2 P25 Degussa.

Sample's nameSurface area (m^2/g)		Specific pore volume (cm ³ /g)	Radius pore size (Å)	
TiO ₂ P25 Degussa	42.3	0.050	50-260	
TiO ₂ powder prepared	50.0	0.088	15-220	

Modification of titanium dioxide by sensitization with natural dyes: carmine and morin, led to increased response capacity under light irradiation, and obtain a blue shift to its photoactivity.

PHOTOCATALYTIC PROPERTIES EVALUATION OF TiO₂/CdS NANOCOMPOSITES SENSITIZED WITH PHTALOCYANINE AND *MESO*-TETRAPHENYLPORPHINE

In order to extend the absorption spectra of TiO_2 to the visible region and to improve its photocatalytic efficiency, titanium dioxide has been associated with a narrow band gap semiconductor, cadmium sulphide (CdS). Also, with intention to obtain more efficient photoelectrodes to use in photoelectrochemical processes, the modification of TiO_2/CdS nanocomposites aimed to sensitize them with *meso*-tetraphenylporphine (TPP) and phthalocyanine (Pc) dyes (Figure 9).

Fig. 9 Structural formula of: a) phtalocyanine [41]; b) meso-tetraphenylporphine [41].

Thus, three sensitized layers were obtained, noted according to the colour used, namely: TC_{Pc} , TC_{TPP} and $TC_{Pc/TPP}$; all samples were obtained by immersion in $2x10^{-4}M$ dye solutions. Pc/TPP solution was obtained by mixing the two initial solutions in 1:1 volume ratio. TC sample was intentionally left non-sensitized, as standard sample (Figure 10).

Fig. 10 TiO₂/CdS nanocomposites samples.

The UV-VIS absorption spectra (Figure 11) exhibit the edges of the TiO_2/CdS nanocomposites absorption peaks that shift to visible region, which is reflected by lower values of the energy band gap.

Fig. 11 UV-VIS spectra of: TC, TC_{Pc} , TC_{TPP} and $TC_{Pc/TPP}$ samples.

The values of band gap energy in direct transition (determined from UV-VIS spectra by linear extrapolation) were higher than TiO_2 band gap energy (3.0-3.2 eV) and lower than the CdS (2.4 eV) one, also through the contribution of dye molecules adsorbed on the surface nanocomposites (Table 3).

Sample's name	Band gap energy value (eV)
ТС	2.96
TC _{Pc}	2.82
ТС _{трр}	2.73
TC _{Pc/TPP}	2.54

Table 3. The values of band gap energy in direct transition for all samples.

Figure 12 shows the effect of Pc and TPP on the emission spectra of TiO₂/CdS nanocomposites. No significant changes in fluorescence spectra of TiO₂/CdS-based samples as a result of dyes molecules adsorbed on surface of semiconductor composites were observed.

Fig. 12 *Fluorescence spectra of:* $TC_{Pc/TPP}$ *TC,* TC_{Pc} *,* TC_{TPP} *and* $TC_{Pc/TPP}$ *samples.*

The XRD patterns show that TiO_2 (anatase and rutile) and cubic CdS phases coexist in the all samples. Also the crystalline phase of dyes appears, probably due to their crystallization after solvent evaporation (Figure 13).

Fig. 13 X-ray diffraction patterns of TiO₂/CdS-based samples: a) 25-85 20 and b) 5-25 20 domain.

The absorption bands appeared in the IR spectra of all sensitized samples proves the adsorption of Pc and TPP molecules on nanocomposite surface by the appearance of absorption bands characteristic vibrations of dye bonds (NH, C = C, C = N, C_6H_6) in the absorption spectra of nanocomposites TiO₂/CdS sensitized (Figure 14).

Fig. 14 FT/IR spectra of: a) dyes, b) all TiO₂/CdS samples.

The FT/IR microscopy images ($40x40 \ \mu m^2$) revealed that the morphological features of samples are different and caused by the adsorption and crystallization of dye molecules on their surface (Figure 15).

Fig. 15 FT/IR microscopy images: a) TC, b) TC_{Pc} , c) TC_{TPP} and d) $TC_{Pc/TPP}$.

In the Table 4 can be observed that the surface area and the specific pore volume of composite were found to be between those of TiO_2 and CdS values. The appearance of small pore radius fraction in nanocomposite caused a narrow range of radius pore size.

*Table 4. Physical-chemical properties of TiO*₂, CdS and TiO₂/CdS samples.

Sample's name	Surface area	Specific pore volume	Radius pore size
	(m^2/g)	(cm^3/g)	(Å)
TiO ₂	42.3	0.05	20-250
CdS	55.4	0.13	75-225
TC (TiO ₂ /CdS)	48.7	0.07	100-225

The results of experiments show that TiO_2/CdS nanocomposites could improve its photocatalytic efficiency by formation of highly dispersed composite of TiO_2 and CdS using nanosized materials. The quality of these nanocomposite materials could be also increased by an efficient charge separation, a recombination probability of the electron-hole pairs diminished and an enhancement of photostability, sensitization the nanocomposites with dyes that have an intense photon absorption in the visible light domain.

ALIZARIN AND FLUORESCEIN INFLUENCE ON PHOTOACTIVITY OF Ni, Pt, Ru-DOPED TiO₂ LAYERS

The modification of TiO_2 -based oxide materials by embedding metal ions Ni, Pt and Ru in its network, as well as alizarin and fluorescein molecules adsorption on the surface of oxide nanoparticles, lead to improve the photoactive properties of the titanium dioxide under the solar light action.

As starting materials for the preparation of doping TiO₂-based layers with Ni, Pt and Ru were used: nickel (II) chloride hexahydrate, NiCl₂·6H₂O (Reactivul București, Romania); hexachloroplatinic acid, 8%, H₂PtCl₆ (Sigma-Aldrich, Germany) and ruthenium (III) chloride, RuCl₃ (Merck, Germany).

The structural formula of sensitizers, alizarin and fluorescein, used to sensitize the Ni, Pt, Ru-doped TiO₂ layers are presented in Figure 16.

Fig. 16 Structural systems numbered of: a) alizarin [42] and b) fluorescein [43].

The TiO₂-based samples obtained are presented in Figure 17, each doping metal ion causing a specific colour of TiO₂ samples, namely: Ni^{2+} - green colour, Pt^{2+} - brown colour, and Ru^{3+} - dark brown colour; TiO₂ layers have a white colour.

Fig. 17 Ni, Pt, Ru-doped TiO₂ non-sensitized samples.

Finally, three TiO_2 -based layers (doped with Ni, Pt and Ru) and sensitized with alizarine (A) were obtained and other three layers doped with the same metal ions, and sensitized with fluorescein (F) were prepared (Figure 18). A sample consisting of TiO_2 undoped and non-sensitized layer was used as standard.

Fig. 18 Ni, Pt, Ru-doped TiO_2 and sensitized with alizarin and fluorescein samples.

Investigation of optoelectronic properties by UV-VIS spectroscopy shows that Ni-doped TiO_2 layer presents a shift towards the visible absorption and TiO_2 layers doped with Pt and Ru determined a red shift in the absorption spectrum, probably due to an excessive concentration of dopant ions in the structure of TiO_2 .

Fig. 19 UV-VIS spectra of T-TiO₂, TNi, TPt, and TRu samples.

In the UV-VIS region, the effect of alizarin and fluorescein on doped TiO_2 layers is translated by the shifted absorption to higher wavelengths.

From two dyes, alizarin causes a more intense optical response shifted to visible, probably due to more efficient coupling process between its molecules and TiO_2 .

Fig. 20 UV-VIS spectra of: a) TNi, b) TPt, and c) TRu, as well as additional layers sensitised with alizarin and fluorescein compared to T -TiO₂.

Calculated values of Eg samples from UV-VIS spectra and using the relation of Tauc are presented in Table 5.

Sample's	F (eV)	Sample's	E (eV)	Sample's	E (eV)	Sample's	E (aV)
name	$L_g(UV)$	name	$L_g(UV)$	name	$L_g(UV)$	name	$L_g(CV)$
T-TiO ₂	3.07	TNi	2.70	TPt	3.14	TRu	3.15
		TNi-A	2.20	TPt-A	3.07	TRu-A	3.08
		TNi-F	2.35	TPt-F	3.10	TRu-F	3.11

Table 5. Band gap energy values of investigated TiO_2 layers.

The fluorescence emission spectra of dopped and undoped TiO_2 layers have similar forms. Photoluminescence spectra emission of doped and sensitized TiO_2 layers show a decrease in the emission intensities compared to standard sample. The phenomenon of fluorescence quenching is caused by the transition of electrons from the dye excited state in the conduction band of nanoparticles and reflects a high degree of association between dye molecules and TiO_2 [44, 45].

Fig. 21 Fluorescence spectra of Ni, Pt, Ru-doped and sensitized TiO₂ layers with: a) alizarin, and b) fluorescein.

The XRD patterns of investigated samples (Figure 22) not show the presence of diffraction peaks that confirms the presence of crystalline forms of nickel, platinum or ruthenium oxides, or pure metal phases that suggesting penetration doping ions into the lattice of TiO_2 .

Fig. 22 X-ray diffraction patterns of Ni, Pt, Ru-doped TiO₂ layers and sensitized with: a) alizarin (A), and b) fluorescein (F).

IR absorption spectra reveal the presence of dye molecules adsorbed on the surface of TiO_2 -based layers (Figure 23).

Fig. FT/IR spectra of Ni, Pt, Ru-doped TiO₂ layers and sensitized: a) alizarin, and b) fluorescein.

The images obtain by IR microscopy in reflexion mode show relatively homogeneous surface of investigated TiO_2 layers, except those doped with Ni (on their surface microcracks are observed).

Fig. 24 FT/IR microscopy images: a) TNi-A, b) TPt-A, c) TRu-A, d) TNi-F, e) TPt-F and f) TRu-F.

Surface area and pore volume determined by N_2 adsorption-desorption isotherms of investigated samples does not differ significantly (Table 6) so that dopants apparently has no appreciably influences on active surface area and porosity of prepared materials.

			-
Sample's	Surface area	Specific pore volume	Radius pore size
name	(m^2/g)	(cm^3/g)	(Å)
Ni-doped TiO ₂	45.94	0.102	140-220
Pt-doped TiO ₂	46.15	0.097	140-200
Ru-doped TiO ₂	45.39	0.092	120-220

Table 6. Physical-chemical properties of TiO₂-based materials.

The investigation results show that TiO₂-based materials doped with transition metal ions (Ni, Pt, Ru) and sensitized with alizarin and fluorescein possess optoelectronic properties for the optimal development of oxide systems in different photoelectrocatalytic processes.

TESTING THE EFFICIENCY TITANIUM DIOXIDE-BASED OXIDICE SYSTEMS

A conventional *DSSC* solar cell contains a TiO_2 -based photoelectrod sensitized with dye molecules, a counter electrode (usually, platinum) and an electrolyte introduced into the space between the two electrodes (containing a redox mediator, such as iodide-triiodide redox couple). In order to test the TiO_2 -based layers obtained have assembled these cell types (Figure 25).

Fig. 25 Sample of solar cell assembled.

Recording of current voltage characteristics (I-V) allow the evaluation of solar cells efficiency by determining the functional parameters: fill factor (*FF*) and conversion efficiency (η) of the dye-sensitized solar cell. The results of experiments are presented in the Table 7.

Sample's name	Sample's description	η (%)	<i>FF</i> (-)
TC	TiO_2 sensitized with carmine (C)		0.43
ТМ	TiO ₂ sensitized with morin (M)	1.70	0.40
ТМС	TiO ₂ sensitized with carmine/morin (C/M)	1.87	0.41
TC _{Pc}	TiO ₂ /CdS sensitized with phtalocyanine (Pc)	1.92	0.40
TC _{TPP}	TiO ₂ /CdS sensitized with <i>meso</i> -tetraphenylporphine(TPP)	2.44	0.41
TC _{Pc/TPP}	TiO ₂ /CdS sensitized with Pc/TPP	2.12	0,38
TNi-A	Ni-doped TiO ₂ and sensitized with alizarin	2.76	0.51
TPt-A	Pt-doped TiO ₂ and sensitized with alizarin	2.41	0,48
TRu-A	Ru-doped TiO ₂ and sensitized with alizarin	2.14	0.45
TNi-F	Ni-doped TiO ₂ and sensitized with fluorescein	2.52	0.53
TPt-F	Pt-doped TiO ₂ and sensitized with fluorescein	2.16	0.50
TRu-F	Ru-doped TiO ₂ and sensitized with fluorescein	2.20	0.42

Table 7. FF and η values of tested TiO₂-based layers.

According to the measurements, one can observe that the systems have a photovoltaic effect, but conversion yields are lower compared with those reported in the literature (over 10%). This is normal taking into account that these dyes used in experiments are not entirely adapted to the purpose.

FINAL CONCLUSIONS

The structural defects of TiO_2 lattice determine the appearance of fast recombination sites between photogenerated charges under light action which leads to electrons and holes concentration decrease, and consequently photoactive properties are reduced.

The aim of these experiments was to remove this effect by doping, association and sensitization of titan dioxide with transition metal ions, narrow band gap semiconductors and/or with different photosensitive organic compounds, such as dyes.

Association, doping and sensitization effects on TiO₂-based materials, depends on different parameters, such as type and concentration of doping ions or coupled semiconductors, structure and concentration of organic dyes, physical-chemical properties of components, proposed oxide materials preparation methods.

All these contribute to the final aim of experiments, namely to increase the efficiency of converting sunlight into energy in photovoltaic cells using materials TiO₂-based associated with other semiconductors, doped with metal/nonmetal ions and/or sensitized with various dyes.

Information regarding the opto-electronic, morpho-structural and mechanical properties of TiO_2 based layers, which makes the object of this thesis, suggests the obtaining of some materials with photoelectrocatalytic potential, efficient candidates in water decomposition processes, water pollutants degradation, solar cell and electrochromic devices.

SELECTIVE BIBLIOGRAPHY

- 1. W.H. Suh, K.S. Suslick, G.D. Stucky, Y.-H. Suh, Progress in Neurobiology 87 (2009) 133-170
- M. Fernández-García, A. Martínez-Arias, J.C. Hanson, J.A. Rodriguez, *Chemical Reviews* 104 (2004) 4063-4104
- 3. H.C. Choi, Y.M. Jung, S.B. Kim, Vibrational Spectroscopy 37 (2005) 33-38
- 4. J.H. Noh, H.S. Jung, J.-K. Lee, J.-R. Kim, K.S. Hong, *Journal of the European Ceramic Society* 27 (2007) 2937-2940
- 5. Victor Chirea, *Nanocristale Semiconductoare și Aplicații* Proiect de Diplomă, Universitatea Politehnică București, Facultatea de Electronică, Telecomunicații și Tehnologia Informației, Catedra de Telecomunicații, 2006, www.theory.nipne.ro/
- 6. Q. Zhang, G. Cao, Nano Today 6 (2011) 91-109
- 7. N.-L. Wu, M.-S. Lee, Z.-J. Pon, J.-Z. Hsu, Journal of Photochemistry and Photobiology A: Chemistry 163 (2004) 277-280
- 8. Y.C. Zhang, H.Y. Wu, M.C. Zhu, E.Q. Wang, D.X. Li, Advanced Materials Research 266 (2011) 55-58
- 9. M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, *Journal of Power Sources* 181 (2008) 46-55

- M. Kagata, Y. Abe, "Dielectric properties of sintered TiO₂ and TiO₂-WO₃ mixtures", CARTS USA 2006, Digital Library, http://ecadigitallibrary.com/ pdf/CARTS 06/7_3 swq
- 11. M.-K. Lee, H.-C. Lee, C.-M. Hsu, Materials Science in Semiconductor Processing 10 (2007) 61-67
- 12. K. Karthik, S. Kesava Pandian, N. Victor Jaya, Applied Surface Science 256 (2010) 6829-6833
- 13. K. Pomoni, A. Vomvas, Chr. Trapalis, Journal of Non-Crystalline Solids 354 (2008) 4448-4457
- M.M. Abdel-Aziz, I.S. Yahia, L.A. Wahab, M. Fadel, M.A. Afifi, *Applied Surface Science* 252 (2006) 8163-8170
- 15. Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, Chemical Physics 339 (2007) 20-26
- 16. M.-J. Yoon, Journal of the Chinese Chemical Society 56 (2009) 449-454
- 17. N. F. Atta, H.M.A. Amin, M. W. Khalil, A. Galal, International Journal of Electrochemical Science 6 (2011) 3316-3332
- 18. Carp, C.L. Huisman, A. Reller, Progress in Solid State Chemistry 32 (2004) 33-177
- B. Huber, A. Brodyanski, M. Scheib, A. Orendorz, C. Ziegler, H. Gnaser, *Thin Solid Films* 472 (2005) 114-124
- **20.** http://www.geocities.jp/ohba_lab_ob_page/structure6.html
- 21. ruby.colorado.edu
- 22. J. Jun, M. Dhayal, J.-H. Shin, J.-C. Kim, N. Getoff, Radiation Physics and Chemistry 75 (2006) 583-589
- 23. R.S. Mane, M.-Y. Yoon, H. Chung, S.-H. Han, Solar Energy 81 (2007) 290-293
- 24. E.G. Seebauer, M.C. Kratzer, "Charged semiconductor defects: Structure, thermo-dynamics and diffussion", 2009, Springer-Verlag London Limited, ISBN 978-1-84882-058-6
- 25. F.M. Hossain, L. Sheppard, J. Nowotny, G.E. Murch, *Journal of Physics and Chemistry of Solids* 69 (2008) 1820-1828
- **26.** D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, *Nanotechnology* 19 (**2008**) 145605 (10 pag.), doi:10.1088/0957-4484/19/14/145605
- 27. X. Li, Y. Cheng, L. Liu, J. Mu, Colloids and Surfaces A: Physicochemical and Engineering Aspects 353 (2010) 226-231
- 28. S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr., Science 297 (2002) 2243-2249
- 29. S. Kuang, L. Yang, S. Luo, Q. Cai, Applied Surface Science 255 (2009) 7385-7388
- P. Supphasrirongjaroen, P. Praserthdam, J. Panpranot, D. Na-Ranong, O. Mekasuwandumrong, Chemical Engineering Journal 138 (2008) 622-627
- 31. Y. Yang, H. Zhong, C. Tian, Research on Chemical Intermediates 37 (2010) 91-102
- M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, *Renewable and Sustainable Energy Reviews* 11 (2007) 401–425
- 33. A. Zaleska, Recent Patents on Engineering 2 (2008) 157-164
- 34. A. Huijser, T. J. Savenije, L. D.A. Siebbeles, Thin Solid Films 511-512 (2006) 208-213
- 35. A. Kathiravan, R. Renganathan, Journal of Colloid and Interface Science 331 (2009) 401-407
- 36. H. Karaca, S. Sezer, C. Tanyeli, Dyes and Pigments 90 (2011) 100-105
- 37. Y. Chen, D.D. Dionysiou, Journal of Molecular Catalysis A: Chemical 244 (2006) 73-82
- 38. C. Li, Y. Lin, X. Li, Z. Wang, Y. Ma, X. Zhou, S. Feng, X. Xiao, *Chinese Science Bulletin* 50 (2005) 1449-1452
- 39. H. Kunkely, A. Vogler, Inorganic Chemistry Communications 14 (2011) 1153-1155
- 40. Q. K. Panhwar, S. Memon, M.I. Bhanger, Journal of Molecular Structure 967 (2010) 47-53
- 41. www.sigmaaldrich.com
- B.S. Siddiqui, F.A. Sattar, F. Ahmad, S. Begum, Archives of Pharmacal Research 30 (2007) 919-923
- 43. J.C. Castro, Rosamine and fluorescein derivatives as donors/acceptors for "Through-Bond" energy transfer cassettes A Master of Science Thesis California State University, San Bernardino, 2009, https://repository.tamu.edu/ bitstream/handle/1969.1/ETD-TAMU-2009-127574/
- 44. R. Huber, S. Spörlein, J.E. Moser, M. Grätzel, J. Wachtveitl, *Journal of Physical Chemistry B* 104 (2000) 8995-9003
- 45. D.E. Mekkawi, M.S.A. Abdel-Mottaleb, International Journal of Photoenergy 7 (2005) 95-101

ISI Publications

- 1. The Influence of TiO₂ Content in Preparation of ITO/TiO₂ Nanostructured Films <u>Marcela-Corina Rosu</u>, Ramona-Crina Suciu, Simina Dreve, T.D. Silipas, I. Bratu, E. Indrea, *Revue Roumaine de Chimie*, 2011, 56(6), 601-605
- 2. Phtalocyanine and *meso*-tetraphenylporphine effects on TiO₂/CdS nanocomposites photoactivity <u>M.C. Rosu</u>, R.C. Suciu, M.D. Lazar, I. Bratu, *Journal of Optoelectronics and Advanced Materials*, 2011, 13(12-13), 1345-1351
- **3.** TiO₂ Thin Films Prepared by Spin Coating Technique Ramona-Crina Suciu, <u>Marcela-Corina</u> <u>Rosu</u>, T.D. Silipas, Al.R. Biris, I. Bratu, E. Indrea, *Revue Roumaine de Chimie*, 2011, 56(6), 607-612
- **4.** Rietveld Analysis of Nanocrystalline Titania Prepared by Sol-Gel Method E. Indrea, Ramona-Crina Suciu, <u>Marcela-Corina Rosu</u>, T.D. Silipas, *Revue Roumaine de Chimie*, 2011, 56(6), 613-618
- Rietveld Refinement of Powder X-Ray Diffraction of Nanocrystalline Noble Metals Tungsten Trioxide – E. Indrea, Ecaterina Bica, Elisabeth-Jeanne Popovici, Ramona-Crina Suciu, <u>Marcela-Corina Rosu</u>, T.D. Silipas, *Revue Roumaine de Chimie*, 2011, 56(6), 589-593
- Fe₂O₃-TiO₂ Thin Films RC Suciu, <u>MC Rosu</u>, SV Dreve, TD Silipas, E Indrea, V Popescu, G Popescu, *Environmental Engineering and Management Journal*, February, 2011, 10(2), 187-192, ISSN 1582-9596
- 7. The Influence of PEG/PPPG (Polyethylene Glycol/ Polypropylene Glycol) and of the Annealing Temperature on Catalytic Activity of TiO₂ Photoanodes <u>M. C. Rosu</u>, R. C. Suciu, S. V. Dreve, , T.D. Silipas, I. Bratu, E. Indrea, *In Press, Revue Roumaine de Chimie*

BDI/B+ Publications

- A Spectroscopic Study of Dyes Decomposition by Irradiated Nanocrystalline TiO₂ <u>Marcela-Corina Rosu</u>, Ramona-Crina Suciu, Irina Kasco, Simina-Virginia Dreve, E. Indrea, T.D. Silipas, Journal of Physics: Conference Series 182 (2009) 012078
- TiO₂-based Systems for Photoelectro-Chemical Generation of Solar Hydrogen D.T. Silipas, E. Indrea, Simina Dreve, Ramona-Crina, <u>Marcela-Corina Rosu</u>, Virginia Danciu, Veronica Cosoveanu, Violeta Popescu, *Journal of Physics: Conference Series* 182 (2009) 012055
- A Photoelectrochemical Cell for the Study of the Photo-Sensitive Materials used in Solar Hydrogen Energy – P. Ardelean, E. Indrea, T.D. Silipas, C. Ardelean, Gh. Mihailescu, Ramona-Crina Suciu, Simina Dreve, Z. Moldovan, <u>Marcela-Corina Rosu</u>, Journal of Physics: Conference Series 182 (2009) 012046
- 4. Structural Characterization of Binary SiO₂/TiO₂ Nanoparticle Aerogels by X-Ray Scattering E Indrea, Anca Peter, D.T. Silipas, Simina Dreve, Ramona-Crina Suciu, <u>Marcela-Corina Rosu</u>, Virginia Danciu, Veronica Cosoveanu, Journal of Physics: Conference Series 182 (2009) 012066
- 5. Preparation and Characterization of TiO₂/CdS Layers as Potential Photo-Electrocatalytic Materials - Marcela-Corina Rosu, Ramona-Crina Suciu, Simina-Virginia Dreve, Ioan Bratu, Teofil-Danut Silipas, Emil Indrea, Brain. Broad Research in Artificial Intelligence and Neuroscience, Special Issue on Advances in Applied Sciences, 1 (2010), 109-117, ISSN 2067-3957

6. Nanostructured TiO₂ sensitized with porphyrins for solar water-splitting - <u>Marcela- Corina Rosu</u>, Ramona-Crina Suciu, Simina Dreve, T.D. Silipas, I.Bratu and E. Indrea, *Air and Water Components* of the Environment, Cluj University Press, 373-378, ISSN: 2067-743X

Papers sent for publication

- 1. *TiO₂/methylcellulose nanocomposite films for photocatalytic applications* <u>M.C. Rosu</u>, R.C. Suciu, S.V. Dreve, T.D. Silipas, I.Bratu, E. Indrea, *sent for publication AIP Conference Proceedings*
- 2. The study of the photosensitive materials used in solar-hydrogen energy by a versatile photoelectrochemical cell P. Ardelean, E. Indrea, C. Ardelean, Gh. Mihailescu, Z. Balasz, T.D. Silipas, Z. Moldovan, R.C. Suciu, S.V. Dreve, <u>M.C. Rosu</u>, sent for publication AIP Conference Proceedings
- 3. *TiO*₂ *thin film deposition by chemical methods* R.C. Suciu, <u>M.C. Rosu</u>, I. Marian, P. Pascuta, T.D. Silipas, C. Varodi, A. Popa, M. Mihet, A.R. Biris, I. Bratu, E. Indrea, *sent for publication AIP Conference Proceedings*

List of national/international projects as participant

- 1. CEEX MENER 710/24.07.06 "Photo-Electrolytic Production of Hydrogen"- HIDROSOL, Project Supervisor: senior scientist *dr. Emil Indrea (INCDTIM, Cluj-Napoca)*
- CEEX VIASAN 102/01.08.06 with title: "Porphyrin Biocomposites used in Photodynamic Therapy of Cutaneous Malign Tumors" – PORFIDERM, Project Supervisor: research scientist dr. Simina Dreve(INCDTIM, Cluj-Napoca)
- 3. Program PN II 71-122/2007 "Oxidic Micro- and Nano-structured Materials with Controlled Luminiscent Cromatics" MAMINAL, Project Manager: Dr. Laura Muresan (*UBB-ICCRR*, Cluj-Napoca), Project Supervisor: Senior Scientist *dr. Emil Indrea (INCDTIM, Cluj-Napoca)*
- 4. Program PN II 3322/2008 "Photocatalytic Production of Hydrogen under Solar Irradiation from Industrial Sulphurous Residues (H₂S si SO₂)" – H₂SOLAR, Project Manager: Dr. Terezia Nyari (INCEMC, Timişoara), Project Supervisor: Senior Scientist dr. Emil Indrea (INCDTIM, Cluj-Napoca)
- Project PN II 79-190/2008 "Biocompozites with Hidroxilapatite for Endodontic Therapy" ENDODENT, Project Manager: Dr. Marioara Moldovan (UBB-ICCRR, Cluj-Napoca), Project Supervisor Dr. Simina Dreve (INCDTIM, Cluj-Napoca)
- 6. Project PN II 92-095/2008 " Modern methods of investigation, authentification, preservation and showcasing of the icons from the patrimony of the Transilvania" CONSICON, Project Supervisor: Dr. Zaharie Moldovan (INCDTIM, Cluj-Napoca)
- National Core Project 44N /2009, PN 09-44 02 01 –"Supramolecular systems for trapping and controlled release of bioactive agents" - Project supervisor: Research Professor Dr. Ioan Bratu, Project Technical Assistant: Dr. Simina Dreve (INCDTIM, Cluj-Napoca)
- 8. National Core Project 44N/2009, PN 09-44 02-06 "Local structure determination of highly disordered oxides systems with applications in photocatalysis", Project Supervisor: Senior Scientist Dr. Emil Indrea (INCDTIM, Cluj-Napoca)