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1 Introduction

This study was designed on two levels, a mathematical and a biophysical one. From the

mathematical point of view we have proposed a simple and robust autoregressive model

which returns values similar to those returned by a complex mathematical model. One of

the parameters (ϕ) proved to be the main quantitative indicator of correlations existing in

the data series, so it can be exploited to investigate various processes of the fluctuating

processes. The model was validated by applying it to some data in the specialized literature.

Next we it use to investigate the correlation existing in the genome at the coding secquences

level. By simultaneously applying the mathematical methods and models in question, we

highlighted differences in the fluctuation of erythrocyte membranes suspended in different

media.

The first part provides an overview of the mathematical methods and models. It

requires a prior understanding of some mathematical methods used to investigate the cor-

relation of time series consisting of the consecutive values for large diameters of red cells.

The second part of the work focuses on validating the mathematical models by analysing of

specific real cases. In the third part is presented a detailed analysis on the way the membrane

of red blood cells fluctuates.

Part I

Methods and mathematical models

used to investigate fluctuations

2 Power spectrum analysis - Fast Fourier Transform

The power spectrum calculation is done by FFT (Fast Fourier Transform). FFT is an

efficient method used to compute Discrete Fourier Transform (DFT) and its inverse. Here

sequential data sets are investigated by a decomposition accordind to the frequency. Spectral

correlation exponent is a parameter characteristic to stationary series. A time series can be

considered stationary if mean, standard deviation and correlation function are time invariant.

Data series pertaining to real phenomena, however, shows noises and trends. This can bring
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additional correlations into the system. Therefore it is necessary to undertake further analysis

to eliminate them.

3 Detrended Fluctuation Analysis

3.1 What is DFA?

Detrended Fluctuation Analysis is the method of analysis generally used to investigate the

time series characteristic to real phenomena, which contain noise and trends [7]. The main

parameter used in DFA is the scaling exponent (α) which describes the correlation properties

of data series.

DFA advantage over other methods of calculation is that it allows detection of long

range correlation of noisy data series. Also DFA avoid false detection of apparent long-range

correlations which are an artifact of non-stationarity. DFA allows identification of different

states of the same system depending on its scaling behavior [8].

Note that the DFA algorithm works better with certain types of non-stationarities,

especially for series with trends without sudden changes. However, there are cases where

this method canot fully extract the trends [9].

3.2 The relationship between spectral correlation exponent and

scaling coefficient

Between α (the scaling exponent) calculated by DFA and β (spectral correlation exponent)

calculated by FFT there is the following relation: β = 2α−1 [12] . This relationship is valid

only for stationary series.

3.3 Effects of noise and trends on DFA

The influence of trends [17] shows that the only where DFA is ineffective is the one in which

sudden jumps occur in series (pronounced peaks).

DFA method can be used on nonstationary series only as a simple tool to investigate

the type of correlation which exists in series. Complex information about the laws that

govern the phenomenon under investigation may be obtained by applying only elaborated

analytical methods.
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4 Autoregressive models

4.1 AR1 Process

An first order autoregressive process is defined by:

Xt = c+ ϕxt−1 + υt (1)

where υt is a white noise process with zero mean and σ2, xt−1 is a term in series and c is a

constant [19]. The process is called stationary if |ϕ| < 1. If |ϕ| = 1 then Xt shows a unit

root and can be considered random process.

4.2 ARp Process

In this case the characteristic equation takes the form:

Xt =
p∑

i−1

ϕiXt−i + υt. (2)

The base is the parameter ϕi where i = 1, ..., p. The process is stationary if the

condition |ϕ| < 1 is fulfilled.

4.3 Spectral feature of the AR model. Infinite length and finite

length

A discrete stochastic process, having Xn, n = 0, 1, 2... is called autoregressive process of order

p [22], denoted AR(p), if Xn is stationary for any n:

Xn − ϕ1Xn−1 − ...− ϕpXn−p = Zn (3)

where Zn is a Gaussian white noise with zero mean and variance σ2.

The real parameters ϕi, i = 1 ,..., p, can be interpreted as a measure of the influence

of the stochastic process term on his neighbor of order i. The ARp properties have been

studied in detail [22].

Equation 3 has a singular solution if the polynomial Φ(z) = 1− ϕ1z − ...−ϕpz
p has

no roots z with |z| = 1 [23]. If Φ(z) 6= 1 for all |z| < 1 the process is causal, i.e. xn random

variables can be expressed only as a function of noise values in the previous stages. The

study is detailed by Vamos and colleagues [27].

The spectral density of an ARp process is:
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f(υ) =
σ2

2π

1

|Φ(e−2πiυ)|2 ,−0.5 < υ < 0.5 (4)

where υ is the characteristic frequency. For an AR1 process, spectral density in equation 4

becomes:

f(υ) =
σ2

2π

1

1 + ϕ2 − 2ϕcos2πυ
,−0.5 < υ < 0.5 (5)

where ϕ in this case is the unique interaction factor. The formula mentioned above

is correct only for finite-length real stochastic processes.

Time series that exist in practice have a finite length and can be considered segments

from a stochastic process of infinite length. Thus, we can replace the terms of the equations

4 and 5 such that becomes possible to analyze a sample of finite length Xn, n = 1, 2, ..., N

extracted from a series of infinite length Xn, n = 0,±1,±2, ....

A detailed analysis of the power spectrum of the AR1 process and the influence of

finite length is given in [24], [25], [26].

We present below some issues relevant to further understanding of the analysis de-

tailed in this study.

By definition, the spectral density estimator is the periodogram:

IN(υ) = |AN(υ)|2 (6)

where AN(υ) is the discrete Fourier transform of the series:

AN(υ) =
1√
N

N∑

n−1

Xne
2πinυ (7)

Since the series is finite we have only N independent values AN(υ) and IN(υ). Gen-

erally, these values are calculated for Fourier frequencies υj = j/N , where j is an integer

that satisfies the condition −0.5 < υj < 0.5. The periodogram of an AR(p) process is an

estimator of spectral density:

lim
N→∞

〈IN(υj)〉 = 2πf(υ) (8)

where (υj − 0.5N) < υ ≤ (υj + 0.5N).

While the series length N increases (as long distance is kept constant) averaged

periodogram becomes a better approximation of spectral density. We note that a single

periodogram is not a consistent estimator because it does not converges in probability with

the spectral density. Here standard deviation IN(υj) does not tend to zero and two distinct
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values of the periodogram are not correlated, no matter how closeness are the calculated

values for frequency. Typically spectral density and periodogram are represented in double

logarithmic coordinates. Logarithmic coordinates strongly distort the shape of the graph

and near the origin it is transformed into an infinite range, the value of f(0) not being

represented graphically.

For a total number of n terms, the first value of the spectral density is obtained at

the lowest frequency υmin = 1/N . Figure 1 shows the spectral density for N = 1024 and

σ = 1, at different values of ϕ. For ϕ ≥ 0.90 most of the power spectrum is almost linear

having a slope equal to -2, which corresponds to β = 2.
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Figure 1: Spectral density and its absolute derivative value for AR1 process with N = 1024,

σ = 1 and different values of the interaction factor ϕ.

The figure 1 shows the spectral density derived in double-logarithmic coordinates.This

usefull to verify the behavior of AR1 spectrum, :

f |(υ) = −υ
d

dυ
ln(f(υ)) (9)

It may be noted that for ϕ = 0.9 there is a region where f | ∼= 2 (see figure 1,left). Here is

only one maximum value of f | for ϕ < 0.9 which corresponds to the central (fractal) part

of the power spectrum. For low frequencies, spectral density of an AR1 process is highly

flattened in double-logarithmic coordinates so that appears a plateau (see Figure 1) with the

value given by:

f(0) =
σ2

2π(1− ϕ)2
(10)

From equation 7 it follows that the small values of υ correspond to the plateau

regions where the variable term in the denominator may be neglected in comparison with
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the constant term. Using the quadratic approximation of cosine function, the need for

graphical representation of the power spectrum AR1 is to have a plateau υ < (1−ϕ)/2π
√
ϕ.

If ϕ goes to 1, the plateau occurs at lower values of frequency. On the other hand, if N is

large enough, the periodogram has the plateau at lower values of frequency.

We consider a time series xn, n = 1, 2, ..., N obtained from an AR1 autoregressive

process. If we apply discrete Fourier transform to the xn series and compute the periodogram,

then we get the values randomly distributed around the spectral density of the AR1 process.

The periodograms are not consistent estimators, so the fluctuations around the the-

oretical spectral density values are not reduced by increasing the length N of the series.

Consistent estimation of the spectral density may be obtained using averaged peri-

odograms on intervals with order of magnitude about
√
N . Choosing the optimum weight

function is a difficult task. If the periodogram is smoothed too much, then the bias with

respect the theoretical spectrum can become large. From various weight functions the sim-

plest one is used, i.e. averaging with equal weights on symmetric intervals containing M

Fourier frequencies, with M = 1, 3, 5, ..., 21. The averaged periodogram contains N-M+1

values, because for the first and last (M − 1)/2 values of the periodogram the symmetric

averaging cannot be performed.

4.4 Effects of noise and trends on AR

We did a study in which we generated artificial series having ϕ ∈ [0.3..0.9] and data dispersion

σ equal to 0.5. These series were generated with our software developed in MATLAB R2008a

[28]. We added white noise generated in OriginPro8, with intensities ranging between 10−2

and 102. In addition, we added two trends, one polynomial p = 2x2 + 3x+ 4 and one sinus

on the initial series and on series already containing noise over.

Noise and trends may hide the data from series belonging to natural phenomena.

Then the autoregressive algorithm will return incorrect values. As a result, the first thing

we recommend when there are analyzed data pertaining to real phenomena is to remove

the trend. The resulted series, free of noise and trends, are those that may be subject of

autoregressive analysis.
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5 The relationship between AR and DFA

5.1 The relationship between AR1 and DFA

How can we identify the type of correlation in a series, and which is the connection between

these models?
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Figure 2: (a) Dependence of the interaction factor by the scaling exponent of the first

correlation segment is exponential. (b) Dependence of the interaction factor by the first

correlation segment length is almost linear.
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Figure 3: (a) Dependence of the interaction factor by the scaling exponent of the second

segment is also exponential correlation; (b) Dependence of interaction factor by the length

of the second correlation segment is also almost linear, having the slope of the linear inverse

to the first segment slope value.

In our analysis were generated 1000 terms series having a known interaction factor

[11]. For all that series, the dispersion had the value σ = 1. These series may look differ-

ent although they have the same characteristics of interaction between terms. Detrended
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fluctuations analysis of these series shows different forms in double-logarithmic coordinates

representation. That’s why we worked with their arithmetic average.

Each of the DFA representations in double-logarithmic coordinates is nonlinear.

Note also that the slope (the correlation exponent) increases with ϕ.

The DFA representation shows two correlation segments for every ϕ ∈ [1..9]. The

first segment corresponds to the correlation between closer terms and the second belongs to

the correlation between distance terms. The lengths of these segments also varies for each

case (see Figure 2).

5.2 The relationship between ARp and DFA

If the generation of series is based on an ARp algorithm, the analysis becomes more com-

plicated. In this case, due to the scattering that occurs in the DFA representation in

double-logarithmic coordinates, we had to generate ten series for each model. We used their

arithmetic average.
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Figure 4: Comparision betbeen AR1 (ϕ = 0.6), AR2 (ϕ1 = 0.6 and ϕ2 = 0.3), respectively

AR2 (ϕ1 = 0.6 and ϕ2 = −0.3).

In figure 4 we showed how the DFA representation varies from AR2 with ϕ1 = 0.6

and ϕ2 = 0.3, to AR1 with ϕ = 0.6. Note that both α1 and α2 differs strongly with each other

(we refer to the scaling exponents belonging to the same AR2 with two different parameters

ϕ2). The degree of long distance correlation is also different for this set of parameters (see

Figure 5).

Higher order autoregressive models have a complex correlation. Therefore they can-

not be described in a simple way.
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Figure 5: (a) DFA for AR2 with ϕ1 = 0.6 and ϕ2 > 0. (b) DFA for AR2 with ϕ1 = 0.6 and

ϕ2 < 0. For ϕ2 > 0 one can observe a linear dependence of the slope value for long distance

correlation (α2) by the growth of the interaction factor values. For ϕ2 < 0 the law is much

more complex.

Part II

Validation of AR models and

calculation procedures for series

belonging to real phenomena

6 Analysis of the X-ray light curves data series of the

active galaxy NGC5506

We used several real phenomena in order to test the methodology described above. These

include the X-ray light curves data series of the active galaxy NGC5506 and the analysis of

the bacterial genome.

Complex autoregressive analysis was made for X-ray light curves of the active galaxy

NGC5506 by Koning and coleagues [39]. We compared the results obtained by their analysis

method with the method proposed by us to validate our method. We used the same data as

in [39]. Data were extracted from archive EM Hearc Exosat for Seyfert galaxy NGC5506.

13



6.1 Data series

The sequence of operations used to process the data can be summarized as follows:

1. The data series was detrended by extracting different polynomial fitting;

2. The FFT transform of the series was performed;

3. The resulting periodogram was mediated to 1 up to 21 terms;

4. The spectrum was fitted by using the AR1 model. The final parameters are the

interaction factor ϕ and dispersion σ. Their values depend on the polynomial degree

used in the detrending procedure.

5. We choosed the optimum values of ϕ and σ depending on the number of averaged

terms and on the detrending polynomial degree.

6.2 The AR1 fitting procedure of the X-ray emission of NGC5506

galaxy

In our analysis, we start by removing the deterministic trend from the signal. We note that

it has not been extracted by Timmer and Konig in their analysis.

Three different trends can be obtained from three different polynomial fitting (see

Figure 6).

These polynomials degree is the minimum degree of a class of polynomial trends, q,

which have very similar shapes. We note that the trend does not change its shape with the

monotonically increasing of the polynomial trend. At a fixed degree of the polynomial trend

changes significantly, while at higer degree the trend remains practically unchanged. The

trend is reduced to a constant equal to the average of the time series when q = 0.

Averaging procedures lead to loss data at low frequencies (they form a plateau in

autoregressive modeling). At higher frequencies than the cutoff frequency (ν0 = 0.02) the

periodograms turns to white noise spectrum. Only in the region of the spectrum with ν > ν0

the process can be modeled with an AR1. The values of ϕ = 0.991, σ = 0.757 and ϕ = 0.985,

σ = 0.744 are obtained from fit in the region of low frequencies. There are very closer to

those reported by Konig and Timmer.

The average range of periodogram also has a strong influence on the AR1 model

parameters. This dependence is presented as a function of M for various degrees of the
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Figure 6: Time series of X-ray emission of the active galaxy NGC5506. The trends is

obtained by four different polynomial fitting (0, 2, 5 and 9 degree). The trend is reduced to

a constant when the polynomial degree q = 0. For q = 2, the polynomial trend describes the

overall shape of the signal. For q = 5, the polynomial describe the different behavior for the

first and the second part of the signal. Polynomial trend can follow the signal details when

q = 9.

polynomial trend. For small values of M , the values of ϕ and σ are quite different. Their

variability is significantly reduced forM > 9, when the average procedure of the periodogram

eliminate some fluctuations. This is why in this study, we used M = 11.

Another analyzed parameter is the cutting frequency ν0. We note that at frequencies

below 0.02, the periodogram shows oscillations that may be caused by white noise with

higher frequencies. For comparison with Koning results, we will use q = 0 because Koning

and Timmer have not removed the deterministic trends from the signal. The relative error

is 0.2% for ϕ and 5% for σ and confirms the validity of autoregressive spectral modeling

proposed by us.

6.3 Discussion

We used the model described in the previous chapter to characterize the X-ray emission of a

galaxy. Our calculation procedure, simpler, lead to similar results to those obtained by more

elaborate calculations. Parameter ϕ has proved to be very sensitive, so it can be exploited

to investigate different effects of fluctuating systems.
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7 Autoregressive analysis of bacterial genomes

Bacterial chromosome have a relatively simple structure and consists of a set of coding

sequences (CDS) and noncoding sequences (NCDS). Each sequence consists of a series of

specific bases. Coding sequences represents genes and dominates the total content of bases

in the bacterial chromosome. Detrended fluctuation analysis of the CDS length shows that

the bacterial genome has a short range correlation [47].

7.1 Bacterial genome

We analyzed these types of series:

1. Entire series, consisting of a natural sequence of the genome coding sequences, l(+/−);

2. Series of the CDS lenghts on the plus strand, l(+), respectively

3. Series of the CDS lenghts on the minus strand, l(−).

These data were extracted from the European Molecular Biology Laboratory (EMBL)

site.

7.2 Strategy of analysis

The sequence of operations can be summarized as follows:

1. The series was detrended by extracting different polynomial trends;

2. It was applyed the Discrete Fourier Transform;

3. The periodogram was averaged between M = 1 and 21 terms;

4. The spectrum was fited by using an AR1 model. If the data can be described with the

model, we choosed the final values for ϕ and σ.

5. This procedure was applied to l(+/−), l(+) and l(−).
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7.3 Autoregressive analysis of the coding sequence lengths of the

bacterial genome

Let us summarize our conclusions on the bacterial genome analysis. The autoregressive

model parameter values can vary between 0 < ϕ < 1. In the case of bacteria and ar-

chaea these varions are between 0.52 for Bacillus subtilis and almost zero for some lines of

Haemophilus influenzae and Helicobacter pylori (our work). This means that the strength

of interaction between the terms given by CDS length series varies in a wide spectrum, from

almost zero interaction to strong interaction. Moreover, this interaction is sensitive to strand

plus or minus and to the differences between species.

7.4 Biological significance of the autoregressive model

We propose as possible explanation of the validity of the autoregressive model in the bacterial

genome analysis the structural organization of the genome in operons1. Genes are organized

in operons with the same functionality [98]. Since operons have comparable lengths, we

expect CDS lengths to present local correlations.

Part III

Red blood cell membrane fluctuations

8 Biophysics and biochemistry of the erythrocyte mem-

brane dynamics

Cells have specialized functions that depend on the role they fulfill in the body [55]. All the

cells, either prokaryotic or eukaryotic, have a membrane that wraps them, separating from

the external environment and medium, and mediates the inputs and outputs of matter and

energy.

Cell membrane is a bilipidic layer having a selective permeability. It contain a wide

variety of biological molecules, especially proteins and lipids that are involved in many

biological processes such as cell adhesion, ion channel conductivity or cellular signal issue.

1There are functioning units of genomic material containing a cluster of genes under the control of a

single regulatory signal.
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The most general representation of erythrocyte membrane structure is the fluid mosaic

model2 [59].

8.1 Human erythrocyte

A typical human erythrocyte has a diameter of 6-8 µm and a thickness of about 2µm, and

is much thinner than most other human cells. These cells have a volume of around 90 fL

and an area of approximately 136 µm2. They can turn into a sphere with a volume of 150

fL without membrane extension.

A red blood cell takes about 20 seconds per traffic cycle [63], [64], [66]. These cells

are otherwise anucleated so the protein biosynthesis does not occur for eritocite. There is

however a recent study which indicates the existence of the biochemical apparatus necessary

for the biosynthesis of the protein [65].

Human red blood cells are produced by a process called erythropoiesis and become

mature cells in seven days from stem cells. The RBCs remain in the blood cycle for a period

of about 100-120 days. At the end of their life, they turns to sferocite and are removed from

circulation by the spleen, which acts as a mechanical filter.

8.2 Red blood cells flickering

Spontaneous fluctuations in the erythrocytes surfaces were observed since the end of last

century [70] by optical microscope examination. The phenomenon is due to undulations of

the cell surface (membrane undulations) and is called erythrocytes flickering, occuring with

a frequency between 0.3 and 30 Hz.

Assumptions about the mode of fluctuation are very different. Based on the data

analysis of the autocerelation function, Zeman [71] concludes that erythrocyte requires ATP

to ensure a free deformation regime. Tuvia [72] (1992) shows that producing MgATP is

directly related to cell fluctuation amplitude. In addition, he shows that oxygenation -

de-oxygenation cell cycle plays an important role in modulating membrane fluctuations,

de-oxygenation involving reduction of the fluctuation amplitude [73].

The methodology of investigation was later developed by monitoring the cell edge

fluctuations [74] by flickering spectroscopy. This method allows a very precise determination

of elastic properties of the cell membrane. It has been shown that environmental variation

2It was proposed by S.J. Singer and Garth Nicolson and assumes that biological membranes can be

considered a two-dimensional fluid in which all lipids and proteins can move more or less freely.
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of viscosity induces changes in the fluctuation characteristics. As the growing concentration

of macromolecules (dextran 70, dextran 500, dextran 2000, cellulose) from solution, the

amplitude of fluctuations decreases. Data acquisition method used is Point Dark Field

Microscopy, and involves the recording of the quantity of light that passes through the

membrane. Note that in this case the cell is fixed on the substrate, which means that the

membrane does not fluctuate freely.

Fluctuations of the cell membrane depend on the suspension viscosity [75]. On the

other hand, a fundamental role in stimulating fluctuations is related to F actin, a component

of the cytoskeleton [76]. As a result, the membrane fluctuations are implicitly linked to the

suspension viscosity and the cytoskeleton fluctuations.

Regarding the spectral domain, it is considered that the phenomenon of flickering

occurs within 0.3 to 30 Hz [77]. Gaczinska et al signals the existence of some very slow

oscillations with periods longer than 1.5 hours [78]. These areas of frequently, called long

ultradiene rhythms, have been identified up to a range of 13 to 18 hours [79]. Unlike previous

studies, data analysis in question failed to emphasize the oscillations themselves, but only

noise type 1/f.

The accelerated development of the microscopy in recent years has led to more com-

plex investigation of cellular fluctuations. There have been revealed fluctuations and other

phenomena that influence the membrane, such as reorganization of the cytoskeleton in red

blood cells and hemoglobin distribution un-uniformity by interference imaging

It was found that low frequency variations of erythrocyte membrane (0.1-0.6 Hz)

is due to membrane - plasma interactions, while higher frequency fluctuations (20-26 Hz)

are correlated with membrane vesicles trips [80]. Therefore different optical techniques were

put in place for investigating fluctuations in membrane: FPM (Fourier Phase Microscopy)

[81], HPM (Hilbert Phase Microscopy) [82], DPM (Difraction Phase Microscopy) [83] and

FFTM (Fast Fourier Phase Microscopy) [84]. A significant advance in modeling the flickering

phenomenon and mechanical properties, correlated with the statistical properties of the cell

membrane fluctuations, was made by developement of the AFM (Atomic Force Microscopy),

which led to the possibility to investigate the fluctuations of the cells that are no longer

attached to the substrate. Through these studies was emphasized independent existence of

dynamic subdomains in the cell, which fluctuates in different frequency regimes [85]. These

highly accurate optical interferometry techniques (nano scale and milliseconds) have also led

to the identification of correlations between membrane properties at spatial and temporal

cell membrane viscoelastic properties [85].
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9 Investigation of the cell membrane fluctuations

We followed the red blood cell membrane fluctuations by analyzing the two parameters:

spectral correlation exponent (α) [95] and the interaction factor (ϕ) [94]. was calculated by

Detrended Fluctuation Analysis while ϕ was obtained by spectral analysis and modeling with

the autoregressive model. Another characterization of membrane fluctuations in different

environments was done by analyzing the amplitude of fluctuation.

Analysis of cell membrane fluctuations was made for different classes of red cells, as

follows:

• Healthy cells suspended in their natural environment (blood plasma) and in an artificial

environment, (PBS - Phosphate buffered saline)3;

• Healthy cells suspended in the two environments as above, in which drugs were added

(chemical factors);

• Aging cells in vitro.

9.1 Experimental setup

The experimental setup consists of the following main components:

• Research microscope;

• Counting cell;

• CCD Camera;

• Computer.

The used microscope is an inverted microscope, Optika XDS-2 type, and the CCD

camera is OptikamPRO3.

9.2 The procedure to define the edges of erythrocytes

The program used to delimit the edges of cell by the suspension environment is Image J

[89],[90], with the plugins Shape descriptor [91]. It is based on the algorithm proposed by

Russ [92]. Surface particle calculation is done by effectively counting pixels in the image.

3PBS is used routinely in the laboratory for investigation of various properties of cells. Through this study

we demonstrated that, in terms of membrane fluctuation characteristics, PBS is not an optimal environment.
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9.3 Biological sample preparation

9.3.1 Suspension media

Red blood cell membrane fluctuations were followed on erythrocyte suspensions, prepared

from human blood, collected on anticoagulant (sodium citrate 3.8 %) from healthy donors.

Whole blood was centrifuged 8 min at 3000 rpm and cells were separated from plasma.

White blood cells and platelets were removed. Erythrocyte sediment was ultra centrifuged

3 min at 4500 rpm to obtain a concentrate of red blood cells of about 99.9 %. Plasma

was also ultra centrifuged 5 min at 7000 rpm to get a pure plasma. From this erythrocyte

sediment, there were prepared cell suspension by resuspension of erythrocytes in plasma at

dilutions high enough to avoid cell aggregation. Alternatively the suspension medium was

a phosphate buffer solution (PBS) containing 20 ml of phosphate buffer to 100 mM NaCl

(0.76 g), BSA (100mg) and glucose (0.18 g) per 100 ml solution4.

9.3.2 Chemicals used in the investigations

Epinephrine or adrenaline 1mg/ml in solution. It is a hormone that plays a central role

in short - term stress reactions in the body. His reactions are mediated by adrenergic

receptors located on several cell - type surfaces. The action of this hormone is limited

and reversible, disappearing completely in about one hour after administration.

Lidocaine or xiline, in solution, 100mg/10ml. It is a local anesthetic amino - amide type,

lasting effect of about 1.5 - 2 hours for most patients. It works by blocking fast sodium

channels (Na+) in cell membranes.

9.3.3 Types of experiments

We imagined 5 scenaries in order to detect the behaviour of the red cells in physiological

conditions as follows:

1. Healthy cells re-suspended in plasma: human blood is collected on anticoagulant

(sodium citrate 3.8) derived from healthy donors. It was centrifuged for 8 min at 3000

rpm to separate plasma. White cells and platelets ware removed. The sediment was

ultra-centrifuged 3 min at 4500 rpm. Plasma was also ultra centrifuged 5 min at 7000

41 liter of Phosphate-buffered saline (PBS buffer) could be prepared from 8 g NaCl, 0.2 g KCl, 1.44 g

Na2HPO4 and 0.24 g of KH2PO4 dissolved in 800 ml distilled H2O. We adjusted the pH to 7.4 with HCl

and added H2O to a liter.
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rpm. Erythrocyte cell suspensions were prepared by resuspension of erythrocytes in

plasma at dilutions sufficient to avoid cell aggregation.

2. Healthy cells suspended in PBS: red blood cells from healthy donors were sepa-

rated from plasma by centrifugation, 5 min at 4000 rpm and then washed three times

with phosphate buffer solution which was removed by centrifugation 5 min at 4000 rpm.

Last centrifugation lasted 10 min. A small number of red blood cells were re-suspended

in PBS.

3. Cells re-suspended in plasma with chemicals: whole blood was centrifuged for

5 min at 4000 rpm to separate plasma from red blood cells sediment. White cells

and platelets were removed. Plasma was ultra-centifuged 5 min at 7000 rpm. It was

calculated the dose of medication to get maximum effect for epinephrine and lidocaine

(0.5 µl epinephrine 250 µl plasma and 5 µl lidocaine 250 µl plasma). The erythrocytes

suspended in those media were incubated 20 min at a temperature of 37 degrees C.

4. Cells re-suspended in PBS with chemicals: red blood cells from healthy donors

were separated from plasma by centrifugation, 5 min at 4000 rpm and then washed

three times with phosphate buffer solution. Washed erythrocytes were re-suspended in

PBS with epinephrine (0.5 µl epinephrine to 250 µl PBS) and PBS with lidocaine (5

µl lidocaine to 250 µl PBS). The suspension was incubated 20 min at a temperature

of 37 degrees C.

5. Blood aged in vitro: blood was collected on anticoagulant (sodium citrate) from

healthy individuals. To highlight the effects of aging, experiments were conducted in

several stages:

(a) Immediately after sampling: erythrocytes were separated from plasma by cen-

trifugation (5 min at 4000 rpm), plasma was ultra centrifuged (5 min at 7000

rpm, erythrocytes were re-suspended in plasma, at a high dilution to avoid the

phenomenon of aggregation.

(b) Blood 6:00 aging: blood processing was performed at 6 hours after harvest, during

which time blood sample was stored at room temperature (about 21 degrees C),

sample processing module is identical to that for fresh blood.

(c) 24:00 Aging Blood: Blood processing was done at 24 hours after harvest, during

which time blood sample was stored at room temperature (about 21 degrees C),
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sample processing module is identical to the previous samples.

(d) 48:00 Aging Blood: Blood processing was done at 48 hours after harvest, during

which time blood sample was stored at room temperature (about 21 degrees C).

9.4 Recording images

To analyze the dynamics of erythrocyte membrane we performed the following steps:

1. We recorded sets of 1000 sequential images for each erythrocyte. Sampling rate was 5

fps. Resolution was 2048 x 1536 pixels for maximum image that captured a total of 10

RBCs. This series of images was transformed into stacks of 1000 images using ImageJ.

2. Stacks were processed for analysis using treshold command that turns the color image

in black and white and highlight the cell area.

3. With the Analyze Particle command we defined the cell area of the background image

(for all 1000 images).

4. These simple geometric shape was analyzed with both Analyze Particle plugins, and

Shape Descriptor10 plugins5.

9.5 Mathematical modeling

The data series consist of large diameter value of each cell. These values were acquired for

approximately 60 cell suspended in each medium. Data analysis was done as follows:

1. FFT transform was applied to data sets and the spectral exponent of correlation was

calculated.

2. DFA analysis was carried out and calculated the scaling exponent.

3. The power spectrum obtained with the discrete FFT transform was modeled by au-

toregressive models of order 1 and higher orders.

5These plugins do not fart plugins-standard package Image J, but can be found on the official website of

the program.
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10 Results and discussion

10.1 Healthy cells suspended in plasma and PBS

After detrending, the data were transferred to Origin and plotted.

For cells suspended in plasma, a very strong correlation is observed in the first

segment with α1 = 0.96±0.01 for the area, α1 = 0.98±0.02 for large D and α1 = 0.85±0.01

for small D (see Figure 7).

For distant terms, the correlation remains strong, but ceases to be of type 1/f.

α2 = 1.32± 0.02 for the area, α2 = 1.14± 0.01 for large D and α1 = 1.21± 0.01 for small d

(see Figure 8).
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Figure 7: Gaussian distribution of the correlation between the closer and distant terms. Red

blood cells are suspended in plasma.
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Figure 8: Gaussian distribution of the correlation between the closer and distant terms. Red

blood cells are suspended in PBS.

We calculated the Gaussian distributions for lots of 60 cells immersed in plasma and

PBS. It reveals a statistically significant difference between correlations, the Two Independent
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Sample t-Test parameter being P = 0.00896. Median values for α1plasma = 1.00 ± 0.00 and

for α1PBS = 0.96± 0.01. The results are shown in Figure 10.

Differences between correlation exponent values for the two environments indicate

that the mode of membrane fluctuation is strongly affected by the introduction of the cell

in an artificial environment. The degree of heterogeneity of the cell population decreases

rapidly, Gaussian width being 0.28 ± 0.02 for plasma and decreasing to 0.12 ± 0.02 in the

case of PBS.
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Figure 9: Averaged DFA for all cells suspended in plasma (black) and PBS (red). PBS

amplitude fluctuations, described by the function log F(n) is greater because of lower density

of PBS than plasma.

When DFA is represented as the average values for the entire group of 50 cells (for

cells suspended in plasma and for those suspended in PBS) we observed that the amplitude

of the fluctuations varies from plasma to PBS (see Figure 9). In PBS, the cell fluctuates

larger considering the average density of matter. In plasma, the liquid density is greater

than PBS so it limits the width of membrane fluctuations.

In order to perform autoregressive modeling we applied the discrete Fourier transform

on series from which we extracted in advance the trend. It was approximated by a polynomial

of degree 10. Power spectrum was averaged over 21 terms to emphasize the shape. The first

remark is that can be done in averaging is that the spectrum shows deviations from 1/f type

power law. For the cells suspended in plasma, or for those suspended in PBS the spectrum

cannot be fitted linear. Best fitting model is the autoregressive of order one.

Gaussian shaping of the interaction factors resulted from AR1 (Figure 10) confirm

the results obtained with DFA. Median for ϕplasma is 0.78± 0.00 and for ϕPBS is 0.73± 0.01.

P parameter value is statistically significant P = 0.056.

The suspension of red blood cells in artificial environment influences the membrane
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Figure 10: (a) Compared values of the Gaussian distribution for the correlation exponent

between cells suspended in plasma (black) and PBS (red), (b) Compared values of the

Gaussian distribution for the interaction factor between cells suspended in plasma (black)

and PBS (red).

fluctuation characteristics. Both the DFA analysis and autoregressive modeling reveals that

the cell is subjected to stress by removing from the natural environment of life (plasma) and

resuspension in an artificial environment (PBS), although it largely meets the qualities of the

natural environment. The width of the Gaussian distributions show a greater homogeneity

of cell population in PBS as a medium for suspension, while the fluctuation in the natural

environment is similar for the most cells. We can assume that the homogeneity of cell

population in PBS is also due to accelerated aging of cells in an artificial environment.

10.2 Effect of chemicals on the membrane fluctuations

DFA analysis indicates the apparent existence of a 1/f type power law for the cells suspended

in plasma and the cells under the effects of drugs. As we said above, the short range corre-

lation is evident in DFA analysis only for cells suspended in PBS. Averaged power spectra

reveal a nonlinear form suitable for modeling with AR1 for all studied cases. The behavior of

the spectral correlation exponent, (α), denotes a net separation of the fluctuations behavior

for cells suspended in plasma over the washed and suspended in artificial environment cells

(see Figure 12 and Figure 11). When cells are suspended in PBS we see a mixing of cell

populations (reducing bandwidth Gaussian distribution). It seems that the stress due to the

suspension of cells and wash them in an artificial environment is more powerful than the

introduction of adrenaline or xiline in their environment. In terms of tress applied to the

cell, there are fundamental differences between adrenaline and xiline. Moreover, in PBS all
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cells age more quickly, the two parameters (α and ϕ) having the same behavior. When cells

are suspended in plasma, interaction factor decreases from plasma to plasma with xilina,

while increasing the degree of heterogeneity of cell populations.
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Figure 11: Representation of the averaged DFA for 50 cell suspended in plasma (black) and

plasma with adrenaline (lilac). Width fluctuations is enhanced by the existence of adrenaline

in suspension medium.

By adding chemicals, such as a hormone (epinephrine) and an anesthetic (lidocaine),

we have shown that red blood cell membrane is subjected to additional stress. Fluctuation

parameters for plasma (lidocaine α = 0.97± 0.02, ϕ = 0.53± 0.03, epinephrine α = 1.09±
0.02, ϕ = 0.66 ± 0.03) and PBS (lidocaine α = 1.02 ± 0.01, ϕ = 0.63 ± 0.02, epinephrine

α = 0.91 ± 0.02, ϕ = 0.49 ± 0.02) suggest that membrane stress is stronger in the case of

epinephrine than lidocaine and is similar to that induced by an artificial medium.
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Figure 12: Gaussian fitting of the distribution of spectral correlation exponents (α) for each

suspension medium, respectivelly the Gaussian fitting of the interaction factors distribution

(ϕ) for each suspension medium.

The analysis of the interaction factors distribution for different environments shows

that the membrane fluctuation are different for each suspension media (see Figure 12). Cells
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suspended in plasma have an homogeneous behavior (distribution width is much smaller

than in other cases). Cells suspended in PBS have an heterogeneous behavior. Adrenaline

and xiline added in suspensions have a much less obvious effect than PBS. In other words

we can say that the stress applied by removing the cell from in its natural habitat is more

powerful than the administration of drugs.

10.3 Effect of aging in vitro

Fluctuation behavior of the membrane where cell aging in vitro was investigated by both

the DFA and spectral analysis modeled with AR1.
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Figure 13: (a) Gaussian distribution of the correlation exponent for aging cell in vitro after

6 h, 24 h and 48 h respectivelly. (b) Gaussian of the interaction factor for aging cell in vitro

after 6 h or 24 h. The behavior of 48 hours aging cells may not be described by a simple

AR1 model. It is an ARhigh−order.

Detrended fluctuation analysis shows no significant differences between cells investi-

gated within 6 hours and cells investigated after 24 hours (see Figure 13), α6h = 0.97± 0.01

and α24h = 0.95 ± 0.01. Distribution area is 5.59 ± 0.76 for the cells investigated within 6

hours, 6.05± 0.47 for cells investigated within 24 hours and 6.59± 1.13 for cells investigated

within 48 hours. Gaussian distribution shape indicates an increased homogeneity of the cells

investigated within 6 hours, those investigated within 24 hours having an heterogeneous be-

havior. Cells that were investigated within 24 hours also have a heterogeneous behavior, but

the law that describes the membranar fluctuations in this case ceases to be of 1/f type. A

possible explanation about how the fluctuations occur in the case of cells investigated after

48 hours is given by the exhausting the amount of glucose in the suspension medium.

The analytical results are confirmed by autoregressive model (see Figure 13). It

should be noted that analysis of 48 hours aging cells could not be done by AR1 modeling, the
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fluctuation spectra of these cells being much more complicated. It is a complex model that

returns a series of parameters ϕ which describe together the characteristics of fluctuation.

Considering the complexity of the model and the great number of parameters, we preferred

to investigate the data series only for cases of aging from 6 hours to 24 hours.
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Figure 14: DFA average representation of in vitro aging cells. We worked with groups of 50

cells. The fluctuation amplitudes are normal for fresh blood (black) and decrease for 6 hours

(red), 24 hours (blue) and respectivelly 48 hours (green) aging blood.

For 6 hours aging cells, the Gaussian distribution median value is 0.70± 0.00 for the

interaction factor (ϕ) while for 24 hours it drops to 0.55± 0.01. Gaussian area indicates an

increased homogeneity at 6 hours, with a value of 5.12± 1.56. At 24 hours increased the cell

population heterogeneity, with an area of 7.50± 0.63.

The representation of the average DFA in case of in vitro aging cells shows a net

demarcation between fluctuation amplitudes. Cells fluctuates normally when there are an-

alyzed immediately after harvest. After 6 hours, already required glucose whics is almost

completely exhausted. There are virtually no differences in terms of amplitude of fluctuation

between aging cells 6, 24 or 48 hours.

11 General conclusions

Mathematical methods used to investigate membrane fluctuations are complementary. They

return information about the interaction which exists between terms in series and about the

mathematical law that govern the flickering phenomenon.

The analysis of the flickering phenomenon of red blood cells indicate the existence

of two short range correlation segments. First we remark a very strong correlation between

the closer terms. The correlation remains valid for distant terms, although ceases to be of
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1/f type.

Cell membrane mobility properties are isotropic, the cell being deformed relatively

the same along the large diameter and small diameter. This fact confirmed by correspondence

between the values of correlation exponent for area and diameters.

The erythrocytes are rapidly aging in the absence of natural life environment, as

evidenced by the rapid drop in spectral correlation exponent when dividing a data series

into several equal segments.

Suspension environment affects the way the fluctuation is produced for red blood

cells membrane. Cells retain the proper characteristics of fluctuation as long as there are in

their natural environment, the blood plasma. Their immersion in an artificial environment,

such as PBS (phosphate buffered saline) substantially alter the characteristics of fluctuation.

By adding chemicals, a hormone (epinephrine) and an anesthetic (lidocaine), we have

shown that red blood cell membrane is subjected to additional stress. Fluctuation parameters

for plasma membrane suggests that the stress is stronger in the case of epinephrine than

lidocaine and it is similar to that induced by an artificial suspension medium.

Cellular aging has been emphasized both by detrended fluctuations analysis and

autoregressive modeling of power spectra. The methods are so sensitive that one can see

differences even for a few minutes.

The experimental results confirmed the theoretical autoregressive modeling. Al-

though apparently erythrocytes membrane fluctuations are of 1/f type, the complementary

analysis FFT and autoregressive modeling have shown that the type of correlation which

exists in these series is short range. The mathematical law type that defines them best is

the autoregressive model of order one.

The mathematical models used to investigate red blood cell membrane fluctuations

have been validated by investigating other natural phenomena. For instance, we have shown

that the first order autoregressive model (AR1) describes the light radiation emitted from a

quasar, and the correlation that exists in the series of lengths of coding sequences of bacterial

genomes.

Detrended fluctuation analysis used in conjunction with spectral analysis and au-

toregressive modeling are a powerful tool that could be used to investigate a wide range of

natural phenomena. DFA indicate the type of correlation which exists in series, and, in case

of short range correlations, as is the case for most natural phenomena, autoregressive model

describes the law that governs them.
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