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Introduction

Problem statement

A strategic game can model the interactions of decision-makers. Real-world phenomena can

be modelled with strategic games.

The strategic game can be defined as a set of players (decision-makers), a set of actions for

each player, and for each player preferences over the set of action profiles (which in some cases

can be considered as the payoff functions).

The most important question in the case of the strategic games is how can a player decide

which action to choose form the set of the available actions. A chosen action profile wherewith

all players are satisfied is called an equilibrium of the game.

The most important equilibrium concept in non-cooperative Game Theory is the Nash equi-

librium [Nash, 1951]. Computing Nash equilibrium is a complex problem.

Some games can have several Nash equilibria, which make the players indecisive. Several

refinements are developed in order to solve this selection problem, but there are no effective

computational methods to detect these equilibria. This thesis proposes an evolutionary method

to detect the Nash refinements.

Nash equilibrium and its refinements detection can be a powerful concept if all players

are thinking rationally (a robotics example in [Istenes et al., 2011]). Behavioral game theory

proves that players can be affected by emotions, irrationality, etc. therefore the classical equi-

librium concepts can not be always a good choice.

Berge-Zhukovskii equilibrium is an alternative solution concept for non-cooperative games.

For the best of our known there is no other computational method to detect this equilibrium.

Returning to the players behavior, we developed new equilibria (called joint), which model

better real-world situations. We combine in different ways the standard non-cooperative equi-

librium concepts and we receive so new types of equilibria. We present an evolutionary method

to detect these new equilibria.

Thesis structure

The thesis is organized in seven chapters and a bibliography. Chapter 2 presents some related

work in the field of Evolutionary Computation, Multi-Objective Optimization and Game The-

ory. The third Chapter describes different equilibria types, the Nash refinements, the Berge-

Zhukovskii equilibrium, and a new concept: the joint equilibrium, which allows players to play

in different biases. Chapter 4 contains the evolutionary detection of the Nash equilibrium re-

finements based on the generative relations. Some case studies with real-world applications

are presented. Chapter 5 describes the evolutionary detection method of the Berge-Zhukovskii

equilibrium, and some numerical experiments. In Chapter 6 the detection method for the

new joint equilibrium is presented. Generative relations for Nash–Berge-Zhukovskii, Nash-

Aumann, Pareto-Berge-Zhukovskii, and Pareto-Aumann equilibria. The new joint equilibrium

allows us to define heterogenous players. Chapter 7 presents some conclusions and further



work.

Contributions

The main contributions of the thesis include:

1. generative relations of some refinements of Nash equilibrium;

2. evolutionary detection of Nash equilibrium refinements using proposed generative rela-

tions:

(a) Aumann (strong Nash) equilibrium;

(b) coalition proof Nash equilibrium;

(c) modified strong Nash equilibrium;

(d) strong Berge equilibrium;

(e) strong Berge Pareto equilibrium;

3. generative relation of Berge-Zhukovskii equilibrium (an alternative solution for non-

cooperative games);

evolutionary detection of Berge-Zhukovskii equilibrium;

4. new equilibria types based on the different rationality of the players:

(a) Nash–Berge-Zhukovskii equilibrium;

(b) Nash-Aumann equilibrium;

(c) Pareto-Berge-Zhukovskii equilibrium;

(d) Pareto-Aumann equilibrium;

generative relations for the new equilibria types;

evolutionary detection of these new equilibria.
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Game equilibria

Introduction

The actions and payoffs of all agents are common knowledge and agents are supposed to be-

have in a rational manner. The most important solution concept in non-cooperative game

theory is the game equilibrium. The most used equilibrium concept is Nash equilibrium

[Nash, 1951] which describes a steady-state situation in the game. The concept of Nash equi-

librium is based on the idea of stability against unilateral deviations.

When a game has several Nash equilibria it can appear a selection problem. Therefore sev-

eral refinements and generalizations of Nash equilibrium have been proposed [Osborne, 2004].

Aumann (1959) proposed the concept of strong Nash equilibrium. A strong Nash equilib-

rium is a game strategy from which no subset of players has a joint deviation that strictly

benefits all of them.

The Aumann (strong Nash) equilibrium represents a transition between players pursuing

only their own interests and cooperative games. This equilibrium emphasizes coalitions of

players and therefore could be a better approximation of the real world decision making.

The strong Berge equilibrium, proposed by Berge, is an other refinement of the Nash equi-

librium. This equilibrium is stable against deviations.

Other important refinements are the coalition proof equilibrium and modified strong Nash

equilibria.

Berge equilibrium generalizes the concept of Nash equilibrium.

An important solution concept is the Berge-Zhukovskii equilibrium. This equilibrium can

be an alternative solution for games which don’t have Nash equilibria, or for games, where

Nash ensures not the highest payoff for players.

The all described equilibria types are based on players rationality. In real-wold situations

the decision can be affected by emotions, irrationality. New combined, joint equilibria are

introduced to eliminate these factors.

Non-cooperative games: basic notions

A non-cooperative game can be described as a system of players, actions and payoffs. Each

player has some available actions, and for each action a corresponding payoff.

Mathematically, a finite strategic non-cooperative game is a system

G = (N,(Si ,ui ), i = 1, ...,n),

where:

• N represents a set of players, and n is the number of players;

• for each player i ∈ N, Si is the set of actions available,

S = S1 ×S2 × ...×Sn



is the set of all possible situations of the game.

Each s ∈ S is a strategy (or strategy profile) of the game;

• for each player i ∈ N, ui : S → R represents the payoff function of i.

We can describe the Nash equilibrium [Nash, 1951] as a state, such that no player can

change unilaterally her strategy to increase the payoff.

Let us denote by (si ,s∗−i
) the strategy profile obtained from s∗ by replacing the strategy of

player i with si :

(si ,s
∗
−i)= (s∗1 , ...,si , ....,s

∗
n ).

Definition A strategy profile s∗ ∈ S is a Nash equilibrium if the inequality

ui(si ,s
∗
−i )≥ ui(s

∗),

holds ∀i = 1, ...,n,∀si ∈ Si .

Refinements of Nash equilibrium

Several refinements of Nash equilibrium are considered.

Aumann (strong Nash) equilibrium

The Aumann (or strong Nash) equilibrium [Aumann, 1959] is a game strategy for which no

coalition of players has a joint deviation that improve the payoff of each member of the coali-

tion. More formally we have the next definition.

Let (s
I
,s∗

−I
) denotes the strategy profile in which i ∈ I chooses the individual strategy si ,

and each j ∈ N − I chooses s∗
j
.

Definition The strategy s∗ is an Aumann equilibrium if for each coalition I ⊆ N, I 6= φ the

inequality

ui(sI ,s∗
−I )≤ ui(s

∗),∀i ∈ I

holds.

Let us denote by SE(G) the set of Aumann (strong) equilibria of the game G and by NE(G)

the set of Nash equilibria in the G game. Thus we have:

SE(G)⊆ NE(G).

Remark If each deviating coalition is composed from a unique player the strong Nash equi-

librium reduces to the Nash equilibrium.

Remark SE does not always exists for all non-cooperative games.
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k-Aumann equilibrium

The k-Aumann equilibrium is a state in which no coalition of players with size at most k has a

joint deviation that improves the payoff of the members of the coalition.

Let us denote the k-Aumann equilibrium of the game G by k-SE(G), 1≤ k ≤ n.

Remark 1-Aumann equilibrium is equivalent to the Nash equilibrium, i.e.

1−SE(G)= NE(G).

Remark It is easy to establish the claim of inclusions:

n−SE(G) ⊆ (n−1)−SE(G) ⊆ ... ⊆ 1−SE(G)= NE(G).

Modified strong Nash equilibrium

In some cases the Aumann equilibrium concept can be to strong, therefore this can be mod-

ified using a weaker condition. The modified strong Nash equilibrium is introduced by Ray

[Ray, 1989] and Greenberg [Greenberg, 1987].

Let us consider a finite strategic game and the following notations: SI =
∏

i∈I Si and sI =

(si)i∈I .

The following definitions are necessary to introduce the modified strong Nash equilibrium:

Definition For I ∈ 2N −{;}, s∗ ∈ SN ,sI ∈ SI we say that sI is blocked by T ⊂ I given s∗ if there

exists a vector zT ∈ ST such that:

uT (zT ,sI−T ,s∗N−I )≥ uT (sI ,s∗N−I ).

Definition I is credible given s∗ if there is a sI ∈ SI ,s
I
6= s∗

I
, that is not blocked by any credible

T ⊂ I given s∗.

Definition A strategy profile s∗ ∈ SN is a modified strong Nash equilibrium if it is not blocked

by any credible coalition (given s∗).

Coalition proof Nash equilibrium

Bernheim [Bernheim et al., 1987] introduced the coalition proof Nash equilibrium. A coalition-

proof equilibrium is a correlated strategy from which no coalition has an improving and self-

enforcing deviation.

Definition Let s∗ ∈ S and let P be the set of the subsets. An internally consistent improve-

ment (ICI) of P upon s∗ is defined by induction on card(P) [Keiding, Peleg, 2002]:

• if card(P) = 1, then P = {i}, then si is an ICI upon s∗, if

ui(si ,s
∗
N−i)> ui(s

∗);
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• if card(P) > 1, then sP ∈ SP is an ICI of P upon s∗

(i) sP is an improvement of P upon s∗ :

ui(sP ,s∗N−P )> ui(s
∗),

and

(ii) if T ⊂ P and card(T) < card(S) then T has no ICI upon (s
P

,s∗
N−S

).

Definition A strategy profile s ∈ S is a coalition proof Nash equilibrium, if no P subcoalition

has an ICI upon s∗.

Remark The Aumann equilibrium is a subset of the coalition proof Nash equilibrium (CNE):

SE ⊆ CNE.

Remark For two person games the strategy s∗ ∈ S is a coalition proof Nash equilibrium, if

[Keiding, Peleg, 2002]:

• s∗ is a NE;

• there is no s ∈ S which is a NE such that ui(s) > ui(s∗) for i = 1,2;

Strong Berge equilibrium

Berge introduced the concept of the strong Berge equilibrium [Berge, 1957]. The strong Berge

equilibrium is stable against deviation of all the players except one of them. If a player chooses

her strategy in a strong Berge equilibrium, then she obliges all the other player to do so.

Definition A strategy profile s∗ ∈ S is a strong Berge equilibrium (SBE) of the game, if

u j(s
∗
i ,s

−i)≤ u j(s
∗),∀i ∈ N,∀ j ∈ N − i,∀s−i ∈ S−i .

Remark If the number of players is equal to 2, the strong Berge equilibrium and the Nash

equilibrium coincide.

Strong Berge Pareto equilibrium

Strong Berge Pareto equilibrium [Nessah et al., 2008] is a refinement of the strong Berge equi-

librium.

Definition A strategy profile s∗ ∈ S is Pareto efficient, when it does not exist a strategy s ∈ S,

such that

ui(s) ≥ ui(s
∗), i ∈ N,

with at least one strict inequality.
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Definition A strategy profile s∗ ∈ S is a strong Berge equilibrium (SBE) of the game, if

u j(s
∗
i ,s

−i)≤ u j(s
∗),∀i ∈ N,∀ j ∈ N − i,∀s−i ∈ S−i .

Definition A strategy profile s∗ ∈ S is a strong Berge and Pareto equilibrium of the game, if

s∗ is a strong Berge equilibrium, and it is also Pareto efficient.

Berge equilibrium

The Berge equilibrium is a more general equilibrium concept than the Nash equilibrium.

Abalo and Kostreva [Abalo and Kostreva, 2005] gave a general definition to the Berge equi-

librium.

Definition Let M be a finite set of indices. Denote by P = {Pt}, t ∈ M a partition of N and

R = {Rt}, t ∈ M be a set of subsets of N. A strategy profile s∗ ∈ S is an equilibrium strategy for

the partition P with respect to the set R, or simply a Berge equilibrium strategy, if and only if

the condition

upm (s∗)≥ upm (sRm
,s∗N−Rm

)

holds for each given m ∈ M, any pm ∈ Pm and sRm
∈ SRm

.

The payoff of each player pm from the class Pm does not decreases if one or more players

from the class Rm deviate from the equilibrium strategy s∗.

Berge-Zhukovskii equilibrium

The Berge-Zhukovskii equilibrium [Zhukovskii, 1994] can be a solution for games, which do

not have Nash equilibrium, or for games which have more than one Nash equilibrium.

In contrast to the Nash equilibrium, where the players are selfregarding, the Berge-Zhu-

kovskii equilibrium allows us to reach cooperative issues and therefore it is possible to deter-

mine cooperation in a non-cooperative framework.

The strategy s∗ is a Berge-Zhukovskii equilibrium, if at least one of the players of the coali-

tion N − {i} deviates from her equilibrium strategy, the payoff of the player i in the resulting

strategy profile would be at most equal to her payoff ui(s∗) in the equilibrium strategy.

Formally we can write:

Definition A strategy profile s∗ ∈ S is Berge-Zhukovskii equilibrium if the inequality

ui(s
∗)≥ ui(s

∗
i ,sN−i)

holds for each player i = 1, ...,n, and sN−i ∈ SN−i .

Remark The Berge-Zhukovskii is a particular case of the Berge equilibrium. Consider each

class Pi of the partition P consists from a player i and each set of Ri is the set N of players

except i. Therefore M = N, Pi = {i} and Ri = N − i,∀i ∈ N. In this case Definition becomes

Definition .
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k-Berge-Zhukovskii equilibrium

k-Berge-Zhukovskii equilibrium is a subset of the Berge-Zhukovskii equilibrium. In this case

the size of the coalition equal to k.

Definition A strategy profile s∗ ∈ S is a k-Berge-Zhukovskii equilibrium if the inequality

ui(s
∗)≥ ui(s

∗
N−K ,sK )

holds for each player i ∈ N, sK ∈ SK , K ⊆ N, card(K) = k.

ǫ-Berge equilibrium

ǫ-Nash equilibrium detection is described in [Barlo and Dalkiran, 2009].

ǫ-Berge-Zhukovskii can be defined in the following way:

Definition A strategy profile s∗ ∈ S is an ǫ-Berge-Zhukovskii equilibrium if the inequality

ui(s
∗)+ǫ≥ ui(s

∗
i ,sN−i)

holds for each player i = 1, ...,n, and sN−i ∈ SN−i .

The ǫ can be interpreted in several ways [Dumitrescu et al., 2009b]:

• penalization of players;

• noise of the game;

• payoff function approximation;
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Detecting refinements of Nash equilibrium

Generative relations

Generative relations for different equilibria types are presented.

In order to compute certain equilibria we would like to characterize these with a relation

on the strategy set.

This relation we can call the generative relation of the equilibrium.

Generative relations are an algebraic tool in order to detect several equilibria.

For the generative relations first we need a quality measure:

Q : S×S →N,

where S is the set of the strategy profiles.

Let s and s∗ be two strategy profiles, s,s∗ ∈ S.

In this case Q(s,s∗ ) measures the quality of strategy s with respect to the strategy s∗.

The quality Q is used to define a relation ≺Q :

s≤Q s∗, if and only if Q(s,s∗ )≤Q(s∗,s).

In [Lung, Dumitrescu, 2008] was introduced the first generative relation for the Nash equi-

librium.

The quality measures for the Nash refinements are the following:

• for the Aumann equilibrium:

a(s∗,s) = card[i ∈ I,φ 6= I ⊆ N,ui (sI ,s∗
−I )≥ ui(s

∗),si 6= s∗
−i];

• for the modified strong Nash equilibrium:

ma(s∗ ,s) = card[t ∈ T,T 6=φ,T ⊂ I,φ 6= I ⊆ N,ut(zt,sI−T ,s∗N−I )≥ ut(sI ,s∗N−I ),

sI 6= s∗I , zt ∈ ST ];

• for strong Berge equilibrium:

sb(s∗ ,s) = card[ j ∈ −i, i ∈ N,u j (s
∗
i ,s−i )≥ u j(s

∗),∀s−i ∈ S−i];

An evolutionary technique for equilibrium detection

Generative relations allow an evolutionary technique to be applied for equilibria detection.

Selection methods are based on generative relations.

Our goal is to find different equilibria types with evolutionary multi-objective optimization

algorithms based on non-domination.



The used method can be described as follows:

A population of game strategies is evolved. Every individual is encoded as a n-dimensional

vector, representing a strategy s ∈ S.

The initial population is generated randomly. At each step the actual population can be

considered as the approximation of the equilibrium.

The non-dominated sorting segregates the population into layers by first finding the non-

dominated solutions in the population, using the generative relations, and labels these points

as the first front. These points are removed and the non-dominated solutions in the remaining

population are then identified and removed.

This process continues until the whole population is classified into layers. The algorithm

updates the current archive by identifying all the non-dominated solutions in the union of the

old archive and current population. The layers are taken in turn until the maximum size of

the archive is reached (often the population size).

Strategy population at iteration t may be regarded as the current equilibrium approxima-

tion. Subsequent application of the such operators (like the simulated binary crossover (SBX)

[Deb and Beyer, 1995] and real polynomial mutation [Deb et al., 2000]) is guided by a specific

selection operator induced by the generative relation.

Selection for survival can be done by using a procedure based on the same selection opera-

tor or another one, also correlated to the generative relation.

Selection, recombination, and mutation is repeated until the maximum number of genera-

tion is reached.

This approach can be summarized in a technique called Relational Evolutionary Equilibria

Detection (REED) as described in Algorithm 1.

Algorithm 1 REED method
Set t= 0;
Randomly initialize a population P(0) of strategies;
while (not termination-condition) do

Binary tournament selection and recombination using the simulated binary crossover
(SBX) operator for P(t) →Q;
Mutation on Q using real polynomial mutation → P;
Compute the rank of each population member in P(t)∪P with respect to the generative
relation. Order by rank (P(t)∪P);
Rank based selection for survival → P (t + 1);

end while
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Evolutionary detection of Berge-Zhukovskii

equilibrium

Generative relation for Berge-Zhukovskii equilibrium

Consider two strategy profiles s and s∗ from S. Denote by b(s,s∗ ) the number of players who

lose by remaining to the initial strategy s, while the other players are allowed to play the

corresponding strategies from s∗ and at least one player switches from s to s∗.

We may express b(s,s∗ ) as:

b(s,s∗ )= card[i ∈ N,ui (s) < ui(si ,s
∗
N−i)].

Definition Let s,s∗ ∈ S. We say the strategy s is better than strategy s∗ with respect to

Berge-Zhukovskii equilibrium, and we write s≺B s∗, if and only if the inequality

b(s,s∗ )< b(s∗,s)

holds.

Definition The strategy profile s∗ ∈ S is a Berge-Zhukovskii non-dominated strategy, if and

only if there is no strategy s ∈ S,s 6= s∗ such that s dominates s∗ with respect to ≺B i.e.

s≺B s∗.

Denote by BNS the set of all non-dominated strategies with respect to the relation ≺B .

We may consider relation ≺B as a candidate for generative relation of the Berge-Zhukovskii

equilibrium . This means the set of the non-dominant strategies with respect to the relation

≺B equals the set of Berge-Zhukovskii equilibria.

We may consider the set of all Berge-Zhukovskii equilibrium strategies as representing the

Berge-Zhukovskii equilibrium (BE) of the game.

Evolutionary detection method

In Differential Evolution [Storn, Price, 1995] an initial population is generated randomly and

evaluated. The method enters a loop of generating offspring, evaluates offspring, and selects

individuals to create the next generation, until the maximum number of generation is reached.

Let us denote:

• U(0,k) - is a uniformly distributed number between 0 and k;

• pc - the crossover probability;

• F - the scaling factor;

• dim - the number of problem parameters;



The procedure for creating offspring is depicted in Algorithm

Algorithm 2 Procedure create offspring O[i] from parent P[i]
O[i] = P[i]
randomly select parents P[i1], P[i2], P[i3], where i1 6= i2 6= i3 6= i

n =U(0, dim);
for j = 0; j < dim and U(0,1)< pc; j = j+1 do

O[i][n]= P[i1][n]+F ∗ (P[i2][n]−P[i3][n])
n = (n+1) mod dim

end for

Differential Evolution technique is presented in Algorithm .

Algorithm 3 Procedure Differential Evolution
initialize population with random individuals
evaluate individuals
while (not termination-condition) do

for i = 0; i < popsize; i = i+1 do

create offspring O[i] from parent P[i]
evaluate offspring O[i]
if offspring O[i] is better than parent P[i] then

replace parent with offspring
else

keep parent in population
end if

end for

end while

Crowding Differential Evolution [Thomsen, 2004] extends the Differential Evolution (DE)

algorithm with a crowding scheme.

In our case the offspring replaces the most similar individual among the population if it is

better than the parents with respect to the Berge-Zhukovskii equilibrium (using the generative

relation for the Berge-Zhukovskii equilibrium).

Application

A classical form of the prisoner’s dilemma (PD) [Flood, 1958] is the following: two suspects are

arrested. The police has insufficient information to condemn them. They decide to separate

them and to make for each of them an offer: if one confesses and the other remains silent,

the betrayer will be free, and the other receives ten years sentence. If both remain silent, the

punishment for them will be two years. If both confess they receive six year prison.

The payoffs can be summarized in Table 1.

The payoffs represented by preferences are described in Table 2. The game has a pure Nash

equilibrium (Defect, Defect), which is not the best solution. The paradox is that both agents act

16



Table 1: The payoff functions of the two players in Prisoner’s Dilemma

Pl. 2

Cooperate (Stay silent) Defect (Confess)

Pl. 1 Cooperate (Stay silent) (2, 2) (10, 0)

Defect (Confess) (0, 10) (6, 6)

Table 2: The payoff functions (preferences) of the two players in Prisoner’s
Dilemma

Player 2

Cooperate Defect

Player 1 Cooperate (2, 2) (0, 3)

Defect (3, 0) (1, 1)

rationally, but producing an apparently irrational result.

The Berge-Zhukovskii equilibrium of the PD game is the (Cooperate, Cooperate). This equi-

librium is a better solution, because the payoff for each agent is higher in this case.

Let us consider the n-person version of the PD. The payoff function is expressed as:

ui(s) =















2
∑

j 6=i s j +1 if si = 0;

2
∑

j 6=i s j if si = 1.

Remark For n= 2 we get the two person version of the game.

The PD is a classical example that if all players choose a strategy rationally (they play

Nash) the result will not be the best for all of them while Berge-Zhukovskii equilibrium can be

a better choice.

CrDE is used to compute k-Berge-Zhukovskii and Nash equilibrium for seven instances

of the prisoner’s dilemma considering 2, 10, 20, 50 and 100 players respectively. Parameters

used for CrDE are presented in Table 3. Average and standard deviation of distances to the

Berge-Zhukovskii and Nash equilibria respectively over 30 runs are computed. Results are

presented in Table 4.

For the second part of the experiments NSGA-II is used for the same PD problem, consid-

ering 2, 10, 20, 50 and 100 players respectively. Parameters used for NSGA-II are presented

in Table 5. Average distances to the (n−1)-Berge-Zhukovskii and Nash equilibria respectively

over 30 runs are computed. Results are presented in Table 6. The detection method is based

on [Deb et al., 2000] and [Lung, Dumitrescu, 2008].
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Table 3: Parameter settings for CrDE used for the PD game

Parameter 2 10 20 50 100

Pop size 50

Max no evaluations 5×105 5×106

CF 50

F 0.1

Crossover rate 0.9

Table 4: Average and standard deviation of distances to (n−1)-Berge-Zhukovskii
(n is the number of players) and Nash equilibria over 30 runs using CrDE for
the PD game

No players Nash (n−1)-Berge

2 0±0 0±0

10 0±0 0±0

20 0±0 0±0

50 0±0 0±0

100 0±0 0±0

Table 5: Parameter settings for NSGAII used for the PD game

Parameter 2 10 20 50 100

Pop size 50

Max no evaluations 5×105 5×106

prob. of crossover 0.9

prob. of mutation 0.5
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Table 6: Average and standard deviation distances from the Nash equilibrium
strategy and from the (n− 1)-Berge-Zhukovskii (n is the number of players)
equilibrium strategy using NSGA-II in the PD game

No players Nash equilibrium (n−1)-Berge equilibrium

2 0±0 0±0

10 0±0 0±0

20 0±0 0±0

50 0±0 3.93±0.08

100 1.2±0.29 4.02±0.26
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Evolutionary detection of joint equilibria

We can do a step further and consider generalized games involving inhomogeneous players.

Each player may be biased towards a different equilibrium concept. This idea may be captured

by the concept of meta-rationality introduced in [Dumitrescu et al., 2009a].

Let us consider a game with n players. Each player i has a strategy set Si , and a certain

type of rationality, which is denoted by r i (for example r1 = Nash, r2 = Aumann, r3 = Pareto,

etc.).

A meta-strategy is a system

(s1|r1,s2|r2, ...,sn |rn),

where

(s1, ...,sn )

is a strategy profile, and

(r1, ...,rn )

describes the agents types of rationality.

The generalized game has a meta-strategy space, denoted by M,

M = M1 ×M2 × ...×Mn ,

where Mi represents the set of meta-strategies for each player i.

Generative relation of Nash–Berge-Zhukovskii equilibrium

Let us consider two strategies:

s= (s1,s2, ...,sn ),

and

y= (s∗1 ,s∗2 , ...,s∗n ).

The corresponding meta-strategies are denoted by M1 and M2,

M1 = (s1|r1,s2 |r2, ...,sn |rn),

and

M2 = (s∗1 |r1,s∗2 |r2, ...,s∗n |rn).

Let us denote by IN A the set of players which plays Nash (are Nash biased), and by IBZ

the set of players which plays Berge-Zhukovskii (are Berge-Zhukovskii biased):

IN A = {i ∈ {1, ...,n}|r i = Nash},

IBZ = { j ∈ {1, ...,n}|r j = Berge−Zhukovskii}.

We consider that IN A ∩ IBZ =;.



It is possible to introduce an operator P, P : M×M →N, defined as

P(M1,M2)= card{i ∈ IN A ,ui (s
∗)< ui(s

∗
−i ,si ),si 6= s∗i }+

+card[i ∈ IBZ ,ui(s
∗)< ui(s

∗
i ,sN−i)].

P(M1,M2) represents a meta-strategy quality measure with respect to a joint Nash–Berge-

Zhukovskii equilibrium.

Definition Let M1,M2 ∈ M. The meta-strategy M1 is more efficient than meta-strategy M2

with respect to the joint Nash–Berge-Zhukovskii meta-strategy, and we write M1 ≺NB M2, if

and only if:

P(M1,M2)< P(M2,M1).

We consider that Nash–Berge-Zhukovskii efficiency relation induces a new type of equilib-

rium concept called joint Nash–Berge-Zhukovskii equilibrium.

Remark If IN A =; then P(x, y)= b(x, y).

Remark Consider a two player game with r1 = r2 = Nash (both players are Nash biased). In

this case ≺NB reduces to the generative relation of the Nash equilibrium.

If r1 = r2 = Berge−Zhukovskii, meaning that both player are biased towards the strong

equilibrium, ≺NB becomes the generative relation of the Berge-Zhukovskii equilibrium.

Nash–Berge-Zhukovskii equilibrium expresses a transition between selfishness and altru-

ism.

Remark Generative relations for Nash-Aumann, Pareto-Aumann,Pareto–Berge-Zhukovskii

can be defined similarly.

Numerical experiments

Let us consider the two-person continuous game G1 [Nessah et al., 2007], having the following

payoff functions:

u1(x1,x2)=−x2
1 − x1 + x2,

u2(x1,x2)= 2x2
1 +3x1 − x2

2 −3x2,x1,x2 ∈ [−2,1].

Figure 1 represents the detected Nash, Pareto, Berge-Zhukovskii, Pareto-Berge-Zhukovskii

and Berge-Zhukovskii-Pareto equilibria. In the Figure 2 are depicted the Nash, Pareto, Berge-

Zhukovskii, Nash–Berge-Zhukovskii and Berge-Zhukovskii-Nash equilibria.

Berge-Zhukovskii-Pareto and Pareto-Berge-Zhukovskii equilibria originate in the Berge–

Zhukovskii equilibrium.
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Figure 1: Detected payoffs for Nash, Pareto, Berge-Zhukovskii, Pareto-Berge-Zhukovskii,
Berge-Zhukovskii-Pareto joint equilibria of game G1
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Figure 2: Detected payoffs for Nash, Pareto, Berge-Zhukovskii, Nash–Berge-Zhukovskii,
Berge-Zhukovskii-Nash joint equilibria of game G1

22



Conclusions

Summary of results

The thesis concerns on Computational Game Theory. Solving a game in standard Game Theory

means the equilibrium detection, which can be viewed as the most important task.

The most used equilibrium concept in non-cooperative Game Theory is the Nash equilib-

rium. Playing in Nash sense means that no player can deviate from the equilibrium strategy

in order to increase his/her payoff. Non-cooperative game examples proved that this equilib-

rium concept is not the best choice in all cases). A game can have several Nash equilibria,

which lead the players to a decision problem. Different refinements are introduced to solve

this problem (Aumann equilibrium, modified strong Nash equilibrium, coalition proof Nash

equilibrium, strong Berge equilibrium, etc.).

Berge-Zhukovskii equilibrium is an alternative solution concept to non-cooperative games.

This equilibrium type can be useful in games which have no Nash equilibrium, or have several

Nash equilibria, or the Nash equilibrium ensures not the highest payoff.

The literature is not to reach in computational equilibrium detection methods. This thesis

focuses on the evolutionary detection method of different equilibria types, based on evolution-

ary optimization.

In our approach equilibria are characterized by generative relations. Generative rela-

tions for Nash equilibrium refinements (Aumann, modified strong Nash, coalition proof Nash,

strong Berge, strong Berge Pareto equilibrium) are introduced. Generative relations for Berge-

Zhukovskii, k-Berge-Zhukovskii, ǫ-Berge-Zhukovskii equilibrium are described. It is proved

that some of these equilibria equal the set of the non-dominated strategies, and some equilib-

ria are subset of the non-dominated strategies.

New joint equilibria types are proposed. These new joint equilibria model games with

heterogenous players. For each player is allowed to play in different way. Generative relations

for these equilibria are also described.

An evolutionary technique, called Relational Evolutionary Equilibrium Detection (REED)

method is used. This method, based on non-domination approximates the certain equilibrium.

The main idea is that generative relation induces a specific nondomination concept for each

type of equilibrium.

Future work

We would like to apply the introduced joint equilibria in economical applications. Economical

models with large number of players are useful examples.

Future work will consider other evolutionary technique for detecting different equilibria

types in non-cooperative games. A comparison of the different methods is also necessary.

Future work will also focus on developing new equilibria types, which model the behavior

of real-world players. In this thesis we studied only two player games with two different



rationalities. A generalization with more than three players and more than two different

rationalities is an upcoming work.

Another research direction is the analysis of different equilibria types as a multi-objective

optimization tool. The first step of this idea is captured in [Dumitrescu et al. 2011b].
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