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Abstract 

The concept of “scheduling” is not new: Sun Tzu wrote about scheduling and strategy 
5000 years ago from a military perspective, the pyramids are over 3000 years old, 
transcontinental railways have been being built for some 200 years etc – none of these activities 
could have been accomplished without some form of scheduling, i.e. the understanding of 
activities and sequencing [Weaver2006].  

Today, scheduling is a form of decision making that plays an important role in many 
fields: from personal (designing an itinerary of personal development or setting up a daily 
agenda) to governmental decision making (setting up a strategy for economic growth or a 
strategy for assuring the quality of education), from cultural (organizing an exhibition or 
producing a movie) to economic decision making (introducing a new product on the market or 
relocating a factory). 

Scheduling is now studied by researchers in management, industrial engineering, 
operations research and computer science. Given the importance, and the complexity, of the 
scheduling problems this thesis tries to investigate if the paradigm of evolutionary computation, 
in essence a heuristic one, is a good candidate to better and/or faster solve some instance of 
various scheduling problems. 
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Introduction 

In recent years, scheduling research has had an increasing impact on practical problems, 
and a range of scheduling techniques have made their way into real-world application 
development. Constraint-based models now couple rich representational flexibility with highly 
scalable constraint management and search procedures. Similarly, mathematical programming 
tools are now capable of addressing problems of unprecedented scale, and meta-heuristics 
provide robust capabilities for schedule optimization. With these mounting successes and 
advances, it might be tempting to conclude that the chief technical hurdles underlying the 
scheduling problem have been overcome. However, such a conclusion (at best) presumes a rather 
narrow and specialized interpretation of scheduling, and (at worst) ignores much of the process 
and broader context of scheduling in most practical environments [Smith2005]. 

 
Summarizing the current state of the art several technological strengths can be identified 

[Smith2005]: 
• scalability – current scheduling techniques are capable of solving large problems (i.e., 

tens of thousands of activities, hundreds of resources) in reasonable time frames. 
• modeling flexibility – current techniques are capable of generating schedules under 

broad and diverse sets of temporal and resource capacity constraints. 
• optimization – research in applying various global, local and meta-heuristic based 

search frameworks to scheduling problems has produced a number of general 
approaches to schedule optimization, and increasing integration of AI-based search 
techniques with mathematical programming tools (e.g., linear, mixed-integer constraint 
solvers) is yielding quite powerful optimization capabilities. 

Despite the strengths of current techniques, the problems being addressed are generally 
NP hard and solved only approximately; there is considerable room for improvement in 
techniques for accommodating different classes of constraints and for optimizing under different 
sets of objective criteria [Smith2005]. 

 
The aim of this thesis is to investigate the use of evolutionary computation techniques in 

solving different classes of scheduling problems. In this respect, the first part of the thesis 
(chapters 1-3) presents a synthesis of some theoretical concepts from scheduling theory and 
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evolutionary computation while the second part (chapters 4-6) introduces some personal results 
obtained in applying evolutionary computation techniques to some class of scheduling problems.  

Chapter 1 introduces some basic notations (tasks, resources, objective functions) and 
concepts used in scheduling theory and a classification scheme used for codifying scheduling 
problems. Some aspects related to scheduling problems like communication delay and multi-
processor task, scheduling with limited processor availability, scheduling under resource 
constraints and multicriteria scheduling are also presented. 

Chapter 2 illustrates the complexity of scheduling problems. The polynomial reduction 
and the complexity hierarchy are also presented. 

Chapter 3 is dedicated to evolutionary computation techniques and underlies their 
working mechanisms. Some aspect related to the main elements (representation, fitness function, 
selection, crossover, mutation, parameters) that influence the performance of an evolutionary 
algorithm are presented. 

Chapter 4 presents a genetic algorithm for solving a uniform parallel machines 
scheduling problem. Uniform machines are special classes of resources in which machines have 
different speeds but the speed is constant and does not depend on tasks. 

Chapter 5 presents some results obtained by applying a hybrid genetic algorithm in order 
to find a solution of a permutation flow-shop scheduling problem. The objective of a permutation 
flow shop scheduling problem is to find a sequence for processing a set of jobs using a set of 
machines such that a given criterion is optimized, taking into account that each machine 
processes the jobs in the same order.  

Chapter 6 presents a video proxy-caching scheduling problem along with some results 
obtained for determining the coefficients of utility function which is at the core of the cache 
replacement mechanism.  

 
The main contributions of this thesis consist in: 

• a new genetic algorithm for the uniform parallel machines scheduling problem 
[Mihăilă&Mihăilă2008a]. The proposed algorithm not only obtains better results than 
other algorithms, but it also computes the result faster [Mihăilă&Mihăilă2008b]. 
• a new hybrid genetic algorithm for permutation flow shop scheduling problem 
[Mihăilă et.al.2008b]. The novelty of the proposed algorithm consists in using a 
combination of a random initialization procedure and an initialization procedure 
based on NEH construction heuristic, in defining a new crossover operator and in 
using a mutation operator defined as a combination between an operator based on 
NEH construction heuristic shift mutation. The results obtained by the proposed 
algorithm are comparable with the results obtained by other algorithms. 
• two new ways of defining the utility of the objects stored inside a video proxy-
cache and a new genetic algorithm used for determining the coefficients that appear 
in these two definitions with the aim of maximizing the byte hit rate 
[Mihăilă&Cobârzan2008]. The obtained results in terms of byte hit rate when the 
proposed algorithm with one of the utility function were used are similar or even 
better than those obtained by other metric [Cobârzan&Mihăilă2008]. 

 



 

 

Part A – Background 

1. Scheduling problems 

The aim of this chapter is to introduce the basic elements of a scheduling problem 
(tasks, resources and objective functions) and some aspects related to these 
elements. A classification scheme of scheduling problem is also presented. 
 

Scheduling is concerned with the allocation of scarce resources to activities with the 
objective of optimizing one or more performance measure [Leung2004].  

1.1. Deterministic scheduling problem 

Scheduling problems are characterized by three sets [Blazewicz2007]: set T= {T1, T2, …, 
Tn} of n tasks, set P = {P1, P2, …, Pm} of m processors or machines and set R = {R1, R2, …, Rs} 
of s types of additional resources. Scheduling, generally speaking, means to assign processors 
from P and (possibly) resources from R to tasks from T in order to complete all tasks under the 
imposed constraints.  

There are two general constraints in classical scheduling theory [Blazewicz2007]: each 
task is to be processed by at most one processor at a time (plus possibly specified amounts of 
additional resources) and each processor is capable of processing at most one task at a time (note 
that this constraint may be relaxed).  

The processors may be either parallel, i.e. performing the same functions, or dedicated 
i.e. specialized for the execution of certain tasks [Blazewicz2007]. Three types of parallel 
processors are distinguished depending on their speeds [Blazewicz2007]: identical (if all 
processors from set P have equal task processing speeds), uniform (if the processors differ in 
their speeds, but the speed bi of each processor is constant and does not depend on the task in T) 
and unrelated (if the speeds of the processors depend on the particular task processed). In case of 
dedicated processors there are three models of processing sets of tasks [Blazewicz2007]: flow 
shop, open shop and job shop.  

In general, task Tj ∈  T is characterized by the following data [Blazewicz2007]:  
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• vector of processing times pj = [p1j, p2j,…, pmj]T, where pij is the time needed by 
processor Pj to process Tj.  

• arrival time (or ready time) rj, which is the time at which task Tj is ready for 
processing. If the arrival times are the same for all tasks from T, then it is assumed that 
rj = 0 for all j. 

• due date dj, which specifies a time limit by which Tj should be completed; usually, 
penalty functions are defined in accordance with due dates. 

• deadline ∼dj, which is a "hard" real time limit by which Tj must be completed. 
• weight (priority) wj, which expresses the relative urgency of Tj. 
• resource request (if any). 
A schedule is called preemptive if each task may be preempted at any time and restarted 

later at no cost, perhaps on another processor. If preemption of all the tasks is not allowed we 
will call the schedule non-preemptive [Blazewicz2007]. 

In set T precedence constraints among tasks may be defined. Ti p  Tj means that the 
processing of Ti must be completed before Tj can be started. In other words, in set T a precedence 
relation p  is defined.  

 

Figure 1.1 An example of task dependency [Blazewicz2007] 

 

A schedule is an assignment of processors from set P (and possibly resources from set R) 
to tasks from set T in time such that the following conditions are satisfied [Blazewicz2007]:  

• at every moment each processor is assigned to at most one task and each task is 
processed by at most one processor, 

• task Tj is processed in time interval [rj, ∞), 
• all tasks are completed, 
• if tasks Ti, Tj are in relation Ti p  Tj, the processing of Tj, is not started before Ti is 

completed, 
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• in the case of non-preemptive scheduling no task is preempted (then the schedule is 
called non-preemptive), otherwise the number of preemptions of each task is finite 
(then the schedule is called preemptive), 

• resource constraints, if any, are satisfied. 
 
Schedules may be represented by Gantt charts as shown in Figure 1.2.  

 
Figure 1.2 An example of Gantt chart [Blazewicz2007] 

 

The following parameters can be calculated for each task Tj, j = 1, 2, …, n, processed in a 
given schedule [Blazewicz2007]:  

• completion time Cj,  
• flow time Fj = Cj - rj, being the sum of waiting and processing times;  
• lateness Lj = Cj - dj,;  
• tardiness Dj = max {Cj - dj, 0};  
• earliness Ej = max { dj - Cj, 0}.  

Completion-time of job I is the time at which processing of the last operation of the job is 
completed [Conway et. al. 1967]. Flow-time of job I is the total time that the job spends in the 
shop [Conway et. al. 1967].  

To evaluate schedules the following performance measures or optimality criteria 
[Blazewicz2007]:  

• schedule length (makespan)  
Cmax =  max{Cj} , 

• mean flow time  

∑
=

=
n

j
jF

n
F

1

1 , 

or mean weighted flow time  
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• maximum lateness  
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or other related criteria.  



Scheduling problems 
 

14 

A schedule for which the value of a particular performance measure γ  is at its minimum 
will be called optimal, and the corresponding value of γ  will be denoted by γ * 
[Blazewicz2007]. 

 
A scheduling problem Π  is defined as a set of parameters not all of which have 

numerical values, together with an optimality criterion. An instance I of problem Π  is obtained 
by specifying particular values for all the problem parameters [Blazewicz2007]. 

A scheduling algorithm is an algorithm which constructs a schedule for a given problem 
Π .  

The theory of scheduling is characterized by a virtually unlimited number of problem 
types [Brucker2007]. In order to cope with this variety of scheduling problems a notation 
composed of three fields α | β |γ , where introduced [Brucker2007]: 

• the first field α  describes the processor environment, 
• the second field β  describes task and resource characteristics, 

• the third field, γ , denotes an optimality criterion (performance measure). 

1.2. Communication delay and multi-processor task 

In recent years, with the rapid development of parallel and distributed systems, the 
constraint that imposes that each task may be executed on a single processor at a time may be 
relaxed. In this context the delays caused by the communication between tasks cannot be 
ignored. There are three models to describe the communication problem in the context of 
scheduling problems.  

In this respect, the task model from classical scheduling theory is enriched in order to 
incorporate the delays caused by communication. These delays may be handled implicitly or 
explicitly. In the first case, the communication times are already included in the task processing 
times. Usually, a task requires more than one processor at a time. Such a task is called multi-
processor task. Multi-processor tasks may specify they processor requirements either in terms of 
simultaneously required processors, or in terms of an explicit specification of a processor subset 
(or processor subsets) which is or are required for processing. In the first case we will speak 
about parallel processor requirement, whereas in the second we will speak about dedicated 
processor requirement [Blazewicz2007]. 

1.3. Scheduling with limited processor availability  

A machine system with limited availability is a set of machines (processors) which does 
not operate continuously; each machine is ready for processing only in certain time intervals of 
availability [Blazewicz2007]. We want to find a feasible schedule if one exists, such that all 
tasks can be processed within the given intervals of machine availability optimizing some 
performance criterion. 
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The term preemption is used as defined before. Often the notion of resumability is used 
instead of preemption. Under a resumable scenario a task may be interrupted when a machine 
becomes unavailable and resumed as the machine becomes available again without any penalty. 
Under the non-resumable scenario task preemption is generally forbidden. The most general 
scenario is semi-resumability [Blazewicz2007]. 

1.4. Scheduling under resource constraints 

The scheduling model consider next is more complicated than the previous ones, because 
any task, besides processors, may require for its processing some additional scarce resources.  

Resources, depending on their nature, may be classified into types and categories 
[Blazewicz2007]. The classification into types takes into account only the functions resources 
fulfill: resources of the same type are assumed to fulfill the same functions [Blazewicz2007]. 
The classification into categories will concern two points of view. First, we differentiate three 
categories of resources from the viewpoint of resource constraints. We will call a resource 
renewable, if only its total usage, i.e. temporary availability at every moment, is constrained. A 
resource is called non-renewable, if only its total consumption, i.e. integral availability up to any 
given moment, is constrained (in other words this resource once used by some task cannot be 
assigned to any other task). A resource is called doubly constrained, if both total usage and total 
consumption are constrained. Secondly, we distinguish two resource categories from the 
viewpoint of resource divisibility: discrete (i.e. discretely-divisible) and continuous (i.e. 
continuously-divisible) resources. In other words, by a discrete resource we will understand a 
resource which can be allocated to tasks in discrete amounts from a given finite set of possible 
allocations, which in particular may consist of one element only. Continuous resources, on the 
other hand, can be allocated in arbitrary, a priori unknown, amounts from given intervals 
[Blazewicz2007]. 

1.5. Multicriteria scheduling problem 

Many scheduling problems in the production or service domains involve several criteria. 
Examples of such problems are time/cost trade-off problems. As a general rule, taking several 
criteria into account enables to provide the decision maker with a more realistic solution. 

A multicriteria scheduling problem is a problem which consists of computing a Pareto 
optimal schedule for several conflicting criteria. This problem can be broken down into three 
sub-problems [T’kindt&Billaut2006]: 

• modelling of the problem, whose resolution leads to the determination of the nature of 
the scheduling problem under consideration as well as the definition of the criteria to 
be taken into account, 

• taking into account of criteria, whose resolution leads to indication of the resolution 
context and the way in which we want to take into account the criteria. The analyst 
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finalises a decision aid module for the multicriteria problem, also called a module for 
taking account of criteria, 

• scheduling, whose resolution leads us to find a solution of the problem. The analyst 
finalises an algorithm for solving the scheduling problem, also called a resolution 
module for the scheduling problem. 

At the phase of taking account of criteria, and following the information which it sets 
out, the analyst chooses a resolution approach for the scheduling problem and thus defines a 
scheduling problem. Taking account of the diversity of the methods of determining Pareto 
optima, the functions to optimise for the scheduling problem can take different forms. Each one 
translates a method of determining a Pareto optimum. The criteria do not change and they 
correspond to those defined during the phase of modelling of the problem 
[T’kindt&Billaut2006]. 

A multicriteria scheduling problem, after the modelling phase, can be noted in a general 
way by using the three-field notation, where the field γ  contains the list of criteria: 

kZZZ ,,,|| 21 Kβα . The scheduling problem produced by the phase of taking account of the 

criteria may equally be noted by means of the three fields, where only field γ  is spread 
[T’kindt&Billaut2006].



 

 

2. Complexity of scheduling problems 

The aim of this chapter is to show the complexity of the scheduling problems in 
general and to presents the problem hierarchy describing the relationships 
between various scheduling problems.  
 

Complexity theory is an important tool in scheduling research [Leung2004]. It provides a 
mathematical framework in which computational problems are studied so that they can be 
classified as “easy” or “hard” [Brucker2007]. This classification is useful in order to see if there 
is an efficient algorithm, especially in terms of time, for solving a particular problem. A problem 
belongs to a class of complexity, which informs us of the complexity of the "best algorithm" able 
to solve it. Hence, if a given problem is shown to belong to the class of "easy" problems then it 
means that we are able to exhibit a polynomial time algorithm to solve it. Usually this is good 
news but unfortunately this does not often happen for complex problems. Accordingly, if a 
problem belongs to the class of hard problems, it cannot be solved in polynomial time which, 
said differently, implies that for some instances the required CPU time to solve it becomes 
"exponential" [T’kindt&Billaut2006]. 

2.1. Problems, algorithms and complexity 

A problem Π is described by giving [Garey&Johnson1979]:  
• a general description of all its parameters, and  
• a statement of what properties the answer, or solution, is required to satisfy.  
An instance I of a problem Π is obtained by specifying particular values for all the 

problem parameters [Garey&Johnson1979]. With each instance there is a “size” associated. The 
size of an instance refers to the length of the data string necessary to specify the instance and it 
depends on the magnitude of the largest element [T’kindt&Billaut2006]. It is also referred to as 
the length (size) of the encoding scheme [Pinedo2008]. An encoding scheme maps problem 
instances into the strings describing them [Garey&Johnson1979].  



 Complexity of scheduling problems 
 

18 

Algorithms are general, step-by-step procedures for solving problems. An algorithm 
solves a problem Π if it finds a solution for any instance I of Π [Blazewicz et. al. 2007].  

In general, we are interested in finding the most "efficient" algorithm for solving a 
problem. In its broadest sense, the notion of efficiency involves all the various computing 
resources needed for executing an algorithm. However, by the "most efficient" algorithm one 
normally means the fastest. Since time requirements are often a dominant factor determining 
whether or not a particular algorithm is efficient enough to be useful in practice, this single 
resource will be considered in the context of algorithm complexity analysis 
[Garey&Johnson1979]. 

The running time of an algorithm is measured by the number of basic computational 
steps it takes [Leung2004]. In order to define a computational step, a standard model of 
computing is used, the Turing machine. Any standard text on computational complexity contains 
the assumptions of the Turing machine [Pinedo2008]. 

Formally, the time complexity function of an algorithm A solving a problem Π is a 
function that maps each input length of an instance I of Π into a maximal number of elementary 
steps (or time unit) of a computer, which are needed to solve an instance of that size by 
algorithm A [Blazewicz et. al. 2007]. This function is not well-defined until one fixes 
[Garey&Johnson1979]: 

• the encoding scheme to be used for determining input length (size) and  
• the computer or computer model to be used for determining execution time of basic 

steps. 
Different algorithms possess a wide variety of different time complexity functions, and 

the characterization of which of these are "efficient enough" and which are "too inefficient" will 
always depend on the situation at hand. However, computer scientists recognize a simple 
distinction that offers considerable insight into these matters. This is the distinction between 
polynomial time algorithms and exponential time algorithms [Garey&Johnson1979]. 

As it was aforementioned the efficiency of an algorithm is measured by an upper bound 
T(n) on the number of computational steps that the algorithm takes in order to solve an instance I 
of a problem Π [Brucker2007]. In other words the efficiency of an algorithm for a given problem 
is measured by the maximum (worst-case) number of computational steps needed to obtain an 
optimal solution as a function of the size of the instance [Pinedo2008]. 

In most cases it will be difficult to calculate the precise form of T. For these reasons the 
precise form of T is replaced by its asymptotic order. Therefore, it is said that T(n) ∈ O(g(n)) if 
there exist constants c > 0 and a nonnegative integer n0 such that T(n) ≤ cg(n) for all integers n ≥ 
n0 [Brucker2007].  

A polynomial time algorithm is defined to be one whose time complexity function is 
O(g(n)) for some polynomial function g, where n is used to denote the input length 
[Garey&Johnson1979]. Any algorithm whose time complexity function cannot be so bounded is 
called an exponential time algorithm (although it should be noted that this definition includes 
certain non-polynomial time complexity functions, like nlog n, which are not normally regarded as 
exponential functions) [Garey&Johnson1979]. 
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The distinction between these two types of algorithms has particular significance when 
considering the solution of large problem instances. There is wide agreement that a problem has 
not been "well-solved" until a polynomial time algorithm is known for it. Hence, a problem is 
called intractable if it is so hard that no polynomial time algorithm can possibly solve it 
[Garey&Johnson1979].  

This definition of "intractable" provides a theoretical framework of considerable 
generality and power. The intractability of a problem turns out to be essentially independent of 
the particular encoding scheme and computer model used for determining time complexity 
[Garey&Johnson1979] if “reasonable” encoding scheme and “reasonable” computer model are 
used. 

A “reasonable” encoding scheme is one which satisfies the following two conditions: 
• the encoding of an instance I should be concise and not “padded" with unnecessary 

information or symbols, and  
• numbers occurring in I should be represented in binary (or decimal, or octal, or in any 

fixed base other than 1), 
while a “reasonable” computer model is one in which there is a polynomial bound on the amount 
of work that can be done in a single unit of time (thus, for example, a model having the 
capability of performing arbitrarily many operations in parallel would not be considered 
"reasonable," and indeed no existing (or planned) computer has this capability.) 
[Garey&Johnson1979]. 

The definition of intractability allowed to distinguish between two different causes. The 
first, which is the one we usually have in mind, is that the problem is so difficult that an 
exponential amount of time is needed to discover a solution. The second is that the solution itself 
is required to be so extensive that it cannot be described with an expression having length 
bounded by a polynomial function of the input length [Garey&Johnson1979]. Next, the attention 
will be on the first type of intractability (only problems for which the solution length is bounded 
by a polynomial function of the input length will be considered). 

2.2. Polynomial reduction 

As theoreticians continue to seek more powerful methods for proving problems 
intractable, parallel efforts focus on learning more about the ways in which various problems are 
interrelated with respect to their difficulty. The principal technique used for demonstrating that 
two problems are related is that of "reducing" one to the other, by giving a constructive 
transformation that maps any instance of the first problem into an equivalent instance of the 
second. Such a transformation provides the means for converting any algorithm that solves the 
second problem into a corresponding algorithm for solving the first problem 
[Garey&Johnson1979]. 

It is said that problem P reduces to problem P’ if for any instance of P an equivalent 
instance of P’ can be constructed. In complexity theory usually a more stringent notion is used. 
Problem P polynomially reduces to problem P’ if a polynomial time algorithm for P’ implies a 
polynomial time algorithm for P. Polynomial reducibility of P to P’ is denoted by P ∝  P’. If it is 
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known that if there does not exist a polynomial time algorithm for problem P, then there does not 
exist a polynomial time algorithm for problem P’ either [Pinedo2008]. 

The notion of polynomial reduction is central to the theory of NP-hardness. The theory of 
NP-hardness applies to decision problems only [Leung2004]. A decision problem is a problem 
for which the answer is “yes” or “no”.  Since almost all of the scheduling problems are 
optimization problems, it seems that the theory of NP-hardness is of little use in scheduling 
theory. But, all optimization (maximization or minimization) problems can be converted into 
corresponding decision problems by providing an additional parameter ω , and simply asking 
whether there is a feasible solution such that the cost of the solution is less or equal (or greater or 
equal for maximization problems) than ω [Leung 2004].  

A problem is called polynomially solvable if there exists a polynomial p such that T(n) ∈ 
O(p(n)) where n is the input length with respect to a “reasonable” encoding scheme, i.e. if there 
is a k such that T(n) ∈ O(nk). If for a problem T(n) is polynomial with respect to unary encoding 
then the problem is called pseudo-polynomial [Brucker2007]. 

The class of all decision problems which are polynomially solvable is denoted by P 
[Brucker 2007]. NP refers to the class of decision problems which have “succinct” certificates 
that can be verified in polynomial time. “Succinct” certificates are those whose size is bounded 
by a polynomial function of the size of the input [Leung2004]. 

A decision problem Q is said to be NP-complete [Leung2004] if: 
• Q is in the NP-class and 
• All problems in the NP-class are reducible to Q. 
A problem is said to be NP-hard if it satisfies only the second condition from the above 

definition [Leung2004]. Not all problems within the NP-hard class are equally difficult. Some 
problems are more difficult than others. For example, it may be that a problem can be solved in 
polynomial time as a function of the size of the problem in unary encoding, while it cannot be 
solved in polynomial time as a function of the size of the problem in binary encoding. For other 
problems there may not exist polynomial time algorithms under either unary or binary encoding. 
The first class of problems are not as hard as the second class of problems. The problems in this 
first class are usually referred to as NP-hard in the ordinary sense or simply NP-hard. The 
algorithms for this class of problems are called pseudo-polynomial. The second class of 
problems are usually referred to as strongly NP-hard [Pinedo2008]. 

To show a problem to be NP-complete, one needs to show that all problems in the NP-
class are reducible to it. Since there are infinite number of problems in NP-class, it is not clear 
how one can prove any problem to be NP-complete. Fortunately, Cook [Cook1971] gave a proof 
that satisfiability problem is NP-complete, by giving a generic reduction from Turing machines 
to satisfiability [Leung2004]. From satisfiability problem other problems can be shown to be NP-
complete by reducing it to the target problems. Because reducibility is transitive this is equal to 
showing that all problems in the NP-class are reducible to the target problems. Starting from 
satisfiability, Karp [Karp1972] showed a large number of combinatorial problems to be NP-
complete [Leung2004]. 

Satisfiability problem is defined as follows: given a set of variables and a collection of 
clauses defined over the variables, is there an assignment of values to the variables for which 
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each one of the clauses is true? [Pinedo2008]. The problem in which each clause contains 
exactly 3 literals is called the 3-satisfiability problem (3-SAT) [Brucker2007]. 

The diagram of Figure 2.1 shows some basic polynomial transformations between some 
problems. An arc from P to Q in Figure 2.1 indicates that P ∝ Q. Because all problems in Figure 
2.1 belong to NP all these problem are NP-complete [Brucker2007]. 

 

Figure 2.1 Basic polynomial transformations [Brucker2007]. 
 

The problems of partition (PART), Hamiltonian circuit (HC) and clique (CLICUE) are 
very important for scheduling theory because problems of which the complexity is established 
through a reduction from partition typically allow for pseudo-polynomial time algorithms and 
are therefore NP-hard in the ordinary sense. NP-hard problems of which the complexity is 
established via a reduction from satisfiability, 3-partition, hamiltonian circuit or clique are 
strongly NP-hard [Pinedo2008]. 

2.3. Complexity hierarchy 

To calculate the complexity of scheduling problems, a certain amount of traditional 
results exist in the literature. These results show the links between different single criterion 
deterministic scheduling problems. If a scheduling problem reduces to another scheduling 
problem, an algorithm for one scheduling problem can be applied to another scheduling problem 
as well [T’kindt&Billaut2006]. 

A considerable effort has been made to establish a problem hierarchy describing the 
relationships between the hundreds of scheduling problems. In the comparisons between the 
complexities of the different scheduling problems it is of interest to know how a change in a 
single element in the classification of a problem affects its complexity. In Figure 2.2 to 2.4 a 
number of graphs are exhibited that help determine the complexity hierarchy of deterministic 
scheduling problems [Pinedo2008]. These graphs illustrates polynomial reductions between 



 Complexity of scheduling problems 
 

22 

scheduling problems. The vertices characterize the problems and where there is an arc between a 
vertex A and vertex B if A ∝ B [T’kindt&Billaut2006].  

Such graphs exist for types of problems (figure 2.2), types of constraints (figure 2.3) and 
criteria (figure 2.4) [T’kindt&Billaut2006]:  

• in figure 2.2, the presence of an arc from A towards B means that a polynomial 
reduction exists from an A|β|γ problem towards the corresponding B|β|γ  problem.  

• in figure 2.3, the presence of an arc from A towards B means that a polynomial 
reduction exists from the α|A|γ problem towards the corresponding α|B|γ problem.  

• in figure 2.4 the presence of an arc from A towards B means that a polynomial 
reduction exists from the a α|β|A problem towards the corresponding α|β|B problem. 

 

 
 

Figure 2.2 Reduction graph for processor characteristics [Blazewicz et.al. 2007] 
 

 
 

Figure 2.3 Reduction graph for task and resource characteristics [Blazewicz et.al. 2007] 
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Figure 2.4 Reduction graph for optimality criteria [Blazewicz et.al. 2007] 
 
 

The reduction graphs presented are usable only when we already know the complexity of 
certain scheduling problems. There has been made a considerable effort for determining the 
complexity results (polynomially solvable, pseudo-polynomially solvable and NP-hard) of 
several scheduling problems [Brucker2007]. 

 



 

 

3. Evolutionary computation 

The aim of this chapter is to give an overview of the basic elements of an 
evolutionary algorithm (representation, fitness function, selection, crossover, 
mutation and parameters) and to present some representation of feasible 
schedules. 
 

Scheduling problems are optimization problems. When we address a scheduling problem, 
we must always look for its complexity, since this determines the nature of the algorithm to 
implement. If the problem under consideration belongs to the class P , we know that an exact 
polynomial algorithm exists to solve it. In this case it is convenient to use or to perfect such an 
algorithm. By contrast, if the problem is NP-hard, two alternatives are possible. The first is to 
propose an approximated algorithm, therefore an heuristic one, which calculates in polynomial 
time a solution which is as close as possible to the optimal solution. The second is to propose an 
algorithm which calculates the optimal solution of the problem, but for which the maximal 
complexity is exponential. In this case, the challenge is to design an algorithm which can solve 
problems of the largest possible size [T’kindt&Billaut2006].  

In this thesis the first alternative is addressed by using evolutionary computation 
techniques in order to propose approximation algorithm for scheduling problems. 

3.1. Overview of evolutionary algorithms 

Evolutionary computation (EC) refers to computer-based problem solving systems that 
use computational models of evolutionary processes, such as natural selection, survival of the 
fittest and reproduction, as the fundamental components of such computational systems 
[Engelbrecht2002]. 

Evolution via natural selection of a randomly chosen population of individuals can be 
thought of as a search through the space of possible chromosome values. In that sense, an 
evolutionary algorithm (EA) is a stochastic search for an optimal solution to a given problem 
[Engelbrecht2002].  

Figure 3.1 is an outline for a simple evolutionary algorithm [Ahn2006].  
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Step 1. Initialization 
Generate initial population P at random or with prior knowledge 

Step 2. Fitness evaluation 
Evaluate the fitness for all individuals in P 

Step 3. Selection 
Select a set of promising candidates S from P 

Step 4. Reproduction 
Step 4.1. Crossover (optional) 

Apply crossover to the mating pool S for generating a set of offspring O 
Step 4.2. Mutation (probabilistic) 

Apply mutation to the offspring set O for obtaining its perturbed set O’ 
Step 5. Replacement 

Replace the current population P  
Step 6. Termination 

If the termination criteria are not met, go to Step 2 
 

Figure 3.1 Pseudo-code for simple evolutionary algorithm 
 

This simple evolutionary algorithm is more complex than it seems at first glance. There 
are five important decisions that factor into the design of the algorithm [Ashlock2006]: What 
data structure will you use? What fitness function will you use? What reproduction (crossover 
and mutation) operators will you use? How will you select parents from the population, and how 
will you insert children into the population? What termination condition will end your 
algorithm?  

There are different EC paradigms [Engelbrecht2002]: Genetic algorithms (GAs), 
Evolutionary programming (EP), Evolution strategies (ESs), Genetic programming (GP), 
Differential evolution (DE), Cultural evolution (CE), Co-evolution (CoE). Further we will refer 
only to Genetic algorithms (GAs), Evolutionary programming (EP) and Evolution strategies 
(ESs). 
 
Representation 

As the structure of a solution varies from problem to problem, a solution of a particular 
problem can be represented in a number of ways. Usually, a search method is most efficient in 
dealing with a particular representation and is not so efficient in dealing with other 
representations. Thus, the choice of an efficient representation scheme depends not only on the 
underlying problem but also on the chosen search method. The efficiency and complexity of a 
search algorithm largely depends on how the solutions have been represented and how suitable 
the representation is in the context of the underlying search operators. In some cases, a difficult 
problem can be made simpler by suitably choosing a representation that works efficiently with a 
particular algorithm [DeJong1997]. 
 
Initial population 

Evolutionary algorithms are stochastic, population-based search algorithms. Each EA 
therefore maintains a population of candidate solutions. The first step in applying an EA to solve 
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an optimization problem is to generate an initial population. The standard way of generating an 
initial population is to assign a random value from the allowed domain to each of the genes of 
each chromosome. The goal of random selection is to ensure that the initial population is a 
uniform representation of the entire search space. If regions of the search space are not covered 
by the initial population, chances are that those parts will be neglected by the search process. The 
size of the initial population has consequences in terms of computational complexity and 
exploration abilities [Engelbrecht2002]. 
 
Fitness function 

In the Darwinian model of evolution, individuals with the best characteristics have the 
best chance to survive and to reproduce. In order to determine the ability of an individual of an 
EA to survive, a mathematical function, called fitness function, is used to quantify how good the 
solution represented by a chromosome is. Fitness function has an important role in an 
evolutionary algorithm because the evolutionary operators usually make use of the fitness 
evaluation of chromosomes [Engelbrecht2002]. 
 
Selection 

Selection is one of the main operators used in evolutionary algorithms. The primary 
objective of the selection operator is to emphasize better solutions in a population. This operator 
does not create any new solution, instead it selects relatively good solutions from a population 
and deletes the remaining, not-so-good, solutions [DeJong1997]. The identification of good or 
bad solutions in a population is usually accomplished according to a solution’s fitness. The 
essential idea is that a solution having a better fitness must have a higher probability of selection. 
However, selection operators differ in the way the copies are assigned to better solutions. Some 
operators sort the population according to fitness and deterministically choose the best few 
solutions, whereas some operators assign a probability of selection to each solution according to 
fitness and make a copy using that probability distribution. [DeJong1997]. 

There exist a various selection operators like proportionate selection, tournament 
selection, ranking selection, etc. Selection operators are characterized by their selective pressure, 
also referred to as the takeover time, which relates to the time it requires to produce a uniform 
population. It is defined as the speed at which the best solution will occupy the entire population 
by repeated application of the selection operator alone. An operator with a high selective 
pressure decreases diversity in the population more rapidly than operators with a low selective 
pressure, which may lead to premature convergence to suboptimal solutions. A high selective 
pressure limits the exploration abilities of the population [Engelbrecht2002]. 
 
Reproduction (crossover and mutation) 

Reproduction is the process of producing offspring from selected parents by applying 
crossover and/or mutation operators.  

Crossover is the process of creating one or more new individuals through the 
combination of genetic material randomly selected from two or more parents. If selection 
focuses on the most-fit individuals, the selection pressure may cause premature convergence due 
to reduced diversity of the new populations [Engelbrecht2002]. 
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Mutation is the process of randomly changing the values of genes in a chromosome. The 
main objective of mutation is to introduce new genetic material into the population, thereby 
increasing genetic diversity. [Engelbrecht2002]. 
 
Stopping criteria 

The evolutionary operators are iteratively applied in an EA until a stopping condition is 
satisfied. The simplest stopping condition is to limit the number of generations that the EA is 
allowed to execute, or alternatively, a limit is placed on the number of fitness function 
evaluations. This limit should not be too small, otherwise the EA will not have sufficient time to 
explore the search space [Engelbrecht2002]. 

In addition to a limit on execution time, a convergence criterion is usually used to detect 
if the population has converged. Convergence is loosely defined as the event when the 
population becomes stagnant. In other words, when there is no genotypic or phenotypic change 
in the population [Engelbrecht2002]: 

3.2. Classification of parameter control techniques 

The issue of setting the values of various parameters of an evolutionary algorithm (EA) is 
crucial for good performance. In classifying parameter control techniques of an evolutionary 
algorithm, many aspects can be taken into account [Siarry&Michalewicz2008]: 

• What is changed (e.g., representation, evaluation function, operators, selection process, 
mutation rate, population size, and so on)? 

• How the change is made (i.e., deterministic heuristic, feedback-based heuristic, or self-
adaptive)? 

• The evidence upon which the change is carried out (e.g., monitoring performance of 
operators, diversity of the population, and so on)? 

To classify parameter control techniques from the perspective of what component or 
parameter is changed [Siarry&Michalewicz2008], it is necessary to agree on a list of all major 
components of an evolutionary algorithm, which is a difficult task in itself: representation of 
individuals, evaluation function, variation operators and their probabilities, selection operator 
(parent selection or mating selection), replacement operator (survival selection or environmental 
selection), population (size, topology, etc.). 

Methods for changing the value of a parameter (i.e., the “how-aspect”) can be classified 
into [Siarry&Michalewicz2008]: parameter tuning and parameter control. By parameter tuning 
we mean the commonly practiced approach that amounts to finding good values for the 
parameters before the run of the algorithm and then running the algorithm using these values, 
which remain fixed during the run. Parameter control forms an alternative, as it amounts to 
starting a run with initial parameter values that are changed during the run. We can further 
classify parameter control into one of the three following categories [Siarry&Michalewicz2008]: 
deterministic, adaptive and self-adaptive. This terminology leads to the taxonomy illustrated in 
Figure 3.1. 
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Figure 3.1 Global taxonomy of parameter setting in EAs [Siarry&Michalewicz2008] 

 

3.3. Evolutionary computation vs. classical optimization 

While classical optimization algorithms have been shown to be very successful (and 
more efficient than EAs) in linear, quadratic, strongly convex, unimodal and other specialized 
problems, EAs have been shown to be more efficient for discontinuous, non-differentiable, 
multimodal and noisy problems.EC and classical optimization (CO) differ mainly in the search 
process and information about the search space used to guide the search process 
[Engelbrecht2002]: 

• The search process: CO uses deterministic rules to move from one point in the search 
space to the next point. EC, on the other hand, uses probabilistic transition rules. Also, 
EC applies a parallel search of the search space, while CO uses a sequential search. An 
EA search starts from a diverse set of initial points, which allows parallel search of a 
large area of the search space. CO starts from one point, successively adjusting this 
point to move toward the optimum. 

• Search surface information: CO uses derivative information, usually first order or 
second-order, of the search space to guide the path to the optimum. EC, on the other 
hand, uses no derivative information. The fitness values of individuals are used to 
guide the search.  

 
According to the no-free-lunch (NFL) theorem [Wolpert&Macready 1996]. there cannot 

exist any algorithm for solving all (e.g. optimization) problems that is generally (on average) 
superior to any competitor, the question of whether evolutionary algorithms (EAs) are 
inferior/superior to any alternative approach is senseless. What could be claimed solely is that 
EAs behave better than other methods with respect to solving a specific class of problems—with 
the consequence that they behave worse for other problem classes [DeJong1997, Baeck. et. al 
2000].



 

 

Part B - Contributions 

4. Uniform parallel machines scheduling problem 

The aim of this chapter is to present a new genetic algorithm for the uniform 
parallel machines scheduling problem. The proposed algorithm not only obtains 
better results than other algorithm it also computes the result faster. 
 

Uniform parallel machines are a special class of resources [Blazewicz et. al. 2007] in 
which machines have different speeds but the speed is constant and does not depends on tasks. 
Because the problem was proven to be NP-hard [Garey&Johnson1979] we propose a new 
genetic algorithm (GASP) in order to find a solution of this problem [Mihăilă&Mihăilă2008a]. 
We report some results and the performance of the presented approach are compared with other 
optimization techniques. Empirical results indicate that GASP is more efficient 
[Mihăilă&Mihăilă2008b]. 

4.1. Introduction 

Scheduling is known to be NP-hard, therefore the use of heuristics is the de-facto 
approach in order to cope in practice with its difficulty. Beside heuristic approaches like local 
search [Ritchie&Levine2003], simulated annealing [Abraham et. al. 2000] 
[Yarkhan&Dongarra2002], tabu search [Abraham et. al. 2000] and genetic algorithms [Abraham 
et. al. 2000][Zomaya&The2001] were also used for scheduling problems. Ritchie and Levine 
[Ritchie&Levine2004] combined an ant colony optimization algorithm with a tabu search 
algorithm for the problem while Ye et al. [Guangchang et. al. 2006] formulated a multi-objective 
optimization approach to simultaneously optimize the completion time and the total execution 
cost. Other approaches for the problem include particle swarm optimization [Abraham et. al. 
2006], fuzzy based scheduling [Kumar et. al. 2004] and economic-based approaches [Buyya et. 
al. 2000].  
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4.2. Uniform parallel machines scheduling problem 

Formally, our scheduling problem, can be described as follows: n independent tasks T = 
{T1, T2, …, Tn} must be allocated to m uniform parallel machines M = {M1, M2, …, Mm} 
considering the objective of minimizing the completion time and utilizing the resources 
effectively. The speed of each machine is expressed in number of cycles per unit time, and the 
length of each task in number of cycles. Each task Ti has processing requirement Pi cycles and 
machines Mk has speed of Sk cycles/second. Each task Ti has to be processed on machine Mk, 
until completion [Grosan et. al. 2007].  

The objective of our scheduling problem is to minimize makespan of the obtained 
schedule.  

4.3. Genetic algorithm for scheduling problem 

The algorithm starts with a population of randomly generated chromosomes (potentially 
solutions). In order to generate a new population we apply the following genetic operators 
[Baeck et. al. 2000]: binary tournament selection, for parent selection, and one-point crossover 
and gene mutation for generating new offspring chromosomes that will form a new population. 
The evolution process is similar to the evolution scheme of a standard genetic algorithm. We 
additionally used an elitism selection. 

The solution to the scheduling problem is represented in the evolutionary algorithm as a 
string (chromosome) of length equal to the number of tasks. The value corresponding to each 
position i in the string represents the machine to which task i was allocated.  

If we consider the case of 13 tasks and 3 machines then a chromosome of the task 
allocation can be represented as follows: 

 

 
 

The corresponding Gantt chart of the encoded scheduling is: 
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4.4. Experimental results 

In order to test our algorithm (GASP) we have conducted several experiments using four 
test instances and we have compared the obtained results with other optimization techniques: 
Genetic Algorithm (GA), Simulated Annealing (SA), Particle Swarm Optimization (PSO), Ant 
Colony Optimization (ACO) and Multi-Objective Evolutionary Algorithm (MOEA). 

Each experiment was repeated 10 times with different random seeds and each run was 
conducted with the following parameter settings: population size: 20; number of iterations: 50 * 
m * n; crossover probability: 0.45 (for instance 1) and 0.18 (for instance 2, 3, 4 and 5); mutation 
probability: 0.35 (for instance 1) and 0.02 (for instances 2, 3, 4 and 5). 

The average makespans and the standard deviation reported for 10 trials are illustrated in 
Table 4.1. 

Table 4.1. Average makespan and standard deviation. 

Instance Optimal result Average makespan Standard deviation 

1 46 46 0 
2 85.5279 85.5431 0.009 
3 41.5788 41.7395 0.0856 
4 35.1303 35.3785 0.0477 
5 59.1658 59.3041 0.0461 

 
Figure 4.1 illustrates, for instances 1, 2, 3, 4 and 5, the optimum, the best and average 

results (makespans) obtained by GASP.  
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Figure 4.1. Best and average results obtained by GASP for instances 1, 2, 3, 4 and 5. 

 
We compared the results obtained by our Evolutionary Algorithm for Scheduling 

Problems (GASP) with other techniques used for scheduling optimization: Genetic algorithm 
(GA), Simulated Annealing (SA), Particle Swarm Optimization (PSO) and Ant Colony 
Optimization (ACO).  
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The average makespan values [Abraham et. al. 2008] and standard deviations reported 
for 10 trials are illustrated in Table 4.2, where am stands for average makespan and sd for 
standard deviation (for PSO instance 2 we consider that there is a typing error). The results 
obtained by considered algorithm for comparison were taken from [Abraham et. al. 
2006][Abraham et. al. 2008]. As can be seen from Table 4.2 the GASP algorithm gave the best 
result for all considered instances. We have conducted another experiment in order to see if the 
performance holds in case of reduction of the number of iterations. We tested the algorithm for 
25*m*n, GASP (2), and for m*n, GASP (3), number of iterations. The other parameters setting 
remained unchanged.  

 
Table 4.2. Performance comparison. 

Instance 1 2 3 4 5 
Optimum 46 85.5279 41.5788 35.1303 59.1658 

GA 
Am 47.1167 85.7431 42.927 38.0428  
Sd ±0.7700 ±0.6217 ±0.415 ±0.6613  

SA 
Am 46.6 90.7338 55.4594 41.7889  
Sd ±0.4856 ±6.3833 ±2.0605 ±8.0773  

PSO 
Am 46.2667 84.0544 41.9489 37.6668  
Sd ±0.2854 ±0.5030 ±0.6944 ±0.6068  

ACO 
Am 46.2667 88.1575    
Sd ±0.2854 ±0.6423    

GASP Am 46 85.5431 41.7395 35.3785 59.3041 
(1) Sd ±0 ±0.0090 ±0.0856 ±0.0477 ±0.0461 

GASP Am 46.05 85.5595 41.8042 35.6098 59.3625 
(2) Sd ±0.15 ±0.0092 ±0.0775 ±0.1398 ±0.0716 

GASP Am 46.5667 85.681 42.3229 36.455 59.7058 
(3) Sd ±0.3512 ±0.0803 ±0.3036 ±0.6077 ±0.1683 

 
As can be seen from Table 4.2, the performance of GASP holds even if we halve the 

number of iterations. This means that the GASP algorithm obtains very good results much faster 
than the considered algorithms. For the case of m*n number of iterations, the GASP gave very 
good results compared with other techniques taking into account the fact that other techniques 
used 50*m*n number of iterations.  

We also compared our algorithm (GASP) with Multi-Objective Evolutionary Algorithm 
(MOEA) [Abraham et. al. 2008]. The average result (makespan) for 10 runs is presented in Table 
4.3. Results for MOEA were taken from [Abraham et. al. 2008]. 
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Table 4.3. Performance comparison with MOEA 

Instance 1 2 3 4 5 
Optimum 46 85.53 41.58 35.13 59.17 

MOEA am 46     36.68   

GASP (1) 
am 46 85.55 41.74 35.38 59.37 
sd 0 0.0084 0.055 0.067 0.0659 

GASP (2) 
am 46.15 85.57 41.8 35.67 59.51 
sd 0.2291 0.0108 0.074 0.2011 0.1328 

GASP (3) 
am 46.48 85.65 42.27 35.94 59.84 
sd 0.3609 0.0484 0.29 0.3032 0.2112 

 

 
Figure 4.2 Average makespan of MOEA and GASP for test instances 4. 

 
As can be seen from Table 4.3 GASP gave good results even when the population size 

and the number of iterations were halved. GASP (3) also gave good results taking into account 
the values of population size and number of iterations. We mention that both GASP (2) and 
GASP (3) have found the optimum value for instance 1. Figure 4.2 illustrates the average 
makespan, for instance 4, of MOEA and GASP (with 3 parameters setting) in 10 trials. 

4.5. Conclusions and further research 

From the data reported above we can conclude that GASP has given excellent results 
when compared to other techniques. Even though the GASP approach obtained better results for 
the considered test problems, compared with the results obtained by other optimization 
techniques, more conclusions could be drawn only after extensive validation using bigger 
problems. 

Our future research plan is to extend the approach for scheduling problems involving 
unrelated parallel machines and dedicated machines and to test our algorithms with real data. 

 



 

 

5. Permutation flow shop scheduling problem 

The aim of this chapter is to present a new hybrid genetic algorithm for 
permutation flow shop scheduling problem. The novelty of the proposed algorithm 
consists in using a combination of a random initialization procedure and an 
initialization procedure based on NEH construction heuristic, in defining a new 
crossover operator and in using a mutation operator defined as a combination 
between an operator based on NEH construction heuristic and shift mutation. The 
results obtained by the proposed algorithm are comparable with the results 
obtained by other algorithms.  
 

The objective of the permutation flow shop scheduling problem is to find a job sequence 
that will minimize a given criterion knowing that all jobs have the same processing order on 
machines. Because the problem is NP-hard, many heuristic and meta-heuristic methods have 
been proposed. The proposed algorithm [Mihăilă et.al.2008b] uses the NEH constructive 
heuristic for generating a predefined percent of the chromosomes of initial population in order to 
raise and speed up the chance of finding a good solution. The NEH constructive heuristics is also 
used by mutation operator in order to improve the obtained chromosomes. The results obtained 
by the proposed genetic algorithm are compared against the best results reported by an iterated 
greedy algorithm. 

5.1. Introduction 

The permutation flow shop scheduling problem (PFSP) was first studied by Johnson in 
1954 [Johnson1954] and since then many heuristic and meta-heuristic methods have been 
proposed [Ruiz&Stützle2007]. The heuristic methods range from constructing heuristics like 
Rapid Access [Dannenbring1977] or NEH [Nawaz et. al. 1983] to improvement heuristics like 
RACS and RAES [Dannenbring1977] or that proposed by Suliman [Suliman2000]. The meta-
heuristic methods can also be viewed as improvement heuristics. These methods range from 
those that improve a given schedule, like Tabu Search [Grabowski&Wodecki2004], 
[Nowicki&Smutnicki1996], [Taillard1990] Simulated Annealing [Osman&Potts1989] or 
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Iterative Greedy [Ruiz&Stützle2007], to those working with a collection of schedules, like 
Genetic Algorithm [Chen et. al. 1995] [Murata et. al. 1996], [Reeves&Yamada1998], [Ruiz et. 
al. 2004]or Ant Colony [Rajendran&Ziegler2004]. 

5.2. Permutation flow shop scheduling problem 

As we have already mentioned the objective of the permutation flow shop scheduling 
problem is to find a sequence for processing a set of n jobs, J = {J1, …, Jn} on a set of m 
processors or machines, P = {P1, … , Pm} such that a given criterion is optimized. The criterion 
used in this chapter is the total idle time accumulated on the last machine and the objective is to 
minimize this criterion.  

Each job Ji, i = 1, …, n, is composed of a set of m tasks and each task k, k  = 1, …, m, has 
to be executed on a different machine, i.e. in order to be complete, a job has to be processed on 
each machine. The processing time of task k of job Ji is denoted by pi,j.  

In permutation flow shop problem all jobs have same processing order on machines and 
therefore once the job sequence on the first machines is fixed it will be kept on all remaining 
machines [Blazewicz et. al. 2007]. While the machine sequence of all jobs is the same, the 
problem is to find the job sequence that will minimize the given criterion [Blazewicz et. al. 
2007], in our case the total idle time accumulated on the last machines.  

The permutation flow shop scheduling problem, as a particular case of the flow shop 
scheduling problem fulfills several assumption that are commonly made regarding the flow 
scheduling problem [Ruiz&Maroto2004]: each machine can handle only one job at a time 
[Blazewicz et. al. 2007]; each job can be performed only on one machine at a time [Blazewicz et. 
al. 2007]; there are no precedence constraints among tasks of different jobs [Blazewicz et. al. 
2007]; all jobs are available for processing at time 0 [Ruiz&Maroto2004]; the set-up times of the 
jobs on machines are negligible and therefore can be ignored [Ruiz&Maroto2004]; no 
preemption is allowed, i.e. the processing of a job on a machine cannot be interrupted 
[Ruiz&Maroto2004]; the machines are continuously available [Ruiz&Maroto2004]; in-process 
inventory is allowed, i.e. if the next machine on the sequence needed by a job is not available, 
the job can wait and joins the queue of that machines [Ruiz&Maroto2004]. 

In this chapter the permutation flow shop scheduling problems which comply with this 
assumption are considered. Since the considered problem is known to be NP-hard 
[Garey&Johnson1979] a meta-heuristic method was chosen in order to solve it. 

5.3. Proposed genetic algorithm 

In order to find a solution (schedule) to the permutation flow shop scheduling problem, 
described in previous section, we used a generational genetic algorithm.  

Genetic algorithms use a population (collection) of chromosome (encoded possible 
solution) which evolves through genetic operators to a new population. This process of evolution 
is guided by the fitness function which measure the goodness of chromosomes and is repeated by 
a predefined number of times until a given stopping criteria is satisfied. The best chromosome 
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from the final population is reported as the output of the algorithm. The initial population is 
usually randomly generated.  

The solution of PFSP problem is encoded as a string permutation of the jobs. Thus the 
chromosome has a length equal with the number of jobs and the value (gene) corresponding to 
each position in the string represents a job. The relative order of the jobs in the permutation 
indicates the processing order of the jobs by the machines [Ruiz et. al. 2004]. 

In order to evaluate the quality of a chromosome we use as a fitness function the total idle 
time accumulated on the last machine.  

Initial population was generated using a combination of a random initialization procedure 
and an initialization procedure based on NEH construction heuristic [Nawaz et. al. 1983]. We 
inserted the schedule (chromosome) constructed with NEH heuristic into the initial population 
and we also kept it as a basis, called init hereafter, for constructing other schedules. Initialization 
procedure based on NEH construction heuristic uses the idea of destruction-construction phases 
introduced in [Ruiz&Stützle2007] for an iterated greedy algorithm. In order to generate a new 
schedule (chromosome) some (%n) jobs are randomly removed from the init base and reinserted 
using NEH construction heuristic. We insert the new scheduled (chromosome) into the initial 
population and we update the init base to the value of new constructed schedule.Random 
initialization procedure also uses init base for generating a new schedule but it does not update 
its value. In order to generate a new schedule (chromosome) we first cut the init base after a 
randomly generated cut point and swap the resulting two segments, and then we perform n swap 
of two jobs randomly determined. The initial population is formed of 70% individuals created 
using the random initialization procedure and 30% individuals generated using the initialization 
procedure based on NEH.  

In order to select the chromosome for the crossover operator we used binary tournament 
selection [Back et. al. 2000] which consists in randomly picking two chromosomes from the 
current population and choosing the best one. 

Additionally we used an elitist selection [Back et. al. 2000] in order to prevent the loss of 
best chromosomes obtained so far. In this respect 20% of best chromosomes of the current 
population were copied into the next (new) population.  

The crossover operator used in order to produce new (offspring) chromosome can be 
described as follows: 

• randomly generate one cut point 
• copy, with a given probability, the first or the last segment from the parent 

chromosomes into offspring chromosomes, i.e. if the first segment of the first parent 
chromosome is copied as the first segment into the first offspring chromosome then 
the first segment of the second parent chromosome will be copied as first segment 
into the second offspring chromosome (the same tactic holds for the last segment) 

• complete the remaining parts of the offspring chromosome, starting right after the 
previous copied segment until the end, with the missing genes from the opposite 
parent chromosomes, i.e. the first offspring chromosome will take the missing genes 
from the second parent chromosome while the second offspring chromosome will be 
completed with the genes from the first parent chromosome. If the first segment was 
copied previously then the parent chromosomes will be traversed from the cut point 



 Permutation flow shop scheduling problem 
 

37 

to right and when the end of the chromosome is reached the traversing order will 
begin from the first gene and will continue until the cut point is found. If the last 
segment was copied previously then the traversing policy is reversed. 

As a mutation operator we used a combination between an operator based on NEH 
construction heuristic, named NEH mutation hereafter, which is similar with the initialization 
procedure based on NEH construction heuristic and shift mutation [Ruiz et. al. 2004] operator 
which consists in randomly selecting a position of the chromosome and relocating the gene (job) 
corresponding to chosen position to another randomly selected position while the genes (jobs) 
between these two positions move along. The NEH mutation operator has the goal to improve 
the chromosomes obtained by the crossover operator while the shift mutation introduces new 
chromosomes in order to reduce the loss the diversity of population. 

Taking into account the suggestion from [Ruiz et. al. 2004] we have modified the 
survival operator of the generational genetic algorithm in the sense that we inserted into the next 
(new) population only distinct chromosome in order limit the effect of premature convergence 
and to increase the populations’ diversity. 

5.4. Experimental results 

In order to test the performance of our algorithm we used the standard benchmark set 
[Taillard1993] from which we have chosen the 10 instances of 50 jobs and 20 machines and 10 
instances of 100 jobs and 20 machines. These instances were chosen because it has been proven 
that some of these instances are very difficult to solve[Ruiz&Stützle2007]. 

Each experiment (instance) was repeated 10 times with different random seeds. Specific 
parameter settings for each run are described in Table 5.1. 

 
Table 5.1 Parameter settings 
Parameter Value 

Population dimension 100 
number of generations 1000 
crossover probability 0.5 
mutation probability 0.1 

 
The best and average results and the lower and upper bounds indicate the total 

completion time of a schedule, known as makespan. In order to determine the makespan of our 
result we added the total idle time accumulated on the last machine (computed by the fitness 
function) to the total execution time of the last machine.  

Figure 5.1 and Figure 5.2 graphically presents, for each considered instances, the best and 
average results compared against the best known upper bound. 
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Figure 5.1 Best and average results for instances ta051-ta060 
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Figure 5.2 Best and average results for instances ta081-ta090 

 
As can be seen from Figure 5.1 the results obtained are very close to upper bonds. The 

difference between best results and upper bounds are in the range 0.43% and 1.16% while the 
difference between average results and upper bound range from 1.05% to 1.74% for instances 
ta051-ta060. 

We compared the obtained results with the result obtained by an iterated greedy 
algorithm with local search [Ruiz&Stützle2007]. The best results of the iterated greedy algorithm 
were taken from [Ruiz&Stützle2007]. The comparison of best results is illustrated in Figure 5.3 
and Figure 5.4. 
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Figure 5.3 Comparison of best results for instances ta051-ta060 
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Figure 5.4 Comparison of best results for instances ta081-ta090 

 
As can be seen from Figure 5.3 and Figure 5.4 the results obtained by the proposed 

genetic algorithm are very close to the results obtained by the iterated greedy algorithm. The 
difference between the best results of iterated greedy algorithm and the best results of genetic 
algorithm ranges from 0.40% to 1.08% for instances ta051-ta060 and 1.05% to 2.69% for 
instances ta081-ta090. 

 

5.5. Conclusions and further research 

In this chapter a genetic algorithm for solving permutation flow shop scheduling 
problems has been presented. The results obtained by the proposed algorithm are close to the 
result reported by other algorithms.  

In future, other test instance from the standard benchmark set (e.g. 100 jobs and 20 
machines, 200 jobs and 20 machines) will be considered for testing the performance of the 
proposed algorithm and the influence of different genetic operators, i.e. crossover and mutation, 
will be investigated. 



 

 

6. Video-proxy cache scheduling problem 

The aim of this chapter is to present two new ways of defining the utility of the 
objects stored inside a video proxy-cache and a new genetic algorithm used for 
determining the coefficients that appear in those two definitions with the aim of 
maximizing the byte hit rate. The obtained result by the proposed algorithm with 
one utility function is similar or even better than those obtained by other metric.  
 
For video-proxy cache scheduling problem we introduce two new utility functions that 

consider the utility of the objects when performing cache replacement operations. The 
coefficients that fine-tune those functions are determined using a genetic algorithm 
[Mihăilă&Cobârzan2008]. Measurements regarding the efficiency in terms of byte hit rate when 
using those utility functions are made and the obtained results are compared with those yielded 
by classic cache replacement algorithms [Cobârzan&Mihăilă2008]. 

6.1. Introduction 

The volume of multimedia and especially video content on the Internet has constantly 
increased in recent years. Due to the characteristics of this types of popular data (large sizes, 
limits on accepted latency during playback etc.) there is a lot of stress on the transport 
infrastructure which is in the general case the Internet. A proxy-cache is an entity which acts like 
an intermediary in a transaction in which a client requests a multimedia/video object. In such a 
case, the proxy-cache acting on behalf of the client, starts retrieving the object from an origin 
server and streams it towards the client. In the case a cache is also active, the content being 
streamed, or parts of it, can be saved locally.  

There are numerous approaches to video caching: caching of a prefix in [Sen et. al. 
1999], caching of a prefix and of selected frames in [HsiuMa&Du2000], caching of a prefix 
combined with periodic broadcast in [Yang& Towsley2002] or caching of hotspot segments in 
[Fabmi et. al. 2001]. Other proposals in the same category include caching of a prefix based on 
popularity [Park et. al. 2001], segment-based prefix caching [Wu et. al. 2001], and variable sized 
chunk caching [Balafoutis et. al. 2002]. There have been distributed approaches to the problem 
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too: multiple video servers accessible via the web managing tertiary storage systems in 
[Brubeck&Brubeck1996] or cooperative caching video server in [Acharya2002] .  

6.2. Proposed distributed video proxy-cache system 

In [Cobârzan2005] a distributed system for video proxy-caching that is able to 
dynamically adjust the number of participating nodes in the federate cache depending on client 
request patterns and current load was introduced. Within the proposed system, cache 
replacement operations are performed with respect to the utility value of the objects, meaning 
that the objects with the smallest utility will be discarded when space has to be freed to 
accommodate new objects. The utility of an object is computed using a function u defined in 
[Cobârzan2005] as follows: RLCu →:  (LC is the content of the local cache) 

 

( ) ( ) ( ) ( ) ( )ouequalityValcoefohitCountcoef
ocesstimeLastAc

coefosizecoefou ∗+∗+∗+∗= 4321
1 , 

(6.1) 
where: 

• size(o) is the size of the object,  
• timeLastAccess(o) indicates the last time the object has been requested,  
• hitCount(o) shows the number of times the object has been served from the cache 
• qualityValue(o) ∈  [0..1] is the measure of the object’s quality  
• coef1, coef2, coef3, coef4 ∈  [0, 1] and coef1 + coef2 + coef3 + coef4 = 1. 
During the initial performance evaluation of the system we have noticed that when using 

the formula in defined in [Cobârzan2005] the impact of the timeLastAccess and hitCount is 
negligible due to the difference in magnitude order when compared to size and hitCount. In order 
to correct the observed negative aspects we introduce two new ways of defining the utility of an 
object:  
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where: 
• MSIZE - the size of the largest stored object within the local cache LC until that 

moment; 
• MTLA - the moment in time of the last request for an object in LC; 
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• MHC - the number of times the most popular object in LC has been requested. 
Additionally coef1, coef2, coef3, coef4 ∈  [0, 1] as well coef1 + coef2 + coef3 + coef4 = 1 still have 
to hold for both equation (6.2) and (6.3). We also have to note that the formulae (6.2) and (6.3) 
might require further tuning since we have not considered the quality value for objects during 
our measurements. 

In [Cobârzan2005] we considered some fix values for coef1 to coef4. Our aim is to be able 
to provide an intelligent method of determining those coefficients so that different metrics are 
maximized/minimized (byte hit ratio, object hit ratio/latency). This has lead to our current 
approach of using genetic algorithms. As a first step we have focused on choosing the four 
values coef1 to coef4 in the utility formulae (6.2) and (6.3) based on the client request patterns 
(number of request for each object, moment in time when it is requested) as well as on objects 
characteristics (size distribution) so that the byte hit ratio is maximal. 

6.3. Genetic algorithm for determining utility function coefficients  

In order to find “good” values of coefficients for the utility functions defined in (6.2) and 
(6.3) we have used a genetic algorithm (GeCo) which starts with a population of randomly 
generated solutions (chromosomes). A new population is generated by applying the following 
genetic operators [Baeck et. al. 2000]: binary tournament selection for parent selection, and 
convex crossover and radius gene mutation for generating new offspring chromosomes that will 
form a new population. The evolution process is similar to the evolution scheme of a standard 
genetic algorithm. We additionally used an elitist selection. 

The solution is represented as a string (chromosome) of length equal to the number of 
coefficients minus 1. We have considered only the first three coefficients disregarding the last 
one which has the value set to 0. For our problem this means that we are not interested in the 
quality of the requested/retrieved objects. The use of the forth coefficient makes sense only if 
transcoding operations are supported within the video proxy-cache. The value corresponding to 
each position i in the string represents the ith coefficient. These values range from 0 to 1. 

We have used both formulae (6.2) and (6.3) when computing the utility of an object. 
Before this we scale the gene values from the chromosome in order to assure that the sum of 
coefficients equals 1. Thus, the value of each coefficient is computed using the formula: 

∑
=

= 3

1i
i

i
i

gene

gene
coef     (6.4) 

where chromosome = (gene1, gene2, gene3). 
The quality evaluation of each solution (chromosome) was done by computing the byte 

hit ratio. Our goal was to maximize this value. 

6.4. Experimental results 

The GeCo algorithm was tested by performing a series of experiments during which we 
were interested in the values obtained for byte hit ratio. A number of 12 test instances were used. 
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We compare the results obtained when using utility based cache replacement strategies (utility 
functions (6.2) and (6.3) whose coefficients are generated using GeCo with the ones computed 
when classic cache replacement algorithms (LRU and LFU) [Podlipnig&Böszörményi2003] 
were used. 

When performing the measurements, we made the assumption that no segmentation of 
video objects is used (web like treatment of objects) and that once requested, an object is fully 
retrieved from an origin server (if it is not already cached) and it is viewed from start to end with 
no interruptions or cancellations. Also no bandwidth limitations nor transmission errors were 
considered. While we are aware that those assumptions are unrealistic, the obtained results make 
a good reference point for the ideal case. 

The data used for the experiments has been generated using WebTraff 
[Markatchev&Williamson2002] a synthetic web traffic generator. The characteristics of the 12 
traces used are presented in Table 6.1. 

 
Table 6.1 Characteristics of artificial trace logs 

Trace ID Number of 
requests 

Number of 
objects 

One-Timers(% of 
total objects) 

Zipf slope 

1 1000 300 70 0.3 
2 1000 300 30 0.3 
3 1000 300 70 0.75 
4 1000 300 30 0.75 
5 5000 1500 70 0.3 
6 5000 1500 30 0.3 
7 5000 1500 70 0.75 
8 5000 1500 30 0.75 
9 10000 3000 70 0.3 
10 10000 3000 30 0.3 
11 10000 3000 70 0.75 
12 10000 3000 30 0.75 

 

Our intent was to measure byte hit ratio under both lightly skewed (Zipf α  = 0.3) and 
more severe skewed (Zipf α  = 0.75) object popularity distribution and with varying amount of 
one-timers (objects requested only once) (30% for traces 2, 4, 6, 8, 10 and 12 vs. 70% in traces 1, 
3, 5, 7, 9 and 11). We have also varied the size of the cache from 1% to 10% of the overall size 
of the requested objects (the size of all objects requested multiple times was considered only 
once). 

The optimum value for each of the 12 traces was computed using the formula: 
 

edDatafTransferrTotalSizeO
ectsfUniqueObjTotalSizeO

−1 (5) 

 
The genetic algorithm (GeCo) we have used had the following setup: population size 

100, number of generations 10, crossover probability 0.7 and mutation probability 0.6. 
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We present the results in terms of byte hit rate in Figure 6.1 and Figure 6.2 obtained for 
traces 11 and 12 with the coefficients (obtained using the GeCo algorithm). When studying the 
results it can be seen that using utility (6.2) yields much better results than when using utility 
(6.3) (Figure 6.1). In cases when the object popularity distribution is more severe skewed (Zipf 
α  = 0.75) utility (6.2) clearly generates better results than LRU while in case the object 
popularity distribution is lightly skewed (Zipf α  = 0.3) utility (6.2) provides comparable results 
with LRU (but still slightly better) (Figure 6.2).  

Also it is interesting to notice that for large traces the increases in terms of byte hit ratio 
are negligible, for cache size greater than 7%. This means that we do not need extremely large 
cache sizes in order to obtain good byte hit ratio values which translates in reduced amount of 
used external bandwidth. 
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Figure 6.1 Byte hit ratio values for trace 11 
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Figure 6.2 Byte hit ratio values for trace 12 
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Table 6.2 summarizes by exactly how much is utility (6.2) better than LRU when byte hit 

rate best and average results are considered. The average is about 1.7% which can be significant 
if pricing models are to be considered. 

 
Table 6.2 Mean BHR difference between situations when using utility 

Trace ID Mean Best Mean Average 
1 1.0287% 0.6782% 
2 1.1965% 0.9833% 
3 4.0188% 3.7725% 
4 0.3896% 0.1306% 
5 1.1521% 0.6752% 
6 0.3955% 0.0694% 
7 2.4681% 2.1730% 
8 0.8924% 0.6412% 
9 1.0731% 0.8707% 
10 0.7187% 0.4404% 
11 1.8760% 1.7511% 
12 1.3319% 1.1791% 

Average 1.3784% 1.1137% 

6.5. Conclusions and further research 

We have proposed two new ways (equation (6.2) and (6.3)) of defining the utility of the 
objects stored inside a video proxy-cache that provide better balancing between considered 
characteristics (size, timeLastAccess, hitCount) for each object. We have also used a genetic 
algorithm (GeCo) for determining the coefficients that appear in those two definitions with the 
aim of maximizing the byte hit rate. The obtained results in terms of byte hit rate when the GeCo 
algorithm and the utility function (6.2) were used are similar or even better than those obtained 
for LRU. 

We intend to use an approach similar to the one presented in GeCo in order to determine 
the coefficients that regulate the dynamics of the system proposed in [Cobârzan2005] and 
[Cobârzan&Böszörményi2007] namely the addition of new proxy-caching nodes to the federate 
cache, respectively their elimination when they are no longer needed. Considering segmentation 
strategies for the cached video objects while using the GeCo algorithm also needs further 
investigation. 



 

 

Conclusions and further research 

The aim of this thesis was to investigate the use of genetic algorithms in solving different 
classes of scheduling problems. Because the problems addressed are NP-hard the alternative of 
using genetic algorithms has been proven to be a good one.  

 
In this respect basic elements of a scheduling problem (tasks, resources and objective 

functions), some aspects related to these elements, a classification scheme of scheduling problem 
and the complexity of these problems was presented first. Next an overview of the basic 
elements of a genetic algorithm (representation, fitness function, selection, crossover, mutation 
and parameters) was conducted. 

 
Using the aforementioned background three scheduling problems were addressed: 
• A uniform parallel machines scheduling problem was solved using a new genetic 

algorithm for the uniform parallel machines scheduling problem. The proposed 
algorithm obtained better results than other algorithms. 

• A permutation flow shop scheduling problem was solved using a new hybrid genetic 
algorithm. The novelty of the proposed algorithm consisted in using a combination of 
a random initialization procedure and an initialization procedure based on NEH 
construction heuristic, in defining a new crossover operator and in using a mutation 
operator defined as a combination between an operator based on NEH construction 
heuristic shift mutation. The results obtained by the proposed algorithm are 
comparable with the results obtained by other algorithms. 

• Video-proxy cache scheduling problem was addressed. For this problem two new 
formulas for utility of the objects stored inside a video proxy-cache were defined. A 
new genetic algorithm was used for determining the coefficients that appear in these 
two definitions with the aim of maximizing the byte hit rate. The results obtained by 
the proposed algorithm with one of utility formula are similar or even better than 
those obtained by other metric. 
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I intend to focus my future research on the following convergent direction: 
• project management scheduling in order to investigate the field of tasks and resources 

allocation in projects that seems to be driving force for economic growth 
• multi-objective optimization in order to consider more than just one objective 

function as a goal for optimization 
• optimization in dynamic environments in order to simulate/capture the changes that 

appear during the lifecycle of a project 
• stochastic scheduling in order to better simulate real life situations 
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