
Babeş–Bolyai University

Faculty of Mathematics and Computer Science

1, M. Kogǎlniceanu Street

400084, Cluj–Napoca, România

http://www.ubbcluj.ro

Refactoring in

Object-Oriented Modeling

PhD Thesis Abstract

PhD Student: Maria-Camelia Chisăliţă-Creţu

Supervisor: Prof. Dr. Militon Frenţiu

2010

DEDICATION

To my beloved husband Coni,

Your incessant love and support give me strength!

To our son David,

The time spent with you is our greatest achievement!

i

ACKNOWLEDGMENTS

This thesis would have never been finished without the help of many people, to whom I
would like to express my sincere gratitude.

First of all, I want to express my deeply-felt thanks to my adviser Prof. Militon Frenţiu
for his continued encouragement and patience. He gave me the opportunity to work in an
inspiring environment with the freedom to experience many different aspects of software en-
gineering. He trusted and guided me throughout this entire thesis process, believing in my
abilities to complete this work.

I am thankful to my parents for their encouragement and understanding. I am especially
thankful to my beloved husband Coni and our son David. You have always been with me,
supporting me and inspiring me to bring out the best in myself during my PhD programme.
Your endless love and patience gave me the strength and motivation to finish this work.

I want to thank to the Computer Science Department staff and all my colleagues. Many
thanks go to Prof. Bazil Pârv for valuable suggestions and stimulating discussions. I thank
to the reviewers for offering to assess this dissertation and for the positive observations ad-
vanced. Special thanks to my dear colleague Andreea Vescan for always helping me when I
have needed it. Your ideas and encouragement gave impulse to my research activity. Many
thanks to my colleagues Cristina Mihăilă and Andreea Mihiş for the advises and availability.
Many thanks also to all of the colleagues who have helped me and collaborated with me
(Crina Groşan, Camelia Şerban, Anca Gog) during my work on the PhD thesis.

Most importantly, I thank God for granting me the skills and opportunities that made
this possible.

iii

List of Abbreviations

The following table describes the significance of various abbreviations used throughout
the thesis. The page/section on which each one is defined or firstly used is also given.

Abbreviation Meaning Page/Section
UoD Universe of Discourse 7/2.1
AST Abstract Syntax Tree 10/3.1
CBO Coupling Between Objects 15/4.4.2
RFC Response For a Class 15/4.4.2
DIT Depth of Inheritance Tree 15/4.4.2
NOM Number Of Methods 15/4.4.2
NOC Number Of Children 15/4.4.2

LCOM∗ Lack Of Cohesion in Methods 15/4.4.2
NOD Number Of Descendants 15/4.4.2
TCC Tight Class Cohesion 15/4.4.2
NOC∗ Number Of Classes 15/4.4.2
LOCC Line Of Code per Class 15/4.4.2
WMC Weighted Method per Class 15/4.4.2
SBSE Search-Based Software Engineering 6/1.9
LANSP Local Area Network Simulation Problem 6/1.11
DSCHP Data Structure Class Hierarchy Problem 6/1.11
DAMP Didactic Activity Management Problem 6/1.11
fca forward conceptual abstraction 7/2.1
cs conceptual specialization 7/2.1

GMORSP General Multi-Objective Refactoring Selection Problem 16/5.3
MORSSP Multi-Objective Refactoring Set Selection Problem 17/5.4.1
MORSgSP Multi-Objective Refactoring Single Selection Problem 18/5.4.2
MORSqSP Multi-Objective Refactoring Sequence Selection Problem 19/5.4.3
MORPBP Multi-Objective Refactoring Plan Building Problem 20/5.4.4
RSSGARef Refactoring Set Selection Genetic Algorithm Refactoring-based 23/6.1
RSSGAEnt Refactoring Set Selection Genetic Algorithm Entity-based 23/6.1
RSgSGAEnt Refactoring Single Selection Genetic Algorithm Entity-based 28/6.7

Keywords: Refactoring, Search–Based Software Engineering, Multi–Objective
Optimization, Software Metrics.

iv

Contents

Dedication . i
Acknowledgements . iii
List of Abbreviations . iv

Introduction . 1
1 Setting the context . 4

1.1 Software Maintenance and Evolution . 4
1.2 Refactoring . 4
1.3 Studied Refactorings . 5
1.4 Conceptual Modeling . 5
1.5 Formalizing Refactoring Using Graph Transformations 6
1.6 Software Quality Attributes . 6
1.7 Software Metrics . 6
1.8 Class Hierarchy Code Duplication Types 6
1.9 The Multi-Objective Refactoring Selection Problem 6
1.10 Artificial Intelligence-Based Solution Approach 6
1.11 Case Studies for the Discussed Problems 6

2 Refactoring in Conceptual Modeling Variability 7
2.1 Conceptual Modeling Variability Types 7
2.1.1 Construct Variability . 7
2.1.2 Vertical Abstraction Variability . 7
2.1.3 Horizontal Abstraction Variability . 8
2.2 A Model for Conceptual Modeling Variability Evolution 8
2.3 Conclusions and Future Work . 9

3 Formal Representation of Refactoring Impact 10
3.1 Formal Representation of the Refactoring Impact on the Internal Structure

of the Source Code . 10
3.2 An Impact-Based Approach Refactoring Description 11
3.3 Conclusions and Future Work . 11

4 Formalizing Software Metrics. A Refactoring Impact-Based Approach 12
4.1 Object-Oriented Software Metrics in the Refactoring Process 12
4.2 Formalizing Object-Oriented Software Metrics 12
4.3 Refactoring Impact on Object-Oriented Software Metrics Formal Description 13
4.4 Refactoring Impact on Software Metrics Analysis 13
4.5 Conclusions and Future Work . 15

5 The Refactoring Selection Problem. A Formal Multi-Objective Opti-
mization Approach . 16
5.1 General Background . 16
5.2 Related Work . 16
5.3 The Formal Multi-Objective Refactoring Selection Problem Definition . . 16
5.4 Specific Multi-Objective Refactoring Selection Problem Definitions 17

v

5.4.1 The Multi-Objective Refactoring Set Selection Problem 17
5.4.2 The Multi-Objective Refactoring Single Selection Problem 18
5.4.3 The Multi-Objective Refactoring Sequence Selection Problem 19
5.4.4 The Multi-Objective Refactoring Plan Building Problem 20
5.5 Conclusions and Future Work . 22

6 The Refactoring Selection Problem - An Evolutionary Approach 23
6.1 Evolutionary-Based Solution Representations for the Refactoring Set Se-

lection Problem . 23
6.2 Studied Solution Representations . 23
6.3 Case Study: The LAN Simulation Problem 24
6.3.1 Proposed Refactoring Strategy . 24
6.4 Practical Experiments for the RSSGARef and RSSGAEnt Algorithms . . 24
6.4.1 Experiment 1: Equal Weights on the Refactoring Cost and Impact (α = 0.5) 26
6.4.2 Experiment 2: Higher Weight on the Refactoring Impact (α = 0.3) . . . 26
6.4.3 Experiment 3: Lower Weight on the Refactoring Impact (α = 0.7) . . . 26
6.5 Discussion on the Applied Algorithms for the Refactoring Set Selection

Problem . 27
6.6 Results Analysis for the Multi-Objective Refactoring Set Selection Problem 27
6.7 Evolutionary-Based Solution for the Refactoring Single Selection Problem 28
6.7.1 Genetic Algorithm-Based Approach . 28
6.7.2 Entity-Based Solution Representation 28
6.8 Practical Experiments for the RSgSGAEnt Algorithm 28
6.8.1 Experiment 1: Equal Weights on the Refactoring Cost and Impact (α = 0.5) 28
6.8.2 Experiment 2: Higher Weight on the Refactoring Impact (α = 0.3) . . . 29
6.8.3 Experiment 3: Lower Weight on the Refactoring Impact (α = 0.7) . . . 29
6.8.4 Discussion on RSgSGAEnt Algorithm for the Refactoring Single Selection

Problem . 29
6.9 The MORSSP and MORSgSP Solutions Analysis 30
6.10 Conclusions and Future Work . 30

7 Conclusions and Future Research . 31

Bibliography 34

vi

Introduction

This PhD thesis is the result of my researches in Software Engineering, particular in the
domain of Software Systems Refactoring, started in 2002.

Software systems continually change as they evolve to reflect new requirements, but their
internal structure tends to decay. Refactoring is a commonly accepted technique to improve
the structure of object-oriented software [Fow99, MT04]. Its aim is to reverse the decaying
process in software quality by applying a series of small and behaviour-preserving transforma-
tions, each improving a certain aspect of the system [Fow99]. While some useful refactorings
can be easily identified, it is difficult to determine those refactorings that really improve the
internal structure of the program. It is a fact that many useful refactorings, whilst improving
one aspect of the software, make undesirable another one. Refactoring fits naturally in dif-
ferent development processes (spiral model process [Boe88], eXtreme Programming [Bec99]).

The goal of this thesis is to investigate the appropriate refactoring techniques application
within different contexts. Research within conceptual modeling reveals the possibility to inte-
grate the refactoring process in the analysis development phase. A biological evolution-based
model is proposed in order to cope with different types of conceptual modeling variability.

A formalism that indicates the refactoring impact is introduced and specific refactorings
are described following the proposed notations. Refactoring impact assessment on internal
program quality may be used as an indicator of the transformation necessity. A formal
description of software metrics and the corresponding changes due to the refactoring applica-
tion are investigated. A multi-step analysis strategy is proposed to address the glide within
a software metric value range after specific refactoring applications.

Different multi-objective refactoring selection problems are formally introduced. There-
fore, the refactoring set selection, refactoring sequence selection, and refactoring plan building
problems are defined as multi-objective optimization problems with two conflicting objectives.

This thesis focuses on the activity of the appropriate refactoring selection and the refac-
toring impact assessment on the internal program quality. It contains over 150 bibliographical
references and is divided in seven chapters as follows.

First chapter provides an introduction to the field of Software Engineering and anchors
the refactoring process within different software development methodologies together with
the motivation and the activities for the investigated process. General issues related to the
software maintenance and evolution are stated. Previous formal approaches on refactoring are
reminded too. Conceptual modeling and the existing variability types are shortly reminded.
Specific refactorings investigated within this research are informally described. The used
evolutionary-based approach for the refactoring selection is described in detail. The source
code for the case studies and their difficulties are shortly presented.

Chapter 2, Refactoring in Conceptual Modeling Variability, describes the three
possible types of conceptual variability, as: construct, vertical abstraction, and horizontal
abstraction. Identified shifting strategies, like refactoring, forward conceptual abstraction,
and conceptual specialization are presented. A biological evolution-based model is proposed
to describe the changes within the studied models, as ontogenic and phylogenic processes.

Chapter 3, Formal Representation of Refactoring Impact, formalizes the refac-
toring impact on the internal program structure representation as affected node and edge
numbers within the studied AST. Several relevant refactorings, as: MoveMethod, MoveField,
ExtractClass, and InlineClass are rigorously approached and formally described based on the
new impact-based refactoring proposed notation. The advanced formalism is used to study
the refactoring impact for the described refactorings on a source code case study.

1

Chapter 4, Formalizing Software Metrics. A Refactoring Impact-Based Ap-
proach, highlights the possibility to link within a two way connection the refactoring pro-
cess and the internal quality assessment process, through software metrics, within a formal
context. A consistent set of software metrics defined in the literature in the context of object-
oriented approach is formally described. A technique for the analysis of the refactoring impact
on the internal program quality, assessed by software metrics is proposed. In order to achieve
this, a set of goals chased by the developer within the refactoring impact assessment process,
a list of refactoring impact categories, and a list of assessment rules applied to obtain the
final refactoring impact on the internal program quality metrics were investigated.

Chapter 5, The Refactoring Selection Problem. A Formal Multi-Objective Op-
timization Approach, addresses the formal definition of the General Optimal Refactor-
ing Selection Problem with several specialized multi-objective refactoring selection problems.
Two compound and conflicting objective functions are defined, as the refactoring cost and
the refactoring impact on software entities. Therefore, the Multi-Objective Refactoring Set
Selection Problem (MORSSP) together with its special case, the Multi-Objective Refactoring
Single Selection Problem (MORSgSP) are introduced. These are followed by the Multi-
Objective Refactoring Sequence Selection Problem (MORSqSP). Finally, the Multi-Objective
Refactoring Plan Building Problem (MORPBP) is defined.

Chapter 6, The Refactoring Selection Problem - An Evolutionary Approach,
investigates the Multi-Objective Refactoring Set Selection Problem following an evolutionary-
based solution approach. For the proposed steady-state genetic algorithm, two solution repre-
sentations are studied: the refactoring-based and the entity-based solution representations. As
a special case of MORSSP, the Multi-Objective Refactoring Single Selection Problem (MORS-
gSP) is addressed with the corresponding entity-based solution representation on a genetic
algorithm. The obtained results are analyzed based on a proposed refactoring strategy.

Chapter 7, Conclusions and Future Research, draws the main conclusions about
our approaches. Several potential improvements of our work, together with specific aspects
concerning tool validation are also addressed.

The original contributions introduced by this thesis are contained in Chapters 2, 3, 4, 5,
and 6. The main contributions target three of the six activity steps identified for a complete
refactoring process, as: choosing the appropriate refactorings to be applied, refactoring effect
assessment on quality characteristics of the software, and maintaining the consistency between
the refactored program code and other software artifacts. They are as follows:

• on the consistency maintenance variability:

– A new set of refactorings recommended for each type of conceptual modeling
variability [CC05b] (Subsection 2.1);

– A new description approach for the conceptual modeling variability types with
specialized actions to switch between variants [CC07] (Subsections 2.1.1, 2.1.2,
and 2.1.3);

– A new biological evolution-based model to cope with different types of variability
within conceptual modeling [CC10c] (Subsection 2.2);

• on the refactoring impact formalization and assessment:

– A new formalism to describe node and edge types within the internal structure
representation as AST [CC10b] (Subsection 3.1);

– A new formalism for the refactoring impact description, based on the internal
structure representation as AST [CC05a] (Subsection 3.1);

2

– A new impact based formal description of various refactorings, as: MoveMethod,
MoveField, ExtractClass, and InlineClass [CC05a] (Subsection 3.2);

– The application of the proposed impact-based formal definitions of the discussed
refactorings to the DAMP (see Subsection 1.11.3) [CC05a] (Subsection 3.2);

– A new formal description of the software metrics, based on the internal structure
representation as AST [CC10b], for a substantial set of software metrics defined in
the literature in the context of object-oriented approach, grouped in four categories
(coupling, cohesion, complexity, and abstraction) (Subsection 4.3);

– A new formal description of the refactoring impact on software metrics [CC10b], for
a set of software metrics grouped in four categories (coupling, cohesion, complexity,
and abstraction) (Subsection 4.3);

– A new proposed technique for the analysis of the refactoring impact on the internal
program quality through software metrics [CCcC06, CC10e] (Subsection 4.4);

– A new set of goals chased by the developer and a list of refactoring impact cate-
gories within the internal quality assessment process [CC10e] (Subsection 4.4.1);

– A new set of assessment rules applied to obtain the final refactoring impact on the
internal program through quality metrics [CC10e] (Subsection 4.4.1);

– The analysis approach validation achieved by two experiments runs [CC10e] (Sub-
section 4.4.2);

• on the refactoring selection:

– New formal descriptions of different refactoring selection problems as multi-objective
optimization problems:

∗ The General Multi-Objective Refactoring Selection Problem (GMORSP) [CC11]
(Subsection 5.3);

∗ The Multi-Objective Refactoring Set Selection Problem (MORSSP) [CC09c]
(Subsection 5.4.1);

∗ The Multi-Objective Single Refactoring Selection Problem (MORSgSP) [CCV09a,
CCV09b] (Subsection 5.4.2);

∗ The Multi-Objective Refactoring Sequence Selection Problem (MORSqSP)
[CC10f] (Subsection 5.4.3);

∗ The Multi-Objective Refactoring Plan Building Problem (MORPBP) [CC10f]
(Subsection 5.4.4);

– New strategic aspects faced by the project management leadership that rise up
within the refactoring plan building process [CC10f] (Subsection 5.4.4);

• on the evolutionary-based approaches for MORSSP and MORSgSP:

– A new evolutionary-based solution approach for the MORSSP, two different solu-
tion representations being used, as: refactoring-based [CC09c, CC09a] and entity-
based [CC09b, CC09e, CC09d] solution representations for the proposed genetic
algorithm (Subsections 6.2.1 and 6.2.2);

– A new evolutionary-based solution approach for the MORSgSP, with an entity-
based [CC10d] solution representation for the proposed genetic algorithm (Sub-
section 6.7);

– A new strategy to assess the suggested solution improvements, based on the case
study identified difficulties [CC10a, CC11] (Subsection 6.3.1).

3

1 Setting the context

The chapter explores the background of this research, with the aim of placing its contributions
in the context. An introduction to the field of Software Engineering by focusing on the
refactoring process is provided.

1.1 Software Maintenance and Evolution

A software system evolves from its entire life cycle. Software maintenance is one of the key
issues in the overall software construction and management. Each software enhancement, bug
correction or adapting the software to new requirements makes the software more complex,
changes its original design and decreases the software quality. It became a part of the IEEE
1219 Standard for Software Maintenance [IEE99].
Definition 1.1.1([IEE99]) Software maintenance is the modification of a software product
after delivery to correct faults, to improve performance or other attributes, or to adapt the
product to a changed environment.

Swanson [Swa76] and Sommerville [Som96] describe three kinds of software maintenance
and based on their work the ISO/IEC Standard 14764 [ISO99], maintenance is subdivided
into four categories: corrective, adaptive, perfective, and preventive.

Preventive maintenance that does not alter the system functionality, is also referred to
as anti–regressive work. The term was introduced by Lehman [LR00] to describe the work
done in order to decrease the complexity of a program without altering the functionality of
the system as it is perceived by the users. Anti-regressive work covers activities such as code
rewriting, refactoring, reengineering, restructuring, redocumenting.

Nowadays more than 80% of total software life-cycle costs is devoted to its maintenance
[Pig97] and it is known that software maintenance encompasses activities and processes in-
volving existing software not only after its delivery but also during its development.

Within the well-known waterfall model [Roy70] software development process, the main-
tenance phase is the final phase of the life-cycle of a software system, after its deployment.
According to Roy, only bug fixes and minor adjustments to the software are supposed to take
place during this maintenance post-production phase.

Such a sequential decomposition as a single directed flow of activities prohibits the neces-
sary interaction and feedback required by software development. This is addressed by more
modern development models such as the spiral model [Boe88] and eXtreme Programming
[Bec99].

1.2 Refactoring

1.2.1 Definitions

The term refactoring is originated from a Deutch’s quote, who wrote ”interface design and
functional factoring constitute the key intellectual content of software and are far more diffi-
cult to create or recreate than code” [Deu89].

A software system may be factored repeatedly, calling it refactoring. Constantine [CY79]
has introduced the term of object factoring in the context of object-oriented.

The first definition of refactoring mentioned by the literature was in Opdyke’s PhD thesis
[Opd92], though it was used well before this. Almost in the same time Chikofsky has defined
the restructuring notion [CC90].
Definition 1.2.1([CC90]) Restructuring is the transformation from one representation
form to another at the same relative abstraction level, while preserving the subject systems
external behaviour (functionality and semantics).

4

While restructuring creates new versions that implement or propose change to the subject
system, it does not normally involve modifications because of new requirements. However,
it may lead to better observations of the subject system that suggest changes that would
improve aspects of the system [CC90].
Definition 1.2.2([Opd92]) Refactorings are behaviour-preserving program restructurings
specific to supporting the design, evolution and reuse of object-oriented application frame-
works. Refactorings are transformations that do not change the behaviour of a program;
that is, if the program is called twice (before and after refactoring) with the same set of inputs,
the resulting set of output values will be the same.

Restructuring and refactoring meaning have evolved from very similar to different terms.
Restructuring was considered to be the term used for structured programming, while refactor-
ing the term used for the object-oriented programming. Though, the term restructuring has a
broader meaning, which does not demand the preservation of systems external behaviour, like
refactoring does. Later, Fowler [Fow04] states that refactoring is a ”very specific technique to
do the more general activity of restructuring (...) founded on using small behaviour-preserving
transformations (themselves called refactorings).”

In his PhD thesis, Roberts [Rob99] updates the refactoring definition. His definition
covers both behaviour-preserving and non-behaviour-preserving transformations.
Definition 1.2.3([Rob99]) A refactoring is an ordered triple R = (pre, T, P) where pre is
an assertion that must be true on a program for R to be legal, T is the program transformation,
and P is a function from assertions to assertions that transforms legal assertions whenever
T transforms programs.

The most popular refactoring definition was provided by Fowler [Fow99].
Definition 1.2.4([Fow99]) Refactoring (noun): a change made to the internal structure of
software to make it easier to understand and cheaper to modify without changing its observable
behaviour. Refactor (verb): to restructure the software by applying a series of refactorings
without changing its observable behaviour.

1.2.2 Motivation and Activities

This subsection provides a motivation for the refactoring process as it was advocated by
various researchers [Opd92, Fow99, Bec99, MT04]. The way the refactoring process may be
integrated to different software processes is presented too (spiral model [Boe88], eXtreme
Programming [Bec99]). Refactoring activities suggested by different research groups are ap-
proached by this subsection [MT04, KIAF02]. Several class-based object-oriented refactoring
classifications based on various criteria are provided [Opd92, Rob99, Fow99, Ker04].

1.3 Studied Refactorings

This section shortly describes those refactorings that were used within our research. Refactor-
ings from different categories have been selected in order to highlight aspects of the abstract
syntax tree processing and refactoring selection.

1.4 Conceptual Modeling

Conceptual modeling is the first step in the requirements analysis phase and uses the infor-
mation gathered and identified in the previous phase of the development cycle [Boe88, CY79].
The variability [Ver04] in the context of conceptual modeling means the possibility to build
distinct and still correct conceptual models for the same set of requirements. Such conceptual
model is called variant. A non-exhaustive framework of three types of variability was used
in order to advocate the possibility to integrate refactoring in the conceptual modeling.

5

1.5 Formalizing Refactoring Using Graph Transformations

This section reminds a graph representation of an object oriented program presented in
[MVEDJ05] required to formally describe the transformations applied through refactoring.
Following this formalism, Chapter 3 introduces formal notations that express the refactoring
impact on the program internal structure, while Chapter 4 advances a new assessing approach
for the refactoring effect on the internal quality reflected by changes on software metrics.

1.6 Software Quality Attributes

Following the IEEE Standard definition for the software (product) quality [IEE92] and the
software quality characteristics [ISO91] it may be stated that defining software quality for a
system is equivalent to define a list of software quality attributes for that system.

Our research focuses on the quality attributes of the software products. A brief overview
of the internal quality attributes is provided here as low coupling, high cohesion, manageable
complexity, and appropriate data abstraction [Mar02].

1.7 Software Metrics

This section presents the metrics defined in the literature in the context of object-oriented
approach, that were chosen for our research as coupling measures, class hierarchy coupling
measures, cohesion measures, and size and complexity measures [Mar02].

1.8 Class Hierarchy Code Duplication Types

Code duplication is one of the factors that severely complicates the maintenance and evolution
of large software systems [Joh93, Bak95]. Code clones are considered as one of the bad smells
of a software system [Fow99]. This section shortly reminds a code duplication classification
in class hierarchies [KN01] together with the recommended refactorings to remove them.

1.9 The Multi-Objective Refactoring Selection Problem

This section describes the main aspects of the Multi-Objective Refactoring Selection Problem.
The general context of the Search-Based Software Engineering (SBSE) together with the
refactoring selection subdomain and some related work results are advanced. Key concepts
defining and bounding both multi-objective optimization problems and the corresponding
optimization methods are presented here.

1.10 Artificial Intelligence-Based Solution Approach

There are many approaches within the SBSE domain related to the search-based refactoring
selection. This section presents knowledge from the artificial intelligence domain needed to
solve the Multi-Objective Refactoring Selection Problem defined by Chapter 5. Various as-
pects of the selected genetic algorithm and the used genetic operators are shortly approached.
The steady–state evolutionary model used within the research is explicitly presented. The data
normalization methods used are shortly reminded by this section.

1.11 Case Studies for the Discussed Problems

Three source code case studies problems are described in this section: Local Area Network
Simulation Problem (LANSP), Data Structure Class Hierarchy Problem (DSCHP), and an
extract from a Didactic Activity Management Problem (DAMP). They are used to emphasize
various aspects related to the applied refactoring within our research.

6

2 Refactoring in Conceptual Modeling Variability

Refactoring application in the context of conceptual modeling variability was investigated in
this chapter. Various types of changes that may consist of specific refactoring techniques are
suggested. A formal biological evolution-based model to describe the comprising processes is
introduced.

2.1 Conceptual Modeling Variability Types

The variability [Ver04] in the context of conceptual modeling means the possibility to build
distinct and still correct conceptual models for the same set of requirements. Such conceptual
model is called variant.

Within conceptual modeling variability, refactoring has proved to be a feasible technique
to switch between variants. The identified changes, i.e., refactorings (r), conceptual special-
ization (cs), and forward conceptual abstraction (fca), are recommended for specific examples
investigated for each variability situation.

2.1.1 Construct Variability

Definition 2.1.1([Ver04]) Construct variability represents the possibility of modeling con-
cepts in the UoD using different constructs in the same modeling language.

Suggested Refactorings
Within construct variability, the concepts within UoD have the same semantics in all

variants. They are represented by a class (entity), an attribute, a relationship. There are
several types of refactorings that may be applied, corresponding to different types of construct
variability studied:

• use class (entity) instead of a set of attributes (properties);
• use a method instead of an attribute;
• use derived classes instead of type codes.

The effort required to switch between the variants is reduced by the application of a
limited number of small refactorings. This type of variability is exploited in the shift from
object-oriented analysis to design. As a consequence, it is expected that construct variability
had been already used refactoring in current modeling activities. Other relevant results in
refactoring conceptual models show that is unlikely that hard obstacles for this transforma-
tions between construct variants will be found [DDN00, DB04, DBM03].

2.1.2 Vertical Abstraction Variability

Definition 2.1.2([Ver04])Vertical abstraction variability refers to the possibility of mod-
eling concepts in the UoD in a more or less generic (abstract) way.

Suggested Refactorings
There are two ways to navigate over the vertical abstraction variability. The first one

refers to the possibility to switch from a general conceptual model to a concrete model, while
the other one increases the abstraction level by removing concrete aspects, or by adding
various parameters. In [CC05a] refactoring categories needed to switch between models are
identified and described. Following the two types of transformation that occur in vertical
abstraction variability, appropriate solutions were provided when:

• transforming to a more generic variant ;
• transforming to a more specific variant.

7

Forward conceptual abstraction is needed to identify and implement new concepts and
specialized behaviour that transform the concrete models to more generic ones. Refactoring
techniques have limited usage in this navigation way of the vertical abstraction variability.
The new variants have the advantage of a raised adaptability and flexibility.

This type of variability was observed in the process of simplifying the design of already
existing software systems, the so called over engineered systems [Par79, GP95, FS97, DDN00].
Changes to the system are made more easily if the conceptual model is more general and
consequently, more difficult if the conceptual model is too simple or too concrete.

2.1.3 Horizontal Abstraction Variability

Definition 2.1.3([Ver04]) Horizontal abstraction variability refers to the possibility of
modeling concepts in the UoD based on different properties.

Suggested Refactorings
The shift between a cmA variant and a cmB variant may be done using a cmC variant as

an intermediate variant. In order to achieve it a two phases process has to be implemented:

• Step 1: establish an equivalency relationship between the two dimensions, by trans-
forming the cmA variant to the cmC variant, consisting of the following aspects:

1. add new classes to specialize;
2. responsibility reassignment ;
3. add new class to generalize;

• Step 2: allow to keep the requested primary dimension only, by studying the following
elements:

1. responsibility reassignment ;
2. safely removal of the specialized classes.

In horizontal abstraction variability the concepts from the UoD are modeled using different
semantic definitions, while the differences between variants bear upon concepts modeled based
on different properties.

In the horizontal abstraction variability, the properties may be or not visible and isolated.
They are classified as primary dimension properties (that can be visible and isolated from
others) and secondary dimension properties (that are not visible and cannot be isolated from
others)[Ver04].

2.2 A Model for Conceptual Modeling Variability Evolution

Variability within conceptual modeling outlines an evolutionary process among different mod-
els of a specific variability type. This process is similar to the biological evolutionary process
presented by Maturana and Varela in [MV98].

For a software product, customers may require new functionalities to be implemented.
This results in changes that serve as perturbation in the software product evolution. In order
to achieve variability within conceptual modeling, changes provided by refactoring, forward
conceptual abstraction, conceptual specialization or other evolutionary changes have to be
applied. There are two types of evolution in biology: phylogeny and ontogeny [MV98]. The
former refers to the evolution as species while the latter refers to the evolution of individual
living beings.

For the already studied conceptual modeling variability with its three different types, i.e.,
construct, vertical abstraction, and horizontal abstraction, an evolution model was developed.

8

2.2.1 Conceptual Modeling Variability as Biological Evolution

Evolution in Construct Variability
The ontogenic evolution for conceptual models that are perturbated by small changes does

not fundamentally affect the developed model. These changes correspond to switches between
attributes and entities or attributes and methods approaches. The multiple types definition
within construct variability expresses a phylogenic evolution process by the addition (forward
conceptual abstraction) or removal (conceptual specialization) of types to the conceptual
model.

Evolution in Vertical Abstraction Variability
Reducing the abstraction level for a conceptual model means to remove superfluous infor-

mation in order to shape a more concrete conceptual model. The simplifying process consists
of refactorings that remove the irrelevant information in the target model. Raising the ab-
straction level requires additional information gathered by forward conceptual abstraction.

Evolution in Horizontal Abstraction Variability
The phylogenic evolution within this type of variability appears at the first shifting step,

by the addition of a new visibility dimension to the model, which drives the complexity of
the development process to a higher level through forward conceptual abstraction. In order
to reduce the number of visible dimensions, refactoring may be applied to a model within a
conceptual specialization.

2.2.2 Formal Approach

This section formally introduces the basic aspects used to formalize the conceptual modeling
variability as an ontogenic and phylogenic evolution. Therefore, the conceptual model, refac-
toring, forward conceptual abstraction, and conceptual specialization are formally defined.

Following the notions previously introduced, the ontogenic and phylogenic processes are
formally described. The three types of conceptual modeling variability are formally defined
as biological evolution processes, following the ontogenic and phylogenic principles.

The existing relations among various conceptual models within the same or different
extension stages of the development process is formalized too. Consequently, the ontogenic
equivalence and phylogenic dominance are formally defined. The notions defined for our
conceptual modeling variability are summarized by the Table 1.

Type of Achieved Type of conceptual modeling variability
evolution by Construct Vertical abstraction Horizontal abstraction

ontogenic r E – A - -
A – M

phylogenic fca Type Codes Concrete to generic Add
primary dimension

cs Generic to concrete Remove
secondary dimension

Table 1: Conceptual modeling variability as ontogenic and phylogenic evolution processes

2.3 Conclusions and Future Work

Variability occurs in almost every modeling activity and its exploitation may help model-
ers to switch between taken decisions and to validate the model equivalence. Refactoring
techniques are dedicated to design and implementation phase, but the research shows that
their applicability may be extended to the conceptual modeling level. The original results
presented in this chapter have been reported in the papers [CC05b, CC07, CC10c].

9

3 Formal Representation of Refactoring Impact

The refactoring impact on the internal program structure representation is expressed as the
affected node and edge number within the studied AST. New formalisms on refactoring
description are approached.

3.1 Formal Representation of the Refactoring Impact on the Internal Struc-

ture of the Source Code

This section formally introduces new notions on the internal structure representation, re-
flected by changes on the AST. Based on the notations introduced in [DBM03], additional
notations are needed to formalize the refactoring impact on the node and edge types within
the corresponding AST of the source code.

3.1.1 Node and Edge Type-Based Formalisms on AST

Definition 3.1.1([CC10b]) Let Σc = {M,A,P, L,E} be a set of possible node types to whom
a Class node type c may be connected through edges of different edge types and T (c) the
corresponding AST. Then, the node type total number for a node type X,X ∈ Σc, denoted
by #X(T (c)), is the total number of nodes sharing the node type X within T (c).
Definition 3.1.2([CC10b]) Let Γcls = {i, t, c, a, u} be the set of all possible edge types to
whom a Class node type cls may be connected through nodes of different node types, ǫ a
regular expression over the Γcls and T (cls) be the corresponding AST. Then, the edge type

total number for an edge type γ, γ ∈ Γcls, denoted by #ET (cls, γ), is the total number of
edges sharing the edge type γ, γ ∈ Γcls or the regular expressions ǫ over Γcls that contain the
γ literal, incident to T (cls).

3.1.2 Node and Edge Type-Based Formalisms for the Refactoring Impact

Definition 3.1.3([CC10b]) Let Σc = {M,A,P, L,E} be a set of possible node types to whom
a Class node type c may be connected through edges of different edge types, T (c) the corre-
sponding AST, r an applied refactoring to T (c), X(T (c), r+) the set of added nodes to the
T (c) after the r refactoring is applied, and X(T (c), r−) the set of removed nodes from the
T (c) after the r refactoring is applied. Then, for a node type X,X ∈ Σc are defined:

i. addition node type refactoring impact number, denoted by #X(T (c), r+), is an
integer value that expresses the number of X type nodes added to the T (c), after the r

refactoring is applied;
ii. removal node type refactoring impact number, denoted by #X(T (c), r−), is an

integer value that expresses the number of X type nodes removed from the T (c), after
the r refactoring is applied.

Definition 3.1.4([CC10b]) Let Γcls = {i, t, c, a, u} be the set of all possible edge types to
whom a Class node type cls may be connected through nodes of different node types, T (cls)
the corresponding AST, r an applied refactoring to T (cls), ET (cls, γ, r+) set of added γ

type edges to the T (cls) and ET (cls, γ, r−) the set of removed γ type edges from the T (cls),
γ ∈ T (cls). Then, for an edge type γ, γ ∈ Γcls, are defined:

i. addition edge type refactoring impact number, denoted by #ET (cls, γ, r+), is
an integer value that expresses the number of γ type edges added to the T (cls), after
the r refactoring is applied;

ii. removal edge type refactoring impact number, denoted by #ET (cls, γ, r−), is an
integer value that expresses the number of γ type edges removed from the T (cls), after
the r refactoring is applied.

10

3.2 An Impact-Based Approach Refactoring Description

In order to formally describe refactorings, an impact-based approach was investigated. The
tackled refactorings used within this research are: MoveMethod, MoveField, ExtractClass
and InlineClass. The studied procedure follows the notations introduced in [DBM03] and
the refactoring impact expressed as affected node and edge number on the internal structure
representation as AST. Therefore, there are several aspects related to the refactoring impact
that cannot be computed or expressed in AST terms.

Source code Experiment. The source code used for this study is presented in Subsec-
tion 1.11.1. The MoveMethod, MoveField, ExtractClass, and InlineClass refactorings appli-
cations were studied for it. For each of them a formal definition of the impact on the AST
is given, based of the notations presented in Section 1.5. The identified formulas are applied
for each affected class before and after each refactoring application.

Subsection 3.2.1 approaches the MoveMethod refactoring. Based on the proposed for-
malism on the program internal structure representation, the refactoring impact on the AST
for the source class A and for the target class B was formalized as consequences and two
propositions were defined. In Subsection 3.2.2 the MoveField refactoring impact for a moved
attribute attr from a source class A to a target class B is formally described. The Extract-
Class and the InlineClass refactorings impact are formally defined by Subsections 3.2.3 and
3.2.4.

3.3 Conclusions and Future Work

In order to formally describe refactorings, an impact-based approach was investigated. The
studied procedure follows the notations previously introduced by [DBM03] on the internal
structure representation as AST.

This chapter formally introduces the refactoring impact on the internal structure reflected
by changes on the AST. Formal notations required to count the number of affected node and
edge types and to formally assess the refactoring impact on the node and edge types within
the AST were introduced, based on the papers [CC05a, CC10b].

Further research may be done within the following directions: a catalog with the formal
refactoring impact on the internal structure representation as AST for other relevant refac-
torings, from different categories and a deeper analysis for the compound refactorings where
some changes on the internal structure may be reversed by another subsequently refactorings.

11

4 Formalizing Software Metrics. A Refactoring Impact-Based

Approach

Software metrics have become an essential instrument in some disciplines of software engi-
neering. They are used to assess the quality and complexity of software systems, as well as
to get a basic understanding and providing clues about sensitive parts of software systems.
There are many software metrics informally defined in the literature. We give here a formal
definition of the software metrics, even if we use a small number of them. Some of the defined
software metrics are used in this chapter. A formal description of software metrics and the
corresponding changes due to the refactoring application are introduced here. A multi-step
analysis strategy is advanced to address the glide within a software metric value range after
specific refactoring applications.

4.1 Object-Oriented Software Metrics in the Refactoring Process

Software metrics are typically used as internal quality factors [FP97]. Therefore, refactoring
impact assessment on internal program quality may be used as an indicator of the transfor-
mation necessity through refactoring usage. Figure 1 shows a two way connection between
the refactoring process and the quality assessment process, through software metrics, within
a formal context, e.g., the source code AST.

Source Code

Refactorings Metrics

internal structure

improvement

internal structure quality

assessment

impact assessment

internal quality improvementformal context (AST, …)

Figure 1: The connection between the refactoring process and the software assessment process
(metrics)

Mens and Tourwe [MT04] suggest that within the six steps refactoring activities list,
software metrics may be used after the refactoring process itself, as a means to assess the
quality attributes of the changed software. Following the approach proposed by Kataoka et
al. [KIAF02], the assessment of the refactoring effect should be carried out before the effective
application of refactoring(s). Therefore, software metrics prove their relevance twice in the
refactoring process.

The two way connection between refactorings and software metrics, the existing for-
malisms on internal structure representation, and the corresponding formal refactoring de-
scription suggest a bias towards formalizing software metrics.

4.2 Formalizing Object-Oriented Software Metrics

The formalism introduced to describe the node and edge type number of the internal program
structure represented as an AST (see Section 3.1) will be used to express the object-oriented
software metrics.

The software metrics defined in the literature in the context of object-oriented approach,
were grouped in four category: coupling, cohesion, complexity, and abstraction, presented in
[Mar02]. Based on the notation introduced in Section 3.1, the measures are formally defined.

12

Following the informally description for the coupling type measures in [Mar02] and the
notation from [CC10b], Subsection 4.2.1 formalizes the access coupling, method coupling,
service coupling, class hierarchy coupling, and system level coupling software metrics.

The research within object-oriented cohesion started with the lack of cohesion study
covering later other aspects like tight and loose, directly and indirectly method connectness.
Subsection 4.2.2 formally describes the cohesion measures presented in [Mar02].

The system and class level metrics used to assess the structural complexity and to find
classes that are exceedingly large or complex are formally investigated in Subsection 4.2.3.

4.3 Refactoring Impact on Object-Oriented Software Metrics Formal De-

scription

In [DBM03] it is suggested that object-oriented program quality metrics may be specified in
terms of the extended AST of the program structure. Following the notations presented in
[CC05a], the formal refactoring impact on the program structure (see Section 3.1) is translated
into the refactoring impact on the object-oriented program quality metrics. The authors of
[ML02] introduce a graph-based formalism on object-oriented software metrics, also used in
[CC05a].

The refactoring formal description and the formal definition of a representative set of
object-oriented program quality metrics (discussed in [Mar02]) provides feedback on the im-
pact of application of a specific refactoring to any particular internal program quality metric,
before effectively applying it. Defining metrics in terms of the entities of the AST, formal
descriptions of refactorings are projected into impacts on the particular metrics.

For the formally introduced coupling type measures in [Mar02] in Subsection 4.2.1 and
the notation from [CC10b], the refactoring impact on access coupling, method coupling,
service coupling, class hierarchy coupling, and system level coupling measures are defined as
consequences of the refactoring process in Subsection 4.3.1.

Following the formally cohesion measures in [Mar02], introduced by Subsection 4.2.2 and
the notation from [CC10b], the Subsection 4.3.2 defines the refactoring impact on the cohesion
measures as consequences of the refactoring process.

For the formally introduced size and complexity type measures in Subsection 4.2.3 and
the notation from [CC10b], the refactoring impact on system size, class size, and structural
complexity measures are defined as consequences of the refactoring process in Subsection
4.3.3.

4.4 Refactoring Impact on Software Metrics Analysis

The definitions provided by Section 3.1 suggests formal description of the changes on the
AST after refactoring application. By translating the changes on the program structure into
changes on different software metrics, the refactoring impact on the internal program quality
metrics is obtained.

Analogous to the approach presented in [DBM03, TK03], the research in [CCcC06, CC10e]
proposes a set of possible impacts on a software metric. Therefore, software metric compu-
tation results in three possible ranks: high (△), low (▽), and irrelevant (©).

For each software metric formal definition (see Section 4.2) one or more defining terms
may be identified. The immediate refactoring impact on these terms may be expressed in
three categories: null (0), positive (+), and negative (−).

Extending over the two types of impact, i.e., on the assumed rank and on the raw value,
the final refactoring impact on software metrics is depicted by the Table 2. Thus, there are
three impact categories together with the expected value range for a specific metric.

13

Assumed Impact on software metric, Value Range
rank null, 0 positive, (0,∞) negative, (−∞, 0)

△
△•

high value expected,

but not affected

(no impact)

△+

high value expected,

and increases

(positive impact)

△−

high value

and decreases

(negative impact)

▽
▽•

low value expected,

but not affected

(no impact)

▽+

low value expected

and increases

(negative impact)

▽−

low value expected

and decreases

(positive impact)

© ⊙
no impact

⊕
positive impact

⊖
negative impact

Table 2: The impact categories on software metrics

4.4.1 Impact Assessment Phases

In order to achieve the impact analysis, there are several steps that have to be followed. The
identified refactoring impact category (null, positive, negative) for the identified software
metric terms are used together with some assessment rules to obtain the final refactoring
impact on the internal program quality metric, as described by the Table 2. The evaluation
rules are described in [CC10e].

The impact analysis consists of the following steps:

1. choose the source code that will be studied for the refactoring impact on the internal
structure with internal quality software metrics, denoted by SC;

2. choose a relevant set of refactorings that serves to improve the internal structure pro-
gram, denoted by SR = {r1, r2, . . . , rn};

3. choose the appropriate set of software metrics that assess the requested internal program
qualities, as SM = {sm1, sm2, . . . , smm}, where ∀smi, smi ∈ SM is defined as a set
of terms smi = {ti1 , ti2 , . . . , tik}, k ∈ N , that will be used to assess the corresponding
smi, i = 1,m;

4. build an impact table, n rows and k+1 columns, for a software metric smi, i = 1,m,
with the following items:

(a) each table row contains a refactoring ri intended to be applied to the source code
SC, where ri ∈ SR, i = 1, n;

(b) each table column contains a term tij , j = 1, k, of the current analyzed software
metric smi, i = 1,m, filled with the immediate refactoring impact;

(c) the last table column data (colik+1
) will be computed based on the assessment

rules;

5. build a refactoring impact table, n rows and m columns, filled with the corresponding
colik+1

for the chosen set of software metrics from the SM set to reflect the final impact
provided by each refactoring application from the SR set.

4.4.2 Impact Analysis Approach Validation

Based on the software metrics formal description presented in Subsection 4.4.1, the impact
analysis approach may be validated. The goal is to prove that the software metric impact
suggested by the current approach is similar to the one indicated by the corresponding formal
definition. To achieve this validation two experiments were run as presented in [CC10e].

Experiment 1. The goal is to prove that for a set of chosen set of refactorings and a set
of software metrics, the refactoring impact on the software metrics which is computed based

14

on the proposed approach is similar to the results advanced by the corresponding refactor-
ing impact formal definitions on the software metrics. For the four refactoring techniques
formally defined in Section 3.1, i.e., MoveMethod, MoveField, ExtractClass, and InlineClass
refactorings, a set of relevant software metrics have been chosen: NOM, NOC, CBO, RFC,
and LCOM∗, that were formally defined in Section 4.2. Tables E.1, E.2, E.3, E.4, and E.5
in Appendix E present the refactoring impact on the chosen software metrics for the source
class A and the target class B, for a targeted rank on the value range (△, ▽, or ©).

Experiment 2. It validates the proposed approach studying a set of refactorings and
their impact on a set of software metrics for the DSCH Problem (see Subsection 1.11.2). The
refactoring opportunities are possible code clones from a class hierarchy (see Section 1.8). In
[CCcC06] the validation for the proposed approach was achieved for the code redundancy
removal problem. For the DSCH Problem were identified and removed six code clone types
(see Section 1.8). The software metrics set aims several aspects of internal program quality,
as: class hierarchy weight (NOC∗ metric, applied to the studied system), size and complexity
of a class (LOCC, NOM, WMC), coupling (CBO, RFC), cohesion (TCC), and class hierarchy
coupling (DIT, NOC, NOD). The internal program quality assessment with software metrics
has been achieved before and after the redundancy problem type had been removed. Tables
F.1, F.2, F.3, F.4, F.5, and F.6 in Appendix F present the refactoring impact on the chosen
software metrics for the affected classes.

4.4.3 Proposed Approach Limitations

For several software metrics no formal definition of the refactoring impact is available (CC,
SIZE1, SIZE2). Therefore, the model representation for the internal program structure may
be extended. The main advantage of such an intention facilitates the formal definition for
different aspects related to the flow control and complexity, since the model becomes more
weighted, resulting in a difficult management.

Another limitation is represented by the assessment difficulty when the composing terms of
the software metric definition have different immediate impacts, i.e., few negative impact (−)
and few positive impact (+). These cases require a more complex analysis since the studied
source code AST has to be semantically evaluated if the addition or removal of certain typed
edges has impact on the formal definition software metric term. This represents an important
aspect of the approach, as the formal definition explicitly depends on typed edge sets.

4.5 Conclusions and Future Work

The refactoring impact assessment on the internal program quality may be used as an in-
dicator of the transformation necessity. The refactoring formal description (see Chapter 3)
and the formal definition of a representative set of object-oriented program quality metrics
in [CC10b] provides feedback on the impact of the application of a specific refactoring on any
particular internal program quality metric, before effectively applying it.

To achieve a refactoring impact analysis on software metrics, a five steps strategy was
advanced. The analysis allows to establish the glide within a software metric value range
after one or more specific refactoring applications.

The chapter is based on the published papers [CCcC06, CC10b, CC10e]. The aspects
to be analyzed in the near future are: internal program structure model improvement like:
flow control information, class feature complete specification; formal definition for the code
duplication types within a class hierarchy; the automation of the refactoring impact analysis
process, essential when dealing with the large amount of combinations between refactorings
and software metrics.

15

5 The Refactoring Selection Problem. A Formal Multi-Objective

Optimization Approach

Formal definitions of the Refactoring Selection Problem with several variants are approached
in this chapter. The Refactoring Selection Problem is modeled as a multi-objective optimiza-
tion problem here, while an evolutionary-based solution, where several criteria are aggregated
in a single objective function is investigated in Chapter 6.

5.1 General Background

This section sets the general context of the refactoring selection research problem, by pre-
senting the motivation and a working scenario.

5.2 Related Work

Related work to the studied problem is reminded in this section.

5.3 The Formal Multi-Objective Refactoring Selection Problem Definition

In order to state the General Multi-Objective Refactoring Selection Problem (GMORSP) some
notion and characteristics were defined. SE = {e1, . . . , em} is the set of software entities,
e.g., a class, an attribute from a class, a method from a class, a formal parameter from a
method or a local variable declared in the implementation of a method. They are considered
to be low level components bounded through dependency relations.

A software system SS consists of a software entity set SE together with different types
of dependencies between the contained items, defined as:
SED = {usesAttribute, callsMethod, superClass,associatedwithClass,noDependency},
ed : SE × SE → SED,

ed(ei, ej) =





uA, if the method ei uses the attribute ej
cM, if the method ei calls the method ej
sC, if the class ei is a direct superclass for the class ej
aC, if the class ei is associated with the class ej
nD, otherwise

, (1)

where 1 ≤ i, j ≤ m.
A set of possible relevant chosen refactorings applied to different types of software entities

of SE is SR = {r1, . . . , rt}. Specific refactorings may be applied to particular types of software
entities, i.e., the RenameMethod refactoring may be applied to a method entity only, while
the ExtractClass refactoring has applicability just for classes. Therefore a mapping that sets
the applicability for the chosen set of refactorings SR on the set of software entities SE, is
defined as: ra : SR× SE → {True,False},

ra(rl, ei) =

{
T, if rl may be applied to ei
F, otherwise

, (2)

where 1 ≤ l ≤ t, 1 ≤ i ≤ m.
The various dependencies between refactorings when they are applied to the same software

entity are emphasized by the following mapping:
SRD = {Before,After,AlwaysBefore,AlwaysAfter,Never,Whenever},

16

rd : SR× SR× SE → SRD,

rd(rh, rl, ei) =





B, if rh may be applied to ei only before rl, rh < rl
A, if rh may be applied to ei only after rl, rh > rl
AB, if rh and rl are both applied to ei and rh < rl
AA, if rh and rl are both applied to ei and rh > rl
N, if rh and rl cannot be both applied to ei

, (3)

where ra(rh, ei) = T , ra(rl, ei) = T , 1 ≤ h, l ≤ t, 1 ≤ i ≤ m.

Let DS = (SRt, SEm) be the decision domain for the GMORSP and
→

x= (r1, r2, . . . , rt,

e1, e2, . . . , em),
→

x∈ DS, a decision variable. The GMORSP is defined by the followings:

• f1, f2,. . . , fM – M objective functions, where fi : DS → R, i = 1,M , and F (
→

x) =

{f1(
→

x), . . . , fM (
→

x)}, →

x∈ DS;

• g1, . . . , gJ – J inequality constraints, where gj(
→

x) ≥ 0, j = 1, J ;

• h1, . . . , hK – K equality constraints, where gk(
→

x) = 0, k = 1,K.

The GMORSP is the problem of finding a decision vector
→

x= (x1, . . . , xm+t) such that

optimize{F (
→

x)} = optimize{f1(
→

x), . . . , fM (
→

x)}, where fi : DS → R, i = 1,M , gj(
→

x) ≥
0, j = 1, J , hk(

→

x) = 0, k = 1,K,
→

x∈ DS.
Multi-objective optimization often means optimizing conflicting goals. For the GMORSP

formulation there may be the possibility to blend different types of objectives, i.e., some of
them to be maximized and some of them to be minimized.

5.4 Specific Multi-Objective Refactoring Selection Problem Definitions

5.4.1 The Multi-Objective Refactoring Set Selection Problem

The Multi-Objective Refactoring Set Selection Problem (MORSSP) is a special case of the
refactoring selection problem. Its definition [CC09c] follows the General Multi-Objective
Refactoring Selection Problem (see Section 5.3). Two compound and conflicting objective
functions are defined: the refactoring cost and the refactoring impact on software entities. In
order to state the MORSSP some additional notions and characteristics have to be defined.

Additional Notions
The weight associated with each software entity ei, 1 ≤ i ≤ m, is kept by the setWeight =

{w1, . . . , wm}, where wi ∈ [0, 1] and
∑m

i=1wi = 1.
The effort involved by each transformation is converted to cost, being described as rc :

SR× SE → Z,

rc(rl, ei) =

{
> 0, if ra(rl, ei) = T

= 0, otherwise
,

where the ra mapping is defined by the formula 2 (see Section 5.3), 1 ≤ l ≤ t, 1 ≤ i ≤ m.
Changes made to each software entity ei, i = 1,m, by applying the refactoring rl, 1 ≤ l ≤ t,

are stated and as effect : SR× SE → Z,

effect(rl, ei) =





> 0, if ra(rl, ei) = T and it has the requested effect on ei
< 0, if ra(rl, ei) = T and it has not the requested effect on ei
= 0, otherwise

,

where the ra mapping is defined by the formula 2 (see Section 5.3), 1 ≤ l ≤ t, 1 ≤ i ≤ m.

17

The overall effect of applying a refactoring rl, 1 ≤ l ≤ t, to each software entity ei, i = 1,m,
is defined as res : SR → Z,

res(rl) =
m∑

i=1

wi · effect(rl, ei),

where 1 ≤ l ≤ t and wi is the weight of the corresponding software entity ei from SE.
Each refactoring rl, l = 1, t, may be applied to a subset of software entities, defined

as re : SR → P(SE), re(rl) =
{

el1 , . . . , elq | if ra(rl, elu) = T , 1 ≤ u ≤ q, 1 ≤ q ≤ m
}
,

where the ra mapping is defined by the formula 2 (see Section 5.3), re(rl) = SErl , SErl ∈
P(SE)−∅, 1 ≤ l ≤ t. In this way we have a function based description.

Output Data
The MORSSP is the problem of finding a subset of entities named ESetl, ESetl ⊆ SErl ⊆

SE for each refactoring rl ∈ SR, l = 1, t such that:

• the following objectives are optimized:

– the overall refactoring cost is minimized;
– the overall refactoring impact on software entities is maximized;

• refactoring dependencies constraints defined by the mapping 3 are satisfied.

In the MORSSP formulation, two objective functions are taken into consideration in order
to minimize required cost for the applied refactorings and to maximize the refactoring impact
on software entities. Therefore, the multi-objective function F (

→

r) = {f1(
→

r), f2(
→

r)}, where
→

r= (r1, . . . , rt) has to be optimized, as described below.
The first objective function defined minimizes the total cost for the applied refactorings:

minimize{f1(
→

r)} = minimize
{∑t

l=1

∑m
i=1 rc(rl, ei)

}
, where

→

r= (r1, . . . , rt).
The second objective function maximizes the total effect of the refactorings applied to the

software entities, considering the weight of the software entities in the overall system, like:

maximize
{
f2(

→

r)
}
= maximize

{
t∑

l=1

res(rl)

}
= maximize

{
t∑

l=1

m∑

i=1

wi · effect(rl, ei)
}
, (4)

where
→

r= (r1, . . . , rt).
In order to convert the first objective function to a maximization problem in the MORSSP,

the total cost is subtracted from MAX, the biggest possible total cost, as it is shown below:

maximize
{
f

′

1(
→

r)
}
= maximize

{
MAX −

t∑

l=1

m∑

i=1

rc(rl, ei)

}
, (5)

where
→

r= (r1, . . . , rt). The overall objective function for MORSSP is defined by:

maximize
{
F (

→

r)
}
= maximize

{
f

′

1(
→

r), f2(
→

r)
}
=

= maximize
{
MAX −∑

t

l=1

∑
m

i=1
rc(rl, ei),

∑
t

l=1

∑
m

i=1
wi · effect(rl, ei)

}
,

(6)

where
→

r= (r1, . . . , rt).

5.4.2 The Multi-Objective Refactoring Single Selection Problem

The Multi-Objective Refactoring Single Selection Problem (MORSgSP) is a particular case
of the MORSSP (see Section 5.4.1) with restraint requirements [CCV09a]. Therefore, the
specific problem aspects are isolated within the output data.

18

Output Data
The MORSgSP is the multi-objective problem of finding a refactoring rl ∈ SR, l = 1, t,

for each entity ei ∈ SE, i = 1,m, such that:

• the following objectives are optimized:

– the overall refactoring cost is minimized;
– the overall refactoring impact on software entities is maximized;

• refactoring dependencies constraints defined by the mapping 3 are satisfied.

5.4.3 The Multi-Objective Refactoring Sequence Selection Problem

The Multi-Objective Refactoring Sequence Selection Problem (MORSqSP) is based on the
General Multi-Objective Refactoring Selection Problem (see Section 5.3). The goal is to find
the sequences of refactorings that affect the entire software system based on the software entity
dependencies and refactoring dependencies. The two compound and conflicting objective
functions (the refactoring cost and the refactoring impact) defined for the MORSSP are used
by this problem definition too.

Various specific elements are defined as additional notations required, while the problem
requirements are stated as output data of the defined problem.

Additional Notations
Definition 5.4.1([CC10f]) A refactoring-entity pair is a tuple r̂l ei = (rl, ei) con-

sisting of a refactoring rl, 1 ≤ l ≤ t, applied to a software entity ei, 1 ≤ i ≤ m, therefore
ra(rl, ei) = T .

Definition 5.4.2([CC10f]) A refactoring sequence is a chain of refactoring-entity pairs
rs = (r̂1 e1, r̂2 e2, . . . , r̂s es), where ru ∈ SR, eu ∈ SE, 1 ≤ u ≤ s. The followings stay:

1. ed(eu, eu+1) ∈ SED, ∀ r̂u eu, ̂ru+1 eu+1 ∈ rs, where ru, ru+1 ∈ SR, eu, eu+1 ∈
SE, 1 ≤ u ≤ s− 1;

2. rd(ru, ru+1, eu), rd(ru, ru+1, eu+1) ∈ SRD, ∀ r̂u eu, ̂ru+1 eu+1 ∈ rs, where ru, ru+1 ∈
SR, eu, eu+1 ∈ SE, 1 ≤ u ≤ s− 1;

3. rd(rl, rk, ei) ∈ SRD, ∀ r̂l ei, r̂k ei ∈ rs, where rl, rk ∈ SR, ei ∈ SE, 1 ≤ l < k ≤
t, 1 ≤ i ≤ m;

4. ed(ei, ek) ∈ SED, ∀ r̂l ei, r̂l ek ∈ rs, where rl ∈ SR, ei, ek ∈ SE, 1 ≤ i < k ≤ m, 1 ≤
l ≤ t.

A sequence of refactorings applied to a software entity ei, 1 ≤ i ≤ m, denoted by rsei , is
simply described as rsei = (r1, r2, . . . , rs), ei ∈ SE, 1 ≤ i ≤ m, ru ∈ SR, 1 ≤ u ≤ s, s ∈ N ∗.
The ra, ed, and rd mappings are formally described by the Section 5.3.

The set of all refactoring sequences that may be applied to the software entities ei, i = 1,m,
using the refactorings rl, l = 1, t, is defined as:

SSR =
{

rs | rs = (r̂1 e1, r̂2 e2, . . . , r̂s es), ru ∈ SR, eu ∈ SE, 1 ≤ u ≤ s, s ∈ N ∗
}
. (7)

The set of all refactoring sequences that may be applied to a software entity e, e ∈ SE,
is defined as:

SSRe =
{

rse | rse = (r1, r2, . . . , rs), ru is a refactoring applied to e, 1 ≤ u ≤ s, s ∈ N ,
}
, (8)

where the SSRe ∈ P(SSR), e ∈ SE.
The set of distinct refactorings that compose a refactoring sequence rs = (r̂1 e1, r̂2 e2, . . . ,

r̂s es), s ∈ N , is denoted by SRrs = {r| ∃ r̂ e in rs, e ∈ SE, r ∈ SR}, SRrs ∈ P(SR).
The set of distinct refactoring-entity pairs that compose a refactoring sequence rs =

(r̂1 e1, r̂2 e2, . . . , r̂s es), s ∈ N , is denoted by SEPrs = {r̂ e| ∃ r̂ e in rs, r ∈ SR, e ∈ SE},
SEPrs ∈ P(SSR).

19

Output Data
The MORSqSP is a two folded problem, as:

1. it finds a refactoring sequence rs = (r̂1 e1, r̂2 e2, . . . , r̂s es) applied to the software
system SS, where eu ∈ SE, ru ∈ SR, 1 ≤ u ≤ s, s ∈ N ;

2. it finds a refactoring sequence rse = (r1, r2, . . . , rs) applied to a given software entity
e, where e ∈ SE, ru ∈ SR, 1 ≤ u ≤ s, s ∈ N .

The MORSqSP multi-objectiveness aspects are:

• the objectives to be optimized are:

– the overall refactoring cost is minimized;
– the overall refactoring impact on software entities is maximized;

• the software entity dependencies constraints defined by the mapping 1 (see Section 5.3)
are satisfied;

• the refactoring dependencies constraints defined by the mapping 3 (see Section 5.3) are
satisfied.

The overall objective function definition for the MORSqSP is analogous to the one in the
formula 6. The decision vector

→

r has a goal-based description within an appropriate DS.
Therefore, for the intended aims in the output data, we are interested in:

• searching for the refactoring sequence rs applied to the software system SS:

– DS = SSR;
–

→

r= (r̂1, e1, r̂2, e2, . . . , r̂s, es), where eu ∈ SE, ru ∈ SR, 1 ≤ u ≤ s, s ∈ N , s ≤ n;

• searching for the refactoring sequence rsei applied to a given software entity ei, where
ei ∈ SE, 1 ≤ i ≤ m:

– DS = SRn, n ∈ N ;
–

→

r= (r1, r2, . . . , rs), where ei ∈ SE, ru ∈ SR, 1 ≤ i ≤ m, 1 ≤ u ≤ s, s ≤ n, s ∈ N .

5.4.4 The Multi-Objective Refactoring Plan Building Problem

This subsection presents theMulti-Objective Refactoring Plan Building Problem (MORPBP),
based on the General Multi-Objective Refactoring Selection Problem (GMORSP) (see Sec-
tion 5.3) and the Multi-Objective Refactoring Sequence Selection Problem (MORSqSP) (see
Subsection 5.4.3). A motivation together with a problem working scenario is provided here
too. Input data, additional terms and notations have been defined to completely state the
MORPBP.

Input Data
Let SE = {e1, . . . , em} be a set of software entities as it was defined by Section 5.3. The

software entity set SE together with different types of dependencies among its items form
a software system named SS. The set of software entity dependency types SED and the
dependency mapping ed are similar to the one described by the formula 1 (see Section 5.3).

A set of signifying chosen refactorings that may be applied to the software entities of SE
is gathered up through SR = {r1, . . . , rt}. The ra mapping that sets the applicability for the
chosen set of refactorings SR on the set of software entities SE is defined by the formula 2
(see Section 5.3).

The set of refactoring dependencies SRD together with the mapping rd that highlight
the dependencies among different refactorings when applied to the same software entity are
stated by the formula 3 (see Section 5.3).

20

Definitions 5.4.1 and 5.4.2 (see Subsection 5.4.3) introduce the refactoring-entity pair
and refactoring sequence terms, respectively. The set of all refactoring sequences that may
be applied to the software entities ei, i = 1,m, using the refactorings rl, l = 1, t, denoted by
SSR = {rs1, . . . , rsp}, where rsk = (r̂1 e1, r̂2 e2, . . . , ̂rsrsk esrsk), k = 1, p, eu ∈ SE, ru ∈
SR, 1 ≤ u ≤ srsk , p, srsk ∈ N , is analogous defined by the formula 7 (see Subsection 5.4.3).

Each refactoring sequence rsk, 1 ≤ k ≤ p, has a building weight within the overall set of
refactoring sequences SSR, that suggests the refactoring sequence priority when combining to
each other, being expressed by the set SSRWeight = {rsw1, . . . , rswp}, where rswk ∈ [0, 1]
and

∑p
k=1 rswk = 1.

Each refactoring-entity pair r̂u eu, u = 1, srsk , from the participating refactoring se-
quences rsk = (r̂1 e1, r̂2 e2, . . . , ̂rsrsk esrsk), where rsk ∈ SSR, k = 1, p, srsk ∈ N , within
the plan building process, has an associated integration status. This is attached to each
refactoring-entity pair at the refactoring sequence building time.

The two possible refactoring statuses within a refactoring sequence composition form the
set RStatus = {Mandatory, Optional}. A mapping that links the status to a refactoring-
entity pair is defined as rstatusrs : SEPrs → RStatus,

rstatusrs(r̂ e) =

{
M, if r̂ e is mandatory in the plan building
O, otherwise

,

where the r̂ e ∈ SEPrs.

Additional Notations
Refactoring sequence-based plan building means combining multiple refactoring sequences

together into a single refactoring sequence. The resulting refactoring sequence contains con-
nection (junction) points between each two refactoring-entity pairs, inside and outside the
same or different refactoring sequences.

Definition 5.4.3([CC10f]) Let rs = (r̂1 e1, r̂2 e2, . . . , r̂s es), rs ∈ SSR, be a refactoring
sequence, r̂u eu, ̂ru+1 eu+1 two consecutive refactoring-entity pairs in rs, where 1 ≤ u ≤ s− 1
and r̂ e a refactoring-entity pair, where e ∈ SE, r ∈ SR, ra(r, e) = T and r̂ e not in rs.
Then:

1. the refactoring-entity pair r̂u eu, 1 ≤ u ≤ s, has a before junction point, denoted by

b(r̂u eu), if exists a refactoring-entity pair r̂ e that may be inserted before r̂u eu within
the refactoring sequence rs, where rs improved by the r̂ e is rs

′

= (. . . , r̂ e, r̂u eu, . . .)
and the followings hold:

(a) ed(e, eu) ∈ SED, where e, eu ∈ SE, 1 ≤ u ≤ s;
(b) rd(r, ru) ∈ {B, AB} ⊆ SRD, where r, ru ∈ SR, 1 ≤ u ≤ s.

2. the two refactoring-entity pairs r̂u eu and ̂ru+1 eu+1, 1 ≤ u ≤ s − 1, have a middle

junction point, denoted by (r̂u eu)m(̂ru+1 eu+1), if exists a refactoring-entity pair r̂ e

that may be inserted between r̂u eu and ̂ru+1 eu+1 within the refactoring sequence rs,
where rs improved by the r̂ e is rs

′

= (. . . , r̂u eu, r̂ e, ̂ru+1 eu+1, . . .) and the followings
hold:

(a) ed(eu, e), ed(e, eu+1) ∈ SED, where eu, e, eu+1 ∈ SE, 1 ≤ u ≤ s− 1;
(b) rd(ru, r), rd(r, ru+1) ∈ {B, AB} ⊆ SRD, where ru, r, ru+1 ∈ SR, u = 1, s− 1.

3. the refactoring-entity pair r̂u eu, 1 ≤ u ≤ s, has an after junction point, denoted by
(r̂u eu)a, if exists a refactoring-entity pair r̂ e that may be added after r̂u eu within the
refactoring sequence rs, where rs improved by the r̂ e is rs

′

= (. . . , r̂u eu, r̂ e, . . .)
and the followings hold:

(a) ed(eu, e) ∈ SED, where eu, e ∈ SE, 1 ≤ u ≤ s;
(b) rd(ru, r) ∈ {B, AB} ⊆ SRD, where ru, r ∈ SR, 1 ≤ u ≤ s.

21

A refactoring-entity pair junction points set for a refactoring sequence rs is defined as:
REP

jp
rs = {b(r̂u eu)|r̂ e is inserted before r̂u eu, 1 ≤ u ≤ s}∪ {(r̂u eu)m(̂ru+1 eu+1)|r̂ e is

inserted between r̂u eu and ̂ru+1 eu+1, 1 ≤ u ≤ s−1}∪ {(r̂u eu)a|r̂ e is inserted after r̂u eu,

1 ≤ u ≤ s}, being provided at the refactoring sequence building time.
Definition 5.4.4([CC10f]) Let SSRrp = {rs1, . . . , rsq} be a set of refactoring sequences,

REP
jp
rs1 , REP

jp
rs2 , . . . , REP

jp
rsq the corresponding junction points sets for the refactoring se-

quences rsk, where 1 ≤ k ≤ q, where SSRrp ∈ P(SSR), rsk = (r̂1 e1, r̂2 e2, . . . , ̂rsrsk esrsk),

k = 1, q, eu ∈ SE, ru ∈ SR, 1 ≤ u ≤ srsk , srsk , q ∈ N .
A refactoring plan is a refactoring sequence rp = (r̂1 e1, r̂2 e2, . . . , ̂rsrp esrp) formed by

navigating among the refactoring-entity pairs r̂u eu, 1 ≤ u ≤ srsk , k = 1, q, q ∈ N of the
composing refactoring sequences rsk of the set SSRrp. Then, for each refactoring-entity pair

r̂u eu ∈ rp, where 1 ≤ u ≤ srp, it exists a junction point jp, where jp ∈ REP
jp
rsk , such that jp

is the refactoring-entity pair junction point that introduced r̂u eu within the rp refactoring
plan, where 1 ≤ k ≤ q.

Output Data
The MORPBP is the problem of finding a refactoring plan rp = (r̂1 e1, r̂2 e2, . . . , ̂rsrp esrp),

srp ∈ N , from a refactoring sequence set SSRrp, such that:

• the following objectives are optimized:

– the overall refactoring cost is minimized;
– the overall refactoring impact on software entities is maximized;

• software entity dependencies constraints defined by the mapping 1 are satisfied;
• refactoring dependencies constraints defined by the mapping 3 are satisfied.

In the MORPBP, two objectives are optimized: the refactoring cost and the refactoring
impact on the affected software entities. The multi-objective function

optimize{F (
→

rp)} = optimize{f1(
→

rp), f2(
→

rp)}, (9)

where
→

rp= (r̂1 e1, r̂2 e2, . . . , ̂rsrp esrp), srp ∈ N , to be optimized, is similarly described as in
Section 5.3.

The current MORPBP formulation studies the refactoring cost as an objective instead of
a constraint, as the software entities dependencies defined by the formula 1 (see Section 5.3)
and refactoring dependencies described by the mapping 3 are investigated.

The problem decision space is DS = SSR while the decision vector is
→

rp= (r̂1 e1,

r̂2 e2, . . . , ̂rsrp esrp), srp ∈ N , contains the refactoring sequences obtained by cross-navigating
the set of the proposed refactoring sequences SSRrp, SSRrp ∈ P(SSR).

5.5 Conclusions and Future Work

The appropriate refactoring selection within different sized software is a stimulating research
problem investigated by this chapter. Software entity dependencies and refactoring depen-
dencies are the basic intriguing elements that drive the research within this domain.

Some of the original results presented in this chapter have been reported in the papers
[CC09b, CC09a, CC10a, CC10d]. Current chapter is based on the original work published in
the papers [CCV09a, CCV09b, CC09c, CC09e, CC10f].

Some further work may be done in the following directions: the refactoring plan building
problem definition following the approach with a parallel refactoring application with new
notations such as multi-junction points which provides multi-connection points between dif-
ferent refactoring sequences, resulting in a parallel refactoring selection; new multi-objective
problem formulations that use the cost as a constraint instead of an objective; new multi-
objective problem formulations that may use more than two objectives to optimize.

22

6 The Refactoring Selection Problem - An Evolutionary Ap-

proach

TheMulti-Objective Refactoring Set Selection Problem and its special case, theMulti-Objective
Refactoring Single Selection Problem, are investigated in this chapter. Different genetic algo-
rithms solution representations are proposed. The Multi-Objective Refactoring Set Selection
Problem is modeled as a single aggregated objective function, where two conflicting objectives
are optimized. Comparisons between the proposed approaches are discussed.

6.1 Evolutionary-Based Solution Representations for the Refactoring Set

Selection Problem

The MORSSP is approached here by exploring the various existing refactoring dependencies.
Two conflicting objectives were studied, i.e., minimizing the refactoring cost and maximiz-
ing the refactoring impact, together with some constraints to be kept, as the refactoring
dependencies.

The weighted sum method [Kd05] was adopted to solve the MORSSP. The overall objective

function to be maximized F (
→

r) is shaped to the weighted sum principle with two objectives

to optimize. Therefore, maximize
{
F (

→

r)
}

= maximize
{
f1(

→

r), f2(
→

r)
}
, is mathematically

rewritten to maximize
{
F (

→

r)
}
= α · f1(r) + (1 − α) · f2(r), where 0 ≤ α ≤ 1 and

→

r is the

decision variable, within a decision space.
The steady–state evolutionary model is advanced by the proposed evolutionary compu-

tation technique. An adapted genetic algorithm to the context of the investigated problem,
with weighted sum fitness function, was proposed in [CC09b, CC10a].

The proposed genetic algorithm that uses a refactoring-based solution representation for
the refactoring set selection problem is denoted by RSSGARef, while the corresponding entity-
based genetic algorithm is denoted by RSSGAEnt.

6.2 Studied Solution Representations

6.2.1 Refactoring-Based Solution Representation

For the RSSGARef algorithm the solution representation is presented in [CC09c]. The deci-

sion vector
→

S= (S1, . . . , St), where Sl ∈ P(SE), 1 ≤ l ≤ t, determines the entities that may
be transformed using the proposed refactoring set SR. The item Sl on the l-th position of the
solution vector represents a set of entities that may be refactored by applying the l-th refac-
toring from SR, where any elu ∈ SErl , elu ∈ Sl ∈ P(SE), 1 ≤ u ≤ q, 1 ≤ q ≤ m, 1 ≤ l ≤ t.
This means it is possible to apply more than once the same refactoring to different software
entities. The genetic operators used by this approach are crossover and mutation.

6.2.2 Entity-Based Solution Representation

The RSSGAEnt algorithm uses the solution representation presented in [CC09e], where the

decision vector
→

S= (S1, . . . , Sm), Si ∈ P(SR), 1 ≤ i ≤ m determines the refactorings that
may be applied in order to transform the proposed set of software entities SE. The item Si

on the i-th position of the solution vector represents a set of refactorings that may be applied
to the i-th software entity from SE, where each entity elu ∈ SErl , Srl ∈ P(SR), 1 ≤ u ≤
q, 1 ≤ q ≤ m, 1 ≤ l ≤ t. It means it is possible to apply more than once the same refactoring
to different software entities. The genetic operators used by this approach are crossover and
mutation too.

23

6.3 Case Study: The LAN Simulation Problem

The adapted genetic algorithm proposed in [CC09b, CC10a] is applied to a simplified version
of the LAN Simulation source code (see Subsection 1.11.1). Relevant data about the source
code is extracted and the software entity set is defined as: SE = {c1, . . . , c5, a1, . . . , a5,m1, . . . ,m13},
|SE| = 23. The chosen transformations are refactorings that may be applied on classes, at-
tributes or methods, as: RenameMethod, ExtractSuperClass, PullUpMethod, MoveMethod,
EncapsulateField, AddParameter. They will form the refactoring set SR = {r1, . . . , r6} in
the following. The entity weights are gathered within the set Weight, that is presented by
the Table 3 , where

∑23
i=1wi = 1.

The dependency relationship between refactorings, described by the rd mapping and the
final impact of each refactoring stated by the res mapping are defined by the Table 3. The
res mapping value computation for each refactoring is based on the weight of each possible
affected software entity, as it was defined in Section 5.3. The refactoring applicability (ra
mapping) to each software entity from the SE set is expressed as a non null value of the
refactoring cost as presented by the Table 3. Therefore, for the software entity c3 and the
refactoring r2, the notations

√
/2 means the refactoring may be applied to the specified

software entity (
√
, i.e., ra(r2, c3) = T) with the transformation cost of 2.

Each software entity allows specific refactorings to be applied to, otherwise the cost map-
ping values are 0. E.g., refactorings r1, r3, r4, r6 may be applied to methodsm1,m4,m7,m10,m13.
For special methods, i.e., constructors, refactorings like pullUpMethod (r3) andmoveMethod (r4)
cannot be applied to. The cost mapping rc is computed as the number of transformations
needed in order to apply the refactoring. Therefore, different refactorings applied to related
software entities may have different costs.

6.3.1 Proposed Refactoring Strategy

A possible refactoring strategy for the LAN Simulation Problem is presented below. Based on
the difficulties presented for the corresponding class hierarchy, three transformation categories
may be identified. For each of them several improvement targets that may be achieved
through refactoring are defined.

1. information management (data hiding, data cohesion):

(a) control the attribute access (EncapsulateField refactoring);

2. behaviour management (method definition, method cohesion):

(a) adapt the method signature to new context (AddParameter refactoring);
(b) increase the expressiveness of a method identifier by changing its name (Re-

nameMethod refactoring);
(c) increase method cohesion within classes (MoveMethod and PullUpMethod refac-

torings);

3. class hierarchy abstraction (class generalization, class specialization):

(a) increase the abstraction level within the class hierarchy by generalization (Extract-
SuperClass refactoring).

6.4 Practical Experiments for the RSSGARef and RSSGAEnt Algorithms

The algorithm was run 100 times and the best, worse, and average fitness values were recorded.
The parameters used by the evolutionary approach were as follows: mutation probability 0.7
and crossover probability 0.7. Different number of generations and of individuals were used:
number of generations 10, 50, 100, and 200 and number of individuals 20, 50, 100, and 200.

24

(a) Refactoring dependencies (rd) and final impact
(res) of their application to the software entity set
(SE)

rd r1 r2 r3 r4 r5 r6

r1 N B AA

r2 N B

r3 A A N N

r4 N N

r5 N

r6 AB N

res 0.4 0.49 0.63 0.56 0.8 0.2

(b) Refactoring costs (rc) and their applicability to the software entities.
The weight for each software entity (Weight)

rc r1 r2 r3 r4 r5 r6 Weight

c1
√
/1 0.1

c2
√
/1 0.08

c3
√
/2 0.08

c4
√
/2 0.07

c5
√
/1 0.07

a1
√
/4 0.04

a2
√
/5 0.03

a3
√
/5 0.03

a4
√
/5 0.05

a5
√
/5 0.05

m1
√
/1

√
/0

√
/0

√
/1 0.04

m2
√
/3

√
/1

√
/1

√
/3 0.025

m3
√
/5

√
/1

√
/1

√
/5 0.025

m4
√
/1

√
/0

√
/0

√
/1 0.04

m5
√
/1

√
/1

√
/1

√
/1 0.025

m6
√
/1

√
/1

√
/1

√
/1 0.025

m7
√
/1

√
/0

√
/0

√
/1 0.04

m8
√
/2

√
/1

√
/1

√
/2 0.025

m9
√
/1

√
/1

√
/1

√
/1 0.025

m10
√
/1

√
/0

√
/0

√
/1 0.04

m11
√
/2

√
/1

√
/1

√
/2 0.025

m12
√
/1

√
/1

√
/1

√
/1 0.025

m13
√
/1

√
/0

√
/0

√
/1 0.04∑23

i=1wi = 1

Table 3: The input data for the LAN Simulation Problem case study

25

6.4.1 Experiment 1: Equal Weights on the Refactoring Cost and Impact (α = 0.5)

This subsection presents the results obtained for a first experiment with equal weights, i.e.,
α = 0.5, run for the RSSGARef and RSSGAEnt Algorithms [CC09c, CC09b, CC09a].

Various runs as number of generations, i.e., 10, 50, 100, and 200 generations, show the
improvement of the best chromosome. For the recorded experiments, the best individual
was obtained for the RSSGARef Algorithm through a 200 generations evolution with a 20
chromosomes population, having the fitness value of 0.4793. This means in small populations
(with fewer individuals) the reduced diversity among chromosomes may induce a harsher
struggle compared to large populations (with many chromosomes) where the diversity breeds
near quality individuals.

For both solution representations small populations keep their good chromosome quality,
by breeding all 100 individuals with the fitness better than the reference value, i.e., 0.41, for
the refactoring-based solution representation and 0.15 for the entity-based solution represen-
tation. The results provided by the refactoring-based solution representation are better as
fitness value quality. Impact on the LAN Simulation source code after the RSSGARef and
RSSGAEnt Algorithms were run are presented too.

6.4.2 Experiment 2: Higher Weight on the Refactoring Impact (α = 0.3)

This subsection shows the results of a first experiment with different weights, i.e., α = 0.3,
where the final effect (res function) has a greater relevance than the implied cost (rcmapping)
of the applied refactorings is presented in [CC09b, CC09a]. The weighted sum fitness function

used by both RSSGARef and RSSGAEnt Algorithms is F (
→

r) = 0.3 · f1(
→

r) + 0.7 · f2(
→

r),

where
→

r= (r1, . . . , rt).
The experiment for the RSSGARef Algorithm shows good results in all 100 runs as quality

and number for the studied individuals populations and number of generations. A tendency
to breed better individuals in smaller population size has been observed, as it was noticed
for the α = 0.5 experiment too.

The solutions for the 20 individuals populations for the studied number of generations
keep their good quality, since the number of eligible chromosomes remains higher than any
individual population recorded by the experiment. Impact on the LAN Simulation source
code after the RSSGARef and RSSGAEnt Algorithms were run are presented too.

6.4.3 Experiment 3: Lower Weight on the Refactoring Impact (α = 0.7)

This subsection presents the second experiment run with different weights on the two ob-
jectives, for α = 0.7. This means the cost (rc mapping) of the applied refactorings is
more important than the implied final effect (res function) on the affected software entities
[CC09a]. The corresponding fitness function for the RSSGARef and RSSGAEnt Algorithms

is F (
→

r) = 0.7 · f1(
→

r) + 0.3 · f2(
→

r), where
→

r= (r1, . . . , rt).
The best individual obtained by the RSSGARef Algorithm was for a 200 generations

evolution with 20 individuals population, where the best fitness value was 0.61719 (all indi-
viduals with the fitness > 0.53). For the RSSGAEnt Algorithm the highest fitness value was
0.16862, being recorded for a 50 generations evolution run with 20 chromosomes population
(with 98 chromosomes with fitness > 0.155).

For the RSSGARef Algorithm, the experiment results assessment reveals that they are
very much alike to the experiment with α = 0.3. This way, the best chromosomes for the
20 and 200 individuals populations runs cover the value ranges (0.54, 0.63), while for the
RSSGAEnt Algorithm the best fitness value range is smaller ((0.15, 0.17)), where the fitness
is distributed within all value ranges with some exceptions.

26

Unlike previous run experiments for the RSSGAEnt Algorithm, the diversity among chro-
mosome populations is kept for the best and the worst individual. The worst individual
recorded for the 20 individuals populations with 50 generations evolution has the fitness
value of 0.12515 (27 chromosomes with fitness value < 0.13).

The RSSGARef and RSSGAEnt Algorithms applications to the LAN Simulation source
code are discussed too.

6.5 Discussion on the Applied Algorithms for the Refactoring Set Selection

Problem

Current section summarizes the results of the proposed RSSGARef and RSSGAEnt Algo-
rithms in Section 6.4 for three different values for the α parameter, i.e., 0.3, 0.5, and 0.7, in
order to maximize the weighted sum fitness function that optimizes the refactoring cost and
the refactoring impact on the affected software entities.

6.6 Results Analysis for the Multi-Objective Refactoring Set Selection Prob-

lem

This section analyzes the proposed solutions for the refactoring-based and entity-based solu-
tion representations (see Subsections 6.2.1 and 6.2.2). Both solution representations identify
a set of refactorings for each software entity to which it may be applied to.

The chromosome size within the refactoring-based approach is 6, i.e., the number of
studied refactorings, while the individual for the entity-based approach has 23 genes. The
recommended refactorings proposed by different runs and experiments does not shape a fully
homogeneous refactoring strategy for none of the studied solution representations.

The best individual was obtained by the refactoring-based approach (RSSGARef algo-
rithm), for a 200 generations evolution with 20 chromosomes population, having the fitness
value of 0.4793, while for the entity-based approach (RSSGAEnt algorithm) the recorded best
chromosome was obtained for a 20 generations evolution with 20 individuals, with a fitness
value of 0.17345. These solutions may be transposed from a representation to another, which
means their structure may be compared and their efficiency evaluated.

The idea that emerge from the run experiments was that smaller individual populations
produce better individuals (as number, quality, time) than larger ones, that may be caused
by the poor diversity within the populations itself. Large number of genes of the individ-
ual structure induces poor quality to the current entity-based solution representation. The
former one may be perceived as a large sized population within the entity-based solution
representation experiments.

Table 4 summarizes the solutions obtained for the studied solution representation together
with the goals reached by each of them. The number of achieved targets is computed based
on the recommended refactoring presence within the studied chromosomes genes.

Solution α Best chrom. Best Execution Number of achieved targets (%)
representation value (pop. size/ Fitness Time Data Method (2) Class

no. gen.) (1a) (2a) (2b) (2c) hierarchy
(3a)

Refactoring 0.3 20c/200g 0.33587 32secs 0 0 0 50 100
based 0.5 20c/200g 0.4793 36secs 60 50 50 50 50

0.7 20c/200g 0.61719 37secs 0 0 50 100 50

Entity 0.3 20c/200g 0.19023 61secs 80 50 100 100 50
based 0.5 20c/200g 0.17345 75secs 40 0 50 100 100

0.7 20c/50g 0.16862 19secs 0 50 100 100 100

Table 4: The best chromosomes obtained for the refactoring-based and entity-based solution
representation, for different α parameter values: 0.3, 0.5, and 0.7

27

6.7 Evolutionary-Based Solution for the Refactoring Single Selection Prob-

lem

6.7.1 Genetic Algorithm-Based Approach

Similar to the MORSSP, the MORSgSP investigates the existing refactoring dependencies to
identify a single most appropriate refactoring for each software entity. The two conflicting
objectives are the same, i.e., to minimize the refactoring cost and to maximize the refactoring
impact. The constraints to be satisfied are the refactoring dependencies. Current approach
uses the weighted sum method together with a steady–state evolutionary model.

The proposed genetic algorithm approaches an entity-based solution representation for
the studied problem, denoted by RSgSGAEnt. The adapted genetic algorithm proposed in
[CC10d] was applied to a simplified version of the LAN Simulation source code too.

6.7.2 Entity-Based Solution Representation

Within the RSgSGAEnt algorithm solution representation presented in [CC10d], the decision

vector
→

r= (r1, . . . , rm), ri ∈ SR, 1 ≤ i ≤ m, determines the refactorings that may be applied
in order to transform the considered set of software entities SE. The item ri on the i-th
position of the solution vector represents the refactoring that may be applied to the i-th
software entity from SE, where ei ∈ SEri , 1 ≤ i ≤ m. The genetic operators used by this
approach are crossover and mutation operators.

6.8 Practical Experiments for the RSgSGAEnt Algorithm

The RSgSGAEnt algorithm was run 100 times and the best, worse, and average fitness values
were recorded. The parameters used by the evolutionary approach were: mutation probability
0.7 and crossover probability 0.7. The experiments include runs for 10, 50, 100, and 200
number of generations with 20, 50, 100, and 200 as number of individuals. Each following
subsection shortly presents the raw results and emphasize the impact on the class diagram.
The run experiments have worked with different values for the α parameter: 0.3, 0.5, and 0.7.
Therefore, the fitness function is rewritten within the formula F (

→

r) = α·f1(
→

r)+(1−α)·f2(
→

r),

where
→

r= (r1, . . . , rm).

6.8.1 Experiment 1: Equal Weights on the Refactoring Cost and Impact (α = 0.5)

A first experiment that proposes equal weights, i.e., α = 0.5, for the studied fitness function
[CC10d] is presented by this subsection.

In the 50 generations evolution experiments for 200 chromosomes populations the greatest
value of the fitness function was 0.3455 (with 38 individuals with the fitness > 0.33) while
in the 200 evolutions experiments for 20 individuals populations the best fitness value was
0.3562 (96 individuals with the fitness > 0.33), which is the best fitness value in the current
experiment.

The worst chromosome in all runs was recorded for a 200 individuals population for 50
generations evolution with a fitness value of 0.27005 (87 chromosomes with fitness < 0.283),
while in the 20 chromosomes populations with 200 generations evolution the worst individual
had the fitness value 0.2772 (11 individuals having the fitness value < 0.283 only). The
impact on the LAN Simulation source code after the RSgSGAEnt Algorithm application is
presented.

28

6.8.2 Experiment 2: Higher Weight on the Refactoring Impact (α = 0.3)

A first experiment that works with different weights, i.e., α = 0.3, where the final effect (res
function) has a higher relevance than the implied cost (rcmapping) of the applied refactorings
[CC10d] is presented by this subsection.

The best chromosome in the entire experiment was obtained within a 100 generations run
within a 200 chromosomes population with the fitness value of 0.25272 (with 69 individuals
with the fitness > 0.233), while the best chromosome obtained for the 10 generations evolution
with 200 individuals populations had the fitness value of 0.24462 (34 individuals with the
fitness > 0.233).

Worst individual obtained by the current experiment has near values to the average in-
dividuals. For the 200 chromosomes populations with 10 generations evolution the worst
individual has the fitness value of 0.18495 (15 individuals with fitness value worse than
0.195), while for the 200 generations evolution runs with 100 individuals populations the
worst chromosome has the fitness value of 0.18907 (33 individuals having the fitness worse
than 0.195).

The grouping of the eligible chromosomes for the 50, 100, and 200 individuals populations
for small numbers of generations is visible. The solutions for the 20 individuals populations
for each studied number of evolutions keep their good quality, with a higher number of eligible
chromosomes. The RSgSGAEnt Algorithm application impact to the LAN Simulation source
code is presented too.

6.8.3 Experiment 3: Lower Weight on the Refactoring Impact (α = 0.7)

The second experiment with different weights was run for α = 0.7, where the cost (rc map-
ping) of the applied refactorings is more important than the implied final effect (res function)
on the affected software entities [CC10d].

In the 200 generations runs for 100 chromosomes populations the greatest value of the
fitness function was 0.44919 (75 individuals with the fitness > 0.425), while in the 50 genera-
tions evolutions experiments for 50 individuals populations the best fitness value was 0.45757
(65 individuals with the fitness > 0.425) which is the best fitness value obtained within the
current experiment. The RSgSGAEnt Algorithm application impact to the LAN Simulation
source code is presented too.

6.8.4 Discussion on RSgSGAEnt Algorithm for the Refactoring Single Selection
Problem

The results of the proposed approach from Section 6.7 for three different value of the α

parameter, i.e., 0.3, 0.5, and 0.7, are summarized and discussed by the current subsection.
In small populations (with few individuals) the reduced diversity among chromosomes

may induce a stronger competition compared to large populations (with many chromosomes)
where the diversity breeds weaker and closer individuals as fitness value quality. As the
run experiments revealed it, after several generations smaller populations produce better
individuals (as number and quality) than larger ones, due to the reduced population diversity
itself.

Table 5 summarizes the solutions obtained for the studied solution representation together
with the goals reached by each of them. The number of achieved targets is computed based
on the recommended refactoring presence within the studied chromosomes genes.

29

Solution re- α Best chrom. Best Execution Number of achieved targets (%)
presentation value (pop. size/ Fitness Time Data Method (2) Class

no. gen.) (1a) (2a) (2b) (2c) hierarchy
(3a)

Entity 0.3 100c/200g 0.25272 64secs 100 50 50 50/100 100
based 0.5 20c/200g 0.3562 14secs 100 50 50 100 100

0.7 50c/50g 0.45757 9secs 100 50 0 50/100 100

Table 5: The best chromosomes obtained for the entity based solution representation, for
different α parameter values: 0.3, 0.5, and 0.7

6.9 The MORSSP and MORSgSP Solutions Analysis

The MORSgSP represents a special case of the MORSSP, where the corresponding artificial
intelligence-based solutions are approached by Sections 6.3 and 6.7. The former one identifies
a single refactoring that changes a software entity that satisfies the established constraints
in the most appropriate way, while the latter identifies a set of possible refactorings for each
software entity.

The best individual obtained for the run experiments for the MORSgSP, i.e., a 20 chro-
mosomes population with 200 generations evolution, was transposed to the refactoring-based
solution representation of the MORSSP. The resulted individual has the same fitness as in
the original form (0.3562). The best chromosome recorded for the MORSSP experiments, is
obtained for a 20 chromosomes population with 200 generations evolution too. But, it cannot
be transposed to the solution representation presented in Section 6.7, since there are several
refactorings suggested for each entity.

First, a refactoring may be applied to more than one software entity, as the r6 (AddPa-
rameter refactoring) which is applied to the m8 (print method) from c3 (PrintServer class)
and m11 (save method) from c4 (FileServer class). Second, r1 (RenameMethod refactoring)
is then applied for the same methods in order to highlight the polymorphic behaviour of the
new renamed method process. This means there are at least two refactorings that have to be
applied to the methods referred here (print and save). Thus, the multiple transformations
of software entities cannot be coded by the solution representation proposed by Section 6.7.

The RSgSGAEnt algorithm (see Subsection 6.8.1) allows information hiding by suggesting
the refactoring for field encapsulation. But the solution representation does not allow to apply
more than one refactoring to each software entity. This results in the lack of possibility to
apply some relevant refactorings to software entities [CC11].

For the solution proposed by the RSSGARef Algorithm with α = 0.5, the fitness value of
the best chromosome (0.4793) is better than the value of the approach discussed in Section
6.8, while it suggests to apply more than one refactoring to a single software entity.

6.10 Conclusions and Future Work

This chapter has advanced the evolutionary-based solution approach for the MORSSP and
the MORSgSP. Adapted genetic algorithms have been proposed in order to cope with a
weighted-sum objective function for the required solution. Two conflicting objectives have
been addressed, as to minimize the refactoring cost and to maximize the refactoring impact on
the affected software entities. Different solution representation were studied and the various
results of the run experiments were discussed and compared.

The chapter is based on the following papers [CCV09a, CCV09b, CC09c, CC09b, CC09a,
CC09e, CC09d, CC10a, CC10d, CC11]. Further work may be done in the following direc-
tions: different and adapted to the refactoring selection area crossover operators may be
investigated; the Pareto front approach may be studied further.

30

7 Conclusions and Future Research

The intent of the present PhD thesis was to advocate the idea that refactoring techniques
play an increasing part in software engineering, taking benefit on an active research area.
The aimed goal and objectives of this research are met as supported by this thesis.

The main contributions of this thesis target three of the six activity steps identified
for a complete refactoring process, as: choosing the appropriate refactorings to be applied,
refactoring effect assessment on quality characteristics of the software, and maintaining the
consistency between the refactored program code and other software artifacts. Possible de-
velopments and new research directions were suggested for each original approach addressed.

Refactoring Selection
The thesis approaches the activity of appropriate refactorings identification within various

contexts. The appropriate refactoring selection within different sized software is a stimulating
research problem. Software entity dependencies and refactoring dependencies are the basic
intriguing elements that drive the research within this domain.

Different multi-objective refactoring selection problem are formally investigated, as: the
refactoring set selection, single refactoring selection, refactoring sequence selection and refac-
toring plan building problems are defined. New multi-objective formulations using conflicting
objectives to optimize were addressed, as: to minimize the required refactoring cost and to
maximize the refactoring impact on software entities, within the corresponding problems.
Moreover, new strategically aspects related to the refactoring plan building process based on
the management leadership decision were advanced too.

For the Refactoring Set Selection Problem and its special case the Refactoring Single
Selection Problem an evolutionary-based approach was investigated here. Refactoring-based
and entity-based solution representations for different genetic algorithms were proposed. In
order to compare the various results of the run experiments, a new goal-based assessment
strategy for the selected refactorings was proposed. A steady-state genetic algorithm applied
used the weighted sum method to aggregate the conflicting objectives and adapted genetic
operators to the refactoring selection.

Future work. For the various refactoring selection problems formalized within this the-
sis, there is a number of directions where the research may follow. An important aspect of
the refactoring plan building problem is to follow the approach with the parallel refactor-
ing sequence composition. New notations such as multi-junction points that provide multi-
connection points between different refactoring sequences, resulting in parallel refactoring
selection have to be defined. A thoroughly study on the junction points may be advanced
further, as they may represent refactoring sequences intersection points.

Based on the different criteria used in refactoring plan building process by the manage-
ment leadership, different refactoring strategies may be shaped. Therefore, refactoring plan
building principles may be enounced and described. Research on the strategic refactoring
plans configuration may address the possibility to setup a model that may highlight different
scenarios, relations, and building methods for different refactoring stories.

Different and adapted to the refactoring selection area crossover operators may be in-
quired. The Pareto front may be studied further in order to analyze the best chromosomes
for the addressed multi-criteria and conflicting objective problems. Other aspects to achieve
would be to run different experiments on relevant and real world software systems. Moreover,
different solution approaches to the MORSqSP and MORPBP have to be tackled.

A tool setup that will gather the required input data for the addressed software sys-
tem represents, a key step within refactoring-based search software engineering field, will be
developed.

31

Refactoring Impact Formalization and Assessment
The refactoring impact on the internal structure representation as AST was investigated

by this thesis too. Therefore, the refactoring impact on the internal program structure
representation was expressed as the affected node and edge number within the studied AST,
following the proposed formalisms. The new impact-based refactoring description was applied
for several relevant refactorings, as: MoveMethod, MoveField, ExtractClass, and InlineClass.

Refactoring impact assessment on internal program quality may be used to indicate the
transformation necessity through refactoring application. Software metrics have become an
essential instrument in some disciplines of software engineering. They are used to assess the
quality and complexity of software systems, as well as getting a basic understanding and
providing clues about sensitive parts of software systems.

A formal description of a consistent set of software metrics was introduced based on the
refactoring impact previously advanced. The addressed software metrics were grouped in
four categories, as: coupling, cohesion, complexity, and abstraction.

A proposed technique for the analysis of the refactoring impact on the internal program
quality through software metrics was introduced. It consists of a five steps strategy applied to
address the glide within a software metric value range after specific refactoring application.
It investigates the set of the goals chased by the developer within the refactoring impact,
the list of refactoring impact categories, and the assessment rules applied to obtain the
final refactoring impact on the internal program quality through metrics. Two didactic
experiments were run in order to validate the approach.

The proposed classification of the refactoring impact based on the developer intention
provides a prior to application feedback to the developers, on the chosen refactorings. Thus,
they are able to predict the internal quality slide determined by the refactoring applications.
Two limitations of the approach were identified and immediate solutions were advanced.

Future work. The research focused on the refactoring impact and its assessment may
be driven by the several aspects in the future. A new catalog with the formal refactoring
impact on the internal structure representation as AST for a set of relevant refactorings, from
different categories may be build. It may be used as a starting element to build a refactoring
strategy based on different internal quality attributes.

Different compound refactorings may be further analyzed in order to identify the basic
refactoring impact for its components. Moreover, such analysis may reveal that primitive
refactorings that are a part of a larger one may reverse the impact on another refactorings
applied. The current AST representation limitations in describing complex refactorings may
be removed by extending it with appropriate notations.

The refactoring impact-based analysis for the internal program quality needs further val-
idation. It may be achieved by following the already addressed approach of validating it at
theoretical level and practical level as well. Therefore, additional analysis on real world case
studies is required, in order to verify the refactoring impact for the set of refactorings and
the set of software metrics investigated.

A future step in this area research is to build a tool that encloses all the approach char-
acteristics. A validation approach using the build approach is a subsequent track that will
be achieved. Comparison with similar existing tools will be addressed. The automation of
the refactoring impact analysis process may be bounded to the developed tool.

Other aspects that need further detailed examination are the possible limitations of this
analysis approach, as how they may reduce the number of internal program quality metrics
on which the refactoring impact can be assayed. Thereafter, catalogs of software metrics for
which the proposed approach may not be applied due to the insufficient model information
have to be build. Formal definitions for the identified code duplication types within a class
hierarchy may be introduced in the future.

32

Consistency Maintenance
Another aspect addressed here is related to the consistency maintenance between the

refactored program code and other software artifacts. Research within conceptual modeling
reveals the possibility to integrate the refactoring process in the analysis development phase.

In order to cope with different variability types, a biological evolution-based model was
proposed. Specific refactorings were suggested to shift between ontogenic conceptual models,
while forward conceptual abstraction and conceptual specialization are advanced to achieve
phylogenic evolution between conceptual models.

Various aspects like the conceptual model and the transformations between variants as
refactoring, forward conceptual abstraction, and conceptual specialization are formalized.
The biological evolution processes identified when shifting between conceptual models are
formally defined. Finally, the three types of conceptual variability are modeled as ontogenic
and phylogenic processes.

Future work. The research within the conceptual modeling variability domain may be
guided by several directions. The effort required to switch between conceptual models may
be estimated and a model to assess the migration process between different variants based on
established criteria may be developed. The appraisal criteria may follow the two folded way
of quality assessment, as the internal quality and external quality for the studied variants.

Another direction is related to the refactoring application contribution within the switch-
ing process between different conceptual models. Subsequently, the external quality attributes
may be assessed, starting from transformations imposed by the applied refactorings.

A thoroughly study of the switching process between horizontal abstraction variants may
be addressed in the future too. The ontology-based conceptual modeling in order to achieve
the migration in the horizontal abstraction variability represents a new research field con-
nected to the refactoring process.

The Local Area Network Simulation Problem, the Data Structure Class Hierarchy Problem
and an extract from a Didactic Activity Management Problem are used as case studies to
emphasize different aspects related to the applied refactoring within our research.

33

Bibliography

[Bak95] B. Baker. On finding duplication and near-duplication in large software sys-
tems. In Proceeding of the Second Working Conference on Reverse Engineering
(WCRE’95), Toronto, Ontario, Canada, pages 86–95, 1995.

[Bec99] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
1999.

[Boe88] B.W. Boehm. A spiral model of software development and enhancement. IEEE
Computer, 21(5):61–72, 1988.

[CC90] E.J. Chikofsky and J.H. Cross. Reverse engineering and design recovery: a
taxonomy. IEEE Software, 7(1):13–17, 1990.

[CC05a] M.C. Chisăliţă-Creţu. Efecte ale refactorizării asupra structurii interne a
codului. ”Analele Facultăţii”, Seria Ştiinţe Economice, Universitatea Creştină
”Dimitrie Cantemir” Bucureşti, Facultatea de Ştiinţe Economice Cluj-Napoca,
ISSN:1584-5621, 13(1):214–230, 2005.

[CC05b] M.C. Chisăliţă-Creţu. General aspects of refactoring applicability to concep-
tual models. In Proceedings of the Symposium ”Colocviul Academic Clujean de
INFORMATICĂ”(CACI2005), pages 99–104, 2005.

[CC07] M.C. Chisăliţă-Creţu. Describing low level problems as patterns and solving
them via refactorings. ”Studii şi Cercetări Ştiinţifice”, Seria Matematică, ISSN:
1224-2519, 1(17):29–48, 2007.

[CC09a] M.C. Chisăliţă-Creţu. The entity refactoring set selection problem - practical
experiments for an evolutionary approach. In Proceedings of the World Congress
on Engineering and Computer Science (WCECS2009), October 20-22, 2009,
San Francisco, USA, pages 285–290. Newswood Limited, ISBN: 978-988-17012-
6-8, 2009.

[CC09b] M.C. Chisăliţă-Creţu. First results of an evolutionary approach for the en-
tity refactoring set selection problem. In Proceedings of the 4th International
Conference ”Interdisciplinarity in Engineering” (INTER-ENG 2009), November
12-13, 2009, Târgu Mureş, România, pages 303–308. ISSN: 1843-780x, 2009.

[CC09c] M.C. Chisăliţă-Creţu. A multi-objective approach for entity refactoring set
selection problem. In Proceedings of the 2nd International Conference on the
Applications of Digital Information and Web Technologies (ICADIWT 2009),
August 4-6, 2009, London, UK, pages 790–795. ISBN: 978-1-4244-4456-4, 2009.

[CC09d] M.C. Chisăliţă-Creţu. Search-based software entity refactoring - a new solu-
tion representation for the multi-objective evolutionary approach of the entity

34

set selection refactoring problem. In Proceedings of the International Scientific
and Professional Conference XXII. DidMatTech 2009, September 10-11, 2009,
Trnava, Slovakia, pages 36–41, 2009.

[CC09e] M.C. Chisăliţă-Creţu. Solution representation analysis for the evolution-
ary approach of the entity refactoring set selection problem. In Proceedings of
the 12th International Multiconference ”Information Society” (IS2009), Octo-
ber 12th-16th, 2009, Ljubljana, Slovenia, pages 269–272. Informacijska druz̆ba,
ISBN: 978-961-264-010-1, 2009.

[CC10a] M.C. Chisăliţă-Creţu. An evolutionary approach for the entity refactoring set
selection problem. Journal of Information Technology Review, ISSN: 0976-2922,
pages 107–118, 2010.

[CC10b] M.C. Chisăliţă-Creţu. Formalizing the refactoring impact on internal pro-
gram quality. In Proceedings of the Symposium ”Zilele Academice Clujene”
(ZAC2010), pages 86–91, 2010.

[CC10c] M.C. Chisăliţă-Creţu and A. Mihiş. A model for conceptual modeling evo-
lution. In The 7th International Conference on Applied Mathematics (ICAM
2010), September 1-4, 2010, Baia-Mare, România, 2010.

[CC10d] M.C. Chisăliţă-Creţu. The optimal refactoring selection problem - a multi-
objective evolutionary approach. In The 5th International Conference on virtual
Learning (ICVL 2010), October 29-31, 2010, Târgu Mureş, România, pages
410–417, 2010.

[CC10e] M.C. Chisăliţă-Creţu. A refactoring impact based approach for the internal
quality assessment. In The 7th International Conference on Applied Mathemat-
ics (ICAM 2010), September 1-4, 2010, Baia-Mare, România, 2010.

[CC10f] M.C. Chisăliţă-Creţu. The refactoring plan configuration. a formal model.
In The 5th International Conference on virtual Learning (ICVL 2010), October
29-31, 2010, Târgu Mureş, România, pages 418–424, 2010.

[CC11] M.C. Chisăliţă-Creţu. Advances in Computer Science and Engineering, chap-
ter The Entity Refactoring Set Selection Problem - A Solution Representation
Analysis. IN-TECH, accepted book chapter, 2011.

[CCcC06] M.C. Chisăliţă-Creţu and C.A. Şerban. Impact on design quality of refac-
torings on code via metrics. In Proceedings of the Symposium ”Zilele Academice
Clujene” (ZAC2006), pages 39–44, 2006.

[CCV09a] M.C. Chisăliţă-Creţu and A. Vescan. The multi-objective refactoring selec-
tion problem. Studia Universitatis Babes-Bolyai, Series Informatica, ISSN:2065-
9601, Special Issue KEPT-2009: Knowledge Engineering: Principles and Tech-
niques(July 2009):249–253, 2009.

[CCV09b] M.C. Chisăliţă-Creţu and A. Vescan. The multi-objective refactoring selec-
tion problem. In Proceedings of the 2nd Internaltional Conference Knowledge
Engineering: Principles and Techniques (KEPT2009), pages 291–298. Presa
Universitară Clujeană, 2009.

[CY79] L. Constantine and E. Yourdon. Structured Design: Fundamentals of a Disci-
pline of Computer Program and System Design. Prentice-Hall, 1979.

35

[DB04] B. Du Bois. Opportunities and challenges in deriving metric impacts from refac-
toring postconditions. In In Proceedings of the Fifth International Workshop on
Object Oriented Reengineering (WOOR2004), ECOOPworkshop, 2004.

[DBM03] B. Du Bois and T. Mens. Describing the impact of refactoring on internal
program quality. In In Proceedings of the International Workshop on Evolution
of Large-scale Industrial Software Applications (ELISA), ICSM-workshop, 2003.

[DDN00] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refactorings via change
metrics. In In Proceedings of OOPSLA 2000, ACM SIGPLAN Notices, pages
166–178, 2000.

[Deu89] L.P. Deutsch. Design reuse and frameworks in the smalltalk-80 system. Software
Reusability: Applications and Experience, II(1):57–72, 1989.

[Fow99] M. Fowler. Refactoring Improving the Design of Existing Code. Addison-Wesley,
1999.

[Fow04] M. Fowler. Refactoringmalapropism, 2004.

[FP97] N. Fenton and S. Pfleeger. Software Metrics: A Rigorous and Practical Ap-
proach. 2nd Edition, PWS Publishing Company, 1997.

[FS97] M. Fayad and D. Schmidt. Object-oriented application frameworks. Communi-
cations of the ACM, 40(10):32–38, 1997.

[GP95] D. Garlan and D. Perry. Introduction to the special issue on software architec-
ture. IEEE Transactions on Software Engineering, 21(4):269–274, 1995.

[IEE92] IEEE. Standard 1061-1992 for a Software Quality Metrics Methodology. New
York: Institute of Electrical and Electronics Engineers, 1992.

[IEE99] IEEE. Standard IEEE Std 1219-1999 on Software maintenance Volume 2. IEEE
Press, 1999.

[ISO91] ISO/IEC. 9126 Standard, Information technology. Software product evaluation.
Quality characteristics and guidelines for their use. Switzerland: International
Organization For Standardization, 1991.

[ISO99] ISO. Standard 14764 on Software Engineering. Software Maintenance. ISO/IEC,
1999.

[Joh93] J.H. Johnson. Identifying redundancy in source code using fingerprints. In Pro-
ceeding of the 1993 Conference of the Centre for Advanced Studies Conference
(CASCON’93), Toronto, Canada, pages 171–183, 1993.

[Kd05] Y. Kim and O.L. deWeck. Adaptive weighted-sum method for bi-objective op-
timization: Pareto front generation. Structural and Multidisciplinary Optimiza-
tion, 29(2):149–158, 2005.

[Ker04] J. Kerievsky. Refactoring to Patterns. Addison-Wesley Professional, 2004.

[KIAF02] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quantitative evaluation
of maintainability enhancement by refactoring. In Proceedings International
Conference on Software Maintenance, pages 576–585, 2002.

36

[KN01] G. G. Koni-N’Sapu. A scenario based approach for refactoring duplicated code
in object oriented systems. Master’s thesis, University of Bern, Diploma thesis,
2001.

[LR00] M.M. Lehman and J.F. Ramil. Towards a theory of software evolution and its
practical impact. In Invited Talk, Proceedings of International Symposium on
Principles of Software Evolution (ISPSE2000), pages 2–11. Press, 2000.

[Mar02] R. Marinescu. Measurement and Quality in Object-Oriented Design. PhD thesis,
”Politehnica” University of Timisoara, 2002.

[ML02] T. Mens and M. Lanza. A graph-based metamodel for object-oriented software
metrics. Electronic Notes in Theoretical Computer Science, 72(2):–, 2002.

[MT04] T. Mens and T. Tourwe. A survey of software refactoring. IEEE Transactions
on Software Engineering, 30(2):126–139, 2004.

[MV98] H. R. Maturana and F.J. Varela. The Tree of Knowledge: The Biological Roots
of Human Understanding. Shambhala Publiccations,Inc., Boston, MA., USA,
1998.

[MVEDJ05] T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens. Formalizing refactor-
ings with graph transformations. Journal of Software Maintenance and Evolu-
tion: Research and Practice, 17(4):247–276, 2005.

[Opd92] W.F. Opdyke. Refactoring Object-Oriented Frameworks, PhD thesis. Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign, 1992.

[Par79] D. Parnas. Designing software for ease of extension and contraction. IEEE
Transactions on Software Engineering, 5(2):128–128, 1979.

[Pig97] T.M. Pigoski. Practical Software Maintenance. Best Practices for Managing
Your Software Investment. John Wiley and Sons, 1997.

[Rob99] D.B. Roberts. Practical Analysis for Refactoring. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, 1999.

[Roy70] W.W. Royce. Managing the development of large software systems: concepts
and techniques. In Proc. IEEE WESTCON, IEEE Computer Society Press (Au-
gust 1970) Reprinted in Proc. International Conf. Software Engineering (ICSE)
1989, ACM Press, pages 328–338, 1970.

[Som96] I. Sommerville. Software Engineering. Addison-Wesley, fifth edition, 1996.

[Swa76] E.B Swanson. The dimensions of maintenance. In Proceedings of the 16th Inter-
national Conference on Software Engineering, IEEE Computer Society, pages
492–497, 1976.

[TK03] L. Tahvildari and K. Kontogiannis. A metric-based approach to enhance design
quality through meta-pattern transformations. In Proceeding of the European
Conference on Software Maintenance and Reengineering, pages 183–192. IEEE
Computer Society Press, 2003.

[Ver04] J. Verelst. The influence of the level of abstraction on the evolvability of con-
ceptual models of information systems. In Proceedings of the International Sym-
posium on Empirical Software Engineering (IIESE04), Los Angeles, IEEE CS
Press, pages 17–26, 2004.

37

