

Babeş-Bolyai University

Cristina Mihăilă

PhD Thesis

Evolutionary Computation
in Scheduling

Supervisor
D. Dumitrescu

Cluj-Napoca, 2011

Abstract

The concept of “scheduling” is not new: Sun Tzu wrote about scheduling and strategy
5000 years ago from a military perspective, the pyramids are over 3000 years old,
transcontinental railways have been being built for some 200 years etc – none of these activities
could have been accomplished without some form of scheduling, i.e. the understanding of
activities and sequencing [Weaver2006].

Today, scheduling is a form of decision making that plays an important role in many
fields: from personal (designing an itinerary of personal development or setting up a daily
agenda) to governmental decision making (setting up a strategy for economic growth or a
strategy for assuring the quality of education), from cultural (organizing an exhibition or
producing a movie) to economic decision making (introducing a new product on the market or
relocating a factory).

Scheduling is now studied by researchers in management, industrial engineering,
operations research and computer science. Given the importance, and the complexity, of the
scheduling problems this thesis tries to investigate if the paradigm of evolutionary computation,
in essence a heuristic one, is a good candidate to better and/or faster solve some instance of
various scheduling problems.

Keywords: scheduling, evolutionary algorithm

List of publications

Dumitrescu, D., Iantovics, B., Florea, C., Multi-Agent Systems: a new allocation protocol and
evolutionary search for equilibrium; , in Proceedings of Symposium “Zilele academice
clujene” - Computer Science Section, 119-133, Cluj-Napoca, Romania, 2002.

Dumitrescu, D., Florea, C., Patranjan; P., Evolutionary Reorganization in MAS; , in
Proceedings of the European Conference on Information Technology (ECIT02), 1-5, Iasi,
Romania, 2002.

Dumitrescu, D., Florea, C., Patranjan; P., A New Evolutionary Model for Multi Agent Systems,
in Proceedings of the 4th International Workshop on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC02), 137-143, Timisoara, Romania, 2002.

Groşan, C., Oltean, M., Florea, C., NP-complete problems using Evolutionary Algorithms,
Lucrarile Seminarului de Didactica Matematicii al Universitatii Babes-Bolyai, Vadu-
Crisului, Romania, 2003.

Florea, C., Dumitrescu, D., Negotiation in Multiagent Systems; in Proceedings of Conference
on Applied and Industrial Mathematics (CAIM03), Oradea, Romania, 2003.

Mihaila, C., Dumitrescu, D., Quantum Computing and Multiagent Systems, in Proceedings of
the Symposium “Colocviul Academic Clujean de Informatica”, Cluj-Napoca, Romania,
2005.

Mihiş, A., Creţu, C., Mihăilă, C., Şerban, C., Code Simplification using Boolean Functions
Simplification, in Proceedings of the International Conference of Mathematics &
Informatics, Supplement of “Studii �i cercetări �tiin�ifice. Seria Matematică”, no.16,
University of Bacau, 493-502, Bacău, România, 2006.

Niţchi, I.Ş., Mihăilă, A., Mihăilă, C., About Project Management Planning Optimization using
Genetic Algorithms, in Proceedings of the International Conference on Knowledge
Engineering Principles and Technologies, Special issue of Studia Universitatis Babes-
Bolyai Informatica Series, 79-82 ,Cluj-Napoca, România, 2007.

Niţchi, I.Ş., Avram-Niţchi, R., Mihăilă, A., Mihăilă, C., About the Logical Model for Intelligent
Agents, in Proceedings of the International Conference on Knowledge Engineering
Principles and Technologies, Special issue of Studia Universitatis Babes-Bolyai
Informatica Series, 83-90, Cluj-Napoca, România, 2007.

Niţchi, I.Ş., Avram-Niţchi, R., Mihăilă, A., Mihăilă, C., On the collaborative systems for e-
business, in Proceedings of the International Conference on Competitiveness and
European Integration, 266-272, Cluj-Napoca, România, 2007.

Mihăilă C., Cobârzan C., Evolutionary approach for multimedia caching, in IEEE Proceedings
of the Evolutionary Techniques in Data Processing Workshop, International Conference
on Database and Expert Systems Application (DEXA), 531-536, Torino, Italia, 2008

Mihăilă C., Mihăilă A., An Evolutionary Algorithm for Uniform Parallel Machines Scheduling,
in IEEE Proceedings of the European Modelling Symposium, 76-80, Liverpool, United
Kingdom, 2008.

Cobârzan C., Mihăilă C., A Genetic Algorithm for Utility Based Video Proxy-Caching, in
Proceedings of the International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), 231-238, Timişoara, România, 2008

Mihăilă A., Mihiş A., Mihăilă C., Genetic Algorithm for Logical Topic Text Segmentation, in
IEEE Proceedings of the International Conference on Digital Information Management,
500-505, London, United Kingdom, 2008

Mihăilă A., Mihăilă C., Uniform Parallel Machines Scheduling using an Evolutionary
Algorithm, in IEEE Proceedings of the International Workshop on Evolutionary
Multiobjective Optimization Design and Applications, International Conference on
Intelligent Systems Design and Applications (ISDA), 401-406, Kaohsiung, Taiwan, 2008

Mihăilă C., Niţchi, I.Ş., R., Mihăilă, A., Coroş R., A genetic algorithm for permutation flow
shop scheduling problem, in Annals of Tiberiu Popoviciu Seminar of Functional
Equation, Approximation and Convexity, p. 241-250, Cluj-Napoca, România, 2008

Oltean M., Groşan C., Dioşan L., Mihăilă C., Genetic Programming with Linear Representation
a Survey, International Journal on Artificial Intelligence Tools, 197-238, 2009

Table of contents

Abstract ... 3

List of publications .. 5

Table of contents ... 7

Introduction ... 9

Part A – Background ... 11

1. Scheduling problems ... 11

1.1. Deterministic scheduling problem ... 11
1.2. Communication delay and multi-processor task .. 14
1.3. Scheduling with limited processor availability .. 14
1.4. Scheduling under resource constraints ... 15
1.5. Multicriteria scheduling problem ... 15

2. Complexity of scheduling problems ... 17

2.1. Problems, algorithms and complexity .. 17
2.2. Polynomial reduction ... 19
2.3. Complexity hierarchy ... 21

3. Evolutionary computation ... 24

3.1. Overview of evolutionary algorithms .. 24
3.2. Classification of parameter control techniques .. 27
3.3. Evolutionary computation vs. classical optimization ... 28

Part B - Contributions ... 29

4. Uniform parallel machines scheduling problem ... 29

4.1. Introduction .. 29
4.2. Uniform parallel machines scheduling problem .. 30
4.3. Genetic algorithm for scheduling problem ... 30
4.4. Experimental results ... 31
4.5. Conclusions and further research ... 33

5. Permutation flow shop scheduling problem .. 34

5.1. Introduction .. 34

5.2. Permutation flow shop scheduling problem ... 35
5.3. Proposed genetic algorithm .. 35
5.4. Experimental results ... 37
5.5. Conclusions and further research ... 39

6. Video-proxy cache scheduling problem ... 40

6.1. Introduction .. 40
6.2. Proposed distributed video proxy-cache system .. 41
6.3. Genetic algorithm for determining utility function coefficients .. 42
6.4. Experimental results ... 42
6.5. Conclusions and further research ... 45

Conclusions and further research .. 46

References ... 48

Introduction

In recent years, scheduling research has had an increasing impact on practical problems,
and a range of scheduling techniques have made their way into real-world application
development. Constraint-based models now couple rich representational flexibility with highly
scalable constraint management and search procedures. Similarly, mathematical programming
tools are now capable of addressing problems of unprecedented scale, and meta-heuristics
provide robust capabilities for schedule optimization. With these mounting successes and
advances, it might be tempting to conclude that the chief technical hurdles underlying the
scheduling problem have been overcome. However, such a conclusion (at best) presumes a rather
narrow and specialized interpretation of scheduling, and (at worst) ignores much of the process
and broader context of scheduling in most practical environments [Smith2005].

Summarizing the current state of the art several technological strengths can be identified

[Smith2005]:
• scalability – current scheduling techniques are capable of solving large problems (i.e.,

tens of thousands of activities, hundreds of resources) in reasonable time frames.
• modeling flexibility – current techniques are capable of generating schedules under

broad and diverse sets of temporal and resource capacity constraints.
• optimization – research in applying various global, local and meta-heuristic based

search frameworks to scheduling problems has produced a number of general
approaches to schedule optimization, and increasing integration of AI-based search
techniques with mathematical programming tools (e.g., linear, mixed-integer constraint
solvers) is yielding quite powerful optimization capabilities.

Despite the strengths of current techniques, the problems being addressed are generally
NP hard and solved only approximately; there is considerable room for improvement in
techniques for accommodating different classes of constraints and for optimizing under different
sets of objective criteria [Smith2005].

The aim of this thesis is to investigate the use of evolutionary computation techniques in

solving different classes of scheduling problems. In this respect, the first part of the thesis
(chapters 1-3) presents a synthesis of some theoretical concepts from scheduling theory and

Introduction

10

evolutionary computation while the second part (chapters 4-6) introduces some personal results
obtained in applying evolutionary computation techniques to some class of scheduling problems.

Chapter 1 introduces some basic notations (tasks, resources, objective functions) and
concepts used in scheduling theory and a classification scheme used for codifying scheduling
problems. Some aspects related to scheduling problems like communication delay and multi-
processor task, scheduling with limited processor availability, scheduling under resource
constraints and multicriteria scheduling are also presented.

Chapter 2 illustrates the complexity of scheduling problems. The polynomial reduction
and the complexity hierarchy are also presented.

Chapter 3 is dedicated to evolutionary computation techniques and underlies their
working mechanisms. Some aspect related to the main elements (representation, fitness function,
selection, crossover, mutation, parameters) that influence the performance of an evolutionary
algorithm are presented.

Chapter 4 presents a genetic algorithm for solving a uniform parallel machines
scheduling problem. Uniform machines are special classes of resources in which machines have
different speeds but the speed is constant and does not depend on tasks.

Chapter 5 presents some results obtained by applying a hybrid genetic algorithm in order
to find a solution of a permutation flow-shop scheduling problem. The objective of a permutation
flow shop scheduling problem is to find a sequence for processing a set of jobs using a set of
machines such that a given criterion is optimized, taking into account that each machine
processes the jobs in the same order.

Chapter 6 presents a video proxy-caching scheduling problem along with some results
obtained for determining the coefficients of utility function which is at the core of the cache
replacement mechanism.

The main contributions of this thesis consist in:

• a new genetic algorithm for the uniform parallel machines scheduling problem
[Mihăilă&Mihăilă2008a]. The proposed algorithm not only obtains better results than
other algorithms, but it also computes the result faster [Mihăilă&Mihăilă2008b].
• a new hybrid genetic algorithm for permutation flow shop scheduling problem
[Mihăilă et.al.2008b]. The novelty of the proposed algorithm consists in using a
combination of a random initialization procedure and an initialization procedure
based on NEH construction heuristic, in defining a new crossover operator and in
using a mutation operator defined as a combination between an operator based on
NEH construction heuristic shift mutation. The results obtained by the proposed
algorithm are comparable with the results obtained by other algorithms.
• two new ways of defining the utility of the objects stored inside a video proxy-
cache and a new genetic algorithm used for determining the coefficients that appear
in these two definitions with the aim of maximizing the byte hit rate
[Mihăilă&Cobârzan2008]. The obtained results in terms of byte hit rate when the
proposed algorithm with one of the utility function were used are similar or even
better than those obtained by other metric [Cobârzan&Mihăilă2008].

Part A – Background

1. Scheduling problems

The aim of this chapter is to introduce the basic elements of a scheduling problem
(tasks, resources and objective functions) and some aspects related to these
elements. A classification scheme of scheduling problem is also presented.

Scheduling is concerned with the allocation of scarce resources to activities with the
objective of optimizing one or more performance measure [Leung2004].

1.1. Deterministic scheduling problem

Scheduling problems are characterized by three sets [Blazewicz2007]: set T= {T1, T2, …,
Tn} of n tasks, set P = {P1, P2, …, Pm} of m processors or machines and set R = {R1, R2, …, Rs}
of s types of additional resources. Scheduling, generally speaking, means to assign processors
from P and (possibly) resources from R to tasks from T in order to complete all tasks under the
imposed constraints.

There are two general constraints in classical scheduling theory [Blazewicz2007]: each
task is to be processed by at most one processor at a time (plus possibly specified amounts of
additional resources) and each processor is capable of processing at most one task at a time (note
that this constraint may be relaxed).

The processors may be either parallel, i.e. performing the same functions, or dedicated
i.e. specialized for the execution of certain tasks [Blazewicz2007]. Three types of parallel
processors are distinguished depending on their speeds [Blazewicz2007]: identical (if all
processors from set P have equal task processing speeds), uniform (if the processors differ in
their speeds, but the speed bi of each processor is constant and does not depend on the task in T)
and unrelated (if the speeds of the processors depend on the particular task processed). In case of
dedicated processors there are three models of processing sets of tasks [Blazewicz2007]: flow
shop, open shop and job shop.

In general, task Tj ∈ T is characterized by the following data [Blazewicz2007]:

Scheduling problems

12

• vector of processing times pj = [p1j, p2j,…, pmj]T, where pij is the time needed by
processor Pj to process Tj.

• arrival time (or ready time) rj, which is the time at which task Tj is ready for
processing. If the arrival times are the same for all tasks from T, then it is assumed that
rj = 0 for all j.

• due date dj, which specifies a time limit by which Tj should be completed; usually,
penalty functions are defined in accordance with due dates.

• deadline ∼dj, which is a "hard" real time limit by which Tj must be completed.
• weight (priority) wj, which expresses the relative urgency of Tj.
• resource request (if any).
A schedule is called preemptive if each task may be preempted at any time and restarted

later at no cost, perhaps on another processor. If preemption of all the tasks is not allowed we
will call the schedule non-preemptive [Blazewicz2007].

In set T precedence constraints among tasks may be defined. Ti p Tj means that the
processing of Ti must be completed before Tj can be started. In other words, in set T a precedence
relation p is defined.

Figure 1.1 An example of task dependency [Blazewicz2007]

A schedule is an assignment of processors from set P (and possibly resources from set R)
to tasks from set T in time such that the following conditions are satisfied [Blazewicz2007]:

• at every moment each processor is assigned to at most one task and each task is
processed by at most one processor,

• task Tj is processed in time interval [rj, ∞),
• all tasks are completed,
• if tasks Ti, Tj are in relation Ti p Tj, the processing of Tj, is not started before Ti is

completed,

Scheduling problems

13

• in the case of non-preemptive scheduling no task is preempted (then the schedule is
called non-preemptive), otherwise the number of preemptions of each task is finite
(then the schedule is called preemptive),

• resource constraints, if any, are satisfied.

Schedules may be represented by Gantt charts as shown in Figure 1.2.

Figure 1.2 An example of Gantt chart [Blazewicz2007]

The following parameters can be calculated for each task Tj, j = 1, 2, …, n, processed in a
given schedule [Blazewicz2007]:

• completion time Cj,
• flow time Fj = Cj - rj, being the sum of waiting and processing times;
• lateness Lj = Cj - dj,;
• tardiness Dj = max {Cj - dj, 0};
• earliness Ej = max { dj - Cj, 0}.

Completion-time of job I is the time at which processing of the last operation of the job is
completed [Conway et. al. 1967]. Flow-time of job I is the total time that the job spends in the
shop [Conway et. al. 1967].

To evaluate schedules the following performance measures or optimality criteria
[Blazewicz2007]:

• schedule length (makespan)
Cmax = max{Cj} ,

• mean flow time

∑
=

=
n

j
jF

n
F

1

1 ,

or mean weighted flow time

∑∑
=

=
n

j
jjw wFjwF

1
/ ,

• maximum lateness

{ }jLL maxmax = .

or other related criteria.

Scheduling problems

14

A schedule for which the value of a particular performance measure γ is at its minimum
will be called optimal, and the corresponding value of γ will be denoted by γ *
[Blazewicz2007].

A scheduling problem Π is defined as a set of parameters not all of which have

numerical values, together with an optimality criterion. An instance I of problem Π is obtained
by specifying particular values for all the problem parameters [Blazewicz2007].

A scheduling algorithm is an algorithm which constructs a schedule for a given problem
Π .

The theory of scheduling is characterized by a virtually unlimited number of problem
types [Brucker2007]. In order to cope with this variety of scheduling problems a notation
composed of three fields α | β |γ , where introduced [Brucker2007]:

• the first field α describes the processor environment,
• the second field β describes task and resource characteristics,

• the third field, γ , denotes an optimality criterion (performance measure).

1.2. Communication delay and multi-processor task

In recent years, with the rapid development of parallel and distributed systems, the
constraint that imposes that each task may be executed on a single processor at a time may be
relaxed. In this context the delays caused by the communication between tasks cannot be
ignored. There are three models to describe the communication problem in the context of
scheduling problems.

In this respect, the task model from classical scheduling theory is enriched in order to
incorporate the delays caused by communication. These delays may be handled implicitly or
explicitly. In the first case, the communication times are already included in the task processing
times. Usually, a task requires more than one processor at a time. Such a task is called multi-
processor task. Multi-processor tasks may specify they processor requirements either in terms of
simultaneously required processors, or in terms of an explicit specification of a processor subset
(or processor subsets) which is or are required for processing. In the first case we will speak
about parallel processor requirement, whereas in the second we will speak about dedicated
processor requirement [Blazewicz2007].

1.3. Scheduling with limited processor availability

A machine system with limited availability is a set of machines (processors) which does
not operate continuously; each machine is ready for processing only in certain time intervals of
availability [Blazewicz2007]. We want to find a feasible schedule if one exists, such that all
tasks can be processed within the given intervals of machine availability optimizing some
performance criterion.

Scheduling problems

15

The term preemption is used as defined before. Often the notion of resumability is used
instead of preemption. Under a resumable scenario a task may be interrupted when a machine
becomes unavailable and resumed as the machine becomes available again without any penalty.
Under the non-resumable scenario task preemption is generally forbidden. The most general
scenario is semi-resumability [Blazewicz2007].

1.4. Scheduling under resource constraints

The scheduling model consider next is more complicated than the previous ones, because
any task, besides processors, may require for its processing some additional scarce resources.

Resources, depending on their nature, may be classified into types and categories
[Blazewicz2007]. The classification into types takes into account only the functions resources
fulfill: resources of the same type are assumed to fulfill the same functions [Blazewicz2007].
The classification into categories will concern two points of view. First, we differentiate three
categories of resources from the viewpoint of resource constraints. We will call a resource
renewable, if only its total usage, i.e. temporary availability at every moment, is constrained. A
resource is called non-renewable, if only its total consumption, i.e. integral availability up to any
given moment, is constrained (in other words this resource once used by some task cannot be
assigned to any other task). A resource is called doubly constrained, if both total usage and total
consumption are constrained. Secondly, we distinguish two resource categories from the
viewpoint of resource divisibility: discrete (i.e. discretely-divisible) and continuous (i.e.
continuously-divisible) resources. In other words, by a discrete resource we will understand a
resource which can be allocated to tasks in discrete amounts from a given finite set of possible
allocations, which in particular may consist of one element only. Continuous resources, on the
other hand, can be allocated in arbitrary, a priori unknown, amounts from given intervals
[Blazewicz2007].

1.5. Multicriteria scheduling problem

Many scheduling problems in the production or service domains involve several criteria.
Examples of such problems are time/cost trade-off problems. As a general rule, taking several
criteria into account enables to provide the decision maker with a more realistic solution.

A multicriteria scheduling problem is a problem which consists of computing a Pareto
optimal schedule for several conflicting criteria. This problem can be broken down into three
sub-problems [T’kindt&Billaut2006]:

• modelling of the problem, whose resolution leads to the determination of the nature of
the scheduling problem under consideration as well as the definition of the criteria to
be taken into account,

• taking into account of criteria, whose resolution leads to indication of the resolution
context and the way in which we want to take into account the criteria. The analyst

Scheduling problems

16

finalises a decision aid module for the multicriteria problem, also called a module for
taking account of criteria,

• scheduling, whose resolution leads us to find a solution of the problem. The analyst
finalises an algorithm for solving the scheduling problem, also called a resolution
module for the scheduling problem.

At the phase of taking account of criteria, and following the information which it sets
out, the analyst chooses a resolution approach for the scheduling problem and thus defines a
scheduling problem. Taking account of the diversity of the methods of determining Pareto
optima, the functions to optimise for the scheduling problem can take different forms. Each one
translates a method of determining a Pareto optimum. The criteria do not change and they
correspond to those defined during the phase of modelling of the problem
[T’kindt&Billaut2006].

A multicriteria scheduling problem, after the modelling phase, can be noted in a general
way by using the three-field notation, where the field γ contains the list of criteria:

kZZZ ,,,|| 21 Kβα . The scheduling problem produced by the phase of taking account of the

criteria may equally be noted by means of the three fields, where only field γ is spread
[T’kindt&Billaut2006].

2. Complexity of scheduling problems

The aim of this chapter is to show the complexity of the scheduling problems in
general and to presents the problem hierarchy describing the relationships
between various scheduling problems.

Complexity theory is an important tool in scheduling research [Leung2004]. It provides a
mathematical framework in which computational problems are studied so that they can be
classified as “easy” or “hard” [Brucker2007]. This classification is useful in order to see if there
is an efficient algorithm, especially in terms of time, for solving a particular problem. A problem
belongs to a class of complexity, which informs us of the complexity of the "best algorithm" able
to solve it. Hence, if a given problem is shown to belong to the class of "easy" problems then it
means that we are able to exhibit a polynomial time algorithm to solve it. Usually this is good
news but unfortunately this does not often happen for complex problems. Accordingly, if a
problem belongs to the class of hard problems, it cannot be solved in polynomial time which,
said differently, implies that for some instances the required CPU time to solve it becomes
"exponential" [T’kindt&Billaut2006].

2.1. Problems, algorithms and complexity

A problem Π is described by giving [Garey&Johnson1979]:
• a general description of all its parameters, and
• a statement of what properties the answer, or solution, is required to satisfy.
An instance I of a problem Π is obtained by specifying particular values for all the

problem parameters [Garey&Johnson1979]. With each instance there is a “size” associated. The
size of an instance refers to the length of the data string necessary to specify the instance and it
depends on the magnitude of the largest element [T’kindt&Billaut2006]. It is also referred to as
the length (size) of the encoding scheme [Pinedo2008]. An encoding scheme maps problem
instances into the strings describing them [Garey&Johnson1979].

 Complexity of scheduling problems

18

Algorithms are general, step-by-step procedures for solving problems. An algorithm
solves a problem Π if it finds a solution for any instance I of Π [Blazewicz et. al. 2007].

In general, we are interested in finding the most "efficient" algorithm for solving a
problem. In its broadest sense, the notion of efficiency involves all the various computing
resources needed for executing an algorithm. However, by the "most efficient" algorithm one
normally means the fastest. Since time requirements are often a dominant factor determining
whether or not a particular algorithm is efficient enough to be useful in practice, this single
resource will be considered in the context of algorithm complexity analysis
[Garey&Johnson1979].

The running time of an algorithm is measured by the number of basic computational
steps it takes [Leung2004]. In order to define a computational step, a standard model of
computing is used, the Turing machine. Any standard text on computational complexity contains
the assumptions of the Turing machine [Pinedo2008].

Formally, the time complexity function of an algorithm A solving a problem Π is a
function that maps each input length of an instance I of Π into a maximal number of elementary
steps (or time unit) of a computer, which are needed to solve an instance of that size by
algorithm A [Blazewicz et. al. 2007]. This function is not well-defined until one fixes
[Garey&Johnson1979]:

• the encoding scheme to be used for determining input length (size) and
• the computer or computer model to be used for determining execution time of basic

steps.
Different algorithms possess a wide variety of different time complexity functions, and

the characterization of which of these are "efficient enough" and which are "too inefficient" will
always depend on the situation at hand. However, computer scientists recognize a simple
distinction that offers considerable insight into these matters. This is the distinction between
polynomial time algorithms and exponential time algorithms [Garey&Johnson1979].

As it was aforementioned the efficiency of an algorithm is measured by an upper bound
T(n) on the number of computational steps that the algorithm takes in order to solve an instance I
of a problem Π [Brucker2007]. In other words the efficiency of an algorithm for a given problem
is measured by the maximum (worst-case) number of computational steps needed to obtain an
optimal solution as a function of the size of the instance [Pinedo2008].

In most cases it will be difficult to calculate the precise form of T. For these reasons the
precise form of T is replaced by its asymptotic order. Therefore, it is said that T(n) ∈ O(g(n)) if
there exist constants c > 0 and a nonnegative integer n0 such that T(n) ≤ cg(n) for all integers n ≥
n0 [Brucker2007].

A polynomial time algorithm is defined to be one whose time complexity function is
O(g(n)) for some polynomial function g, where n is used to denote the input length
[Garey&Johnson1979]. Any algorithm whose time complexity function cannot be so bounded is
called an exponential time algorithm (although it should be noted that this definition includes
certain non-polynomial time complexity functions, like nlog n, which are not normally regarded as
exponential functions) [Garey&Johnson1979].

 Complexity of scheduling problems

19

The distinction between these two types of algorithms has particular significance when
considering the solution of large problem instances. There is wide agreement that a problem has
not been "well-solved" until a polynomial time algorithm is known for it. Hence, a problem is
called intractable if it is so hard that no polynomial time algorithm can possibly solve it
[Garey&Johnson1979].

This definition of "intractable" provides a theoretical framework of considerable
generality and power. The intractability of a problem turns out to be essentially independent of
the particular encoding scheme and computer model used for determining time complexity
[Garey&Johnson1979] if “reasonable” encoding scheme and “reasonable” computer model are
used.

A “reasonable” encoding scheme is one which satisfies the following two conditions:
• the encoding of an instance I should be concise and not “padded" with unnecessary

information or symbols, and
• numbers occurring in I should be represented in binary (or decimal, or octal, or in any

fixed base other than 1),
while a “reasonable” computer model is one in which there is a polynomial bound on the amount
of work that can be done in a single unit of time (thus, for example, a model having the
capability of performing arbitrarily many operations in parallel would not be considered
"reasonable," and indeed no existing (or planned) computer has this capability.)
[Garey&Johnson1979].

The definition of intractability allowed to distinguish between two different causes. The
first, which is the one we usually have in mind, is that the problem is so difficult that an
exponential amount of time is needed to discover a solution. The second is that the solution itself
is required to be so extensive that it cannot be described with an expression having length
bounded by a polynomial function of the input length [Garey&Johnson1979]. Next, the attention
will be on the first type of intractability (only problems for which the solution length is bounded
by a polynomial function of the input length will be considered).

2.2. Polynomial reduction

As theoreticians continue to seek more powerful methods for proving problems
intractable, parallel efforts focus on learning more about the ways in which various problems are
interrelated with respect to their difficulty. The principal technique used for demonstrating that
two problems are related is that of "reducing" one to the other, by giving a constructive
transformation that maps any instance of the first problem into an equivalent instance of the
second. Such a transformation provides the means for converting any algorithm that solves the
second problem into a corresponding algorithm for solving the first problem
[Garey&Johnson1979].

It is said that problem P reduces to problem P’ if for any instance of P an equivalent
instance of P’ can be constructed. In complexity theory usually a more stringent notion is used.
Problem P polynomially reduces to problem P’ if a polynomial time algorithm for P’ implies a
polynomial time algorithm for P. Polynomial reducibility of P to P’ is denoted by P ∝ P’. If it is

 Complexity of scheduling problems

20

known that if there does not exist a polynomial time algorithm for problem P, then there does not
exist a polynomial time algorithm for problem P’ either [Pinedo2008].

The notion of polynomial reduction is central to the theory of NP-hardness. The theory of
NP-hardness applies to decision problems only [Leung2004]. A decision problem is a problem
for which the answer is “yes” or “no”. Since almost all of the scheduling problems are
optimization problems, it seems that the theory of NP-hardness is of little use in scheduling
theory. But, all optimization (maximization or minimization) problems can be converted into
corresponding decision problems by providing an additional parameter ω , and simply asking
whether there is a feasible solution such that the cost of the solution is less or equal (or greater or
equal for maximization problems) than ω [Leung 2004].

A problem is called polynomially solvable if there exists a polynomial p such that T(n) ∈
O(p(n)) where n is the input length with respect to a “reasonable” encoding scheme, i.e. if there
is a k such that T(n) ∈ O(nk). If for a problem T(n) is polynomial with respect to unary encoding
then the problem is called pseudo-polynomial [Brucker2007].

The class of all decision problems which are polynomially solvable is denoted by P
[Brucker 2007]. NP refers to the class of decision problems which have “succinct” certificates
that can be verified in polynomial time. “Succinct” certificates are those whose size is bounded
by a polynomial function of the size of the input [Leung2004].

A decision problem Q is said to be NP-complete [Leung2004] if:
• Q is in the NP-class and
• All problems in the NP-class are reducible to Q.
A problem is said to be NP-hard if it satisfies only the second condition from the above

definition [Leung2004]. Not all problems within the NP-hard class are equally difficult. Some
problems are more difficult than others. For example, it may be that a problem can be solved in
polynomial time as a function of the size of the problem in unary encoding, while it cannot be
solved in polynomial time as a function of the size of the problem in binary encoding. For other
problems there may not exist polynomial time algorithms under either unary or binary encoding.
The first class of problems are not as hard as the second class of problems. The problems in this
first class are usually referred to as NP-hard in the ordinary sense or simply NP-hard. The
algorithms for this class of problems are called pseudo-polynomial. The second class of
problems are usually referred to as strongly NP-hard [Pinedo2008].

To show a problem to be NP-complete, one needs to show that all problems in the NP-
class are reducible to it. Since there are infinite number of problems in NP-class, it is not clear
how one can prove any problem to be NP-complete. Fortunately, Cook [Cook1971] gave a proof
that satisfiability problem is NP-complete, by giving a generic reduction from Turing machines
to satisfiability [Leung2004]. From satisfiability problem other problems can be shown to be NP-
complete by reducing it to the target problems. Because reducibility is transitive this is equal to
showing that all problems in the NP-class are reducible to the target problems. Starting from
satisfiability, Karp [Karp1972] showed a large number of combinatorial problems to be NP-
complete [Leung2004].

Satisfiability problem is defined as follows: given a set of variables and a collection of
clauses defined over the variables, is there an assignment of values to the variables for which

 Complexity of scheduling problems

21

each one of the clauses is true? [Pinedo2008]. The problem in which each clause contains
exactly 3 literals is called the 3-satisfiability problem (3-SAT) [Brucker2007].

The diagram of Figure 2.1 shows some basic polynomial transformations between some
problems. An arc from P to Q in Figure 2.1 indicates that P ∝ Q. Because all problems in Figure
2.1 belong to NP all these problem are NP-complete [Brucker2007].

Figure 2.1 Basic polynomial transformations [Brucker2007].

The problems of partition (PART), Hamiltonian circuit (HC) and clique (CLICUE) are
very important for scheduling theory because problems of which the complexity is established
through a reduction from partition typically allow for pseudo-polynomial time algorithms and
are therefore NP-hard in the ordinary sense. NP-hard problems of which the complexity is
established via a reduction from satisfiability, 3-partition, hamiltonian circuit or clique are
strongly NP-hard [Pinedo2008].

2.3. Complexity hierarchy

To calculate the complexity of scheduling problems, a certain amount of traditional
results exist in the literature. These results show the links between different single criterion
deterministic scheduling problems. If a scheduling problem reduces to another scheduling
problem, an algorithm for one scheduling problem can be applied to another scheduling problem
as well [T’kindt&Billaut2006].

A considerable effort has been made to establish a problem hierarchy describing the
relationships between the hundreds of scheduling problems. In the comparisons between the
complexities of the different scheduling problems it is of interest to know how a change in a
single element in the classification of a problem affects its complexity. In Figure 2.2 to 2.4 a
number of graphs are exhibited that help determine the complexity hierarchy of deterministic
scheduling problems [Pinedo2008]. These graphs illustrates polynomial reductions between

 Complexity of scheduling problems

22

scheduling problems. The vertices characterize the problems and where there is an arc between a
vertex A and vertex B if A ∝ B [T’kindt&Billaut2006].

Such graphs exist for types of problems (figure 2.2), types of constraints (figure 2.3) and
criteria (figure 2.4) [T’kindt&Billaut2006]:

• in figure 2.2, the presence of an arc from A towards B means that a polynomial
reduction exists from an A|β|γ problem towards the corresponding B|β|γ problem.

• in figure 2.3, the presence of an arc from A towards B means that a polynomial
reduction exists from the α|A|γ problem towards the corresponding α|B|γ problem.

• in figure 2.4 the presence of an arc from A towards B means that a polynomial
reduction exists from the a α|β|A problem towards the corresponding α|β|B problem.

Figure 2.2 Reduction graph for processor characteristics [Blazewicz et.al. 2007]

Figure 2.3 Reduction graph for task and resource characteristics [Blazewicz et.al. 2007]

 Complexity of scheduling problems

23

Figure 2.4 Reduction graph for optimality criteria [Blazewicz et.al. 2007]

The reduction graphs presented are usable only when we already know the complexity of
certain scheduling problems. There has been made a considerable effort for determining the
complexity results (polynomially solvable, pseudo-polynomially solvable and NP-hard) of
several scheduling problems [Brucker2007].

3. Evolutionary computation

The aim of this chapter is to give an overview of the basic elements of an
evolutionary algorithm (representation, fitness function, selection, crossover,
mutation and parameters) and to present some representation of feasible
schedules.

Scheduling problems are optimization problems. When we address a scheduling problem,
we must always look for its complexity, since this determines the nature of the algorithm to
implement. If the problem under consideration belongs to the class P , we know that an exact
polynomial algorithm exists to solve it. In this case it is convenient to use or to perfect such an
algorithm. By contrast, if the problem is NP-hard, two alternatives are possible. The first is to
propose an approximated algorithm, therefore an heuristic one, which calculates in polynomial
time a solution which is as close as possible to the optimal solution. The second is to propose an
algorithm which calculates the optimal solution of the problem, but for which the maximal
complexity is exponential. In this case, the challenge is to design an algorithm which can solve
problems of the largest possible size [T’kindt&Billaut2006].

In this thesis the first alternative is addressed by using evolutionary computation
techniques in order to propose approximation algorithm for scheduling problems.

3.1. Overview of evolutionary algorithms

Evolutionary computation (EC) refers to computer-based problem solving systems that
use computational models of evolutionary processes, such as natural selection, survival of the
fittest and reproduction, as the fundamental components of such computational systems
[Engelbrecht2002].

Evolution via natural selection of a randomly chosen population of individuals can be
thought of as a search through the space of possible chromosome values. In that sense, an
evolutionary algorithm (EA) is a stochastic search for an optimal solution to a given problem
[Engelbrecht2002].

Figure 3.1 is an outline for a simple evolutionary algorithm [Ahn2006].

 Evolutionary computation

25

Step 1. Initialization
Generate initial population P at random or with prior knowledge

Step 2. Fitness evaluation
Evaluate the fitness for all individuals in P

Step 3. Selection
Select a set of promising candidates S from P

Step 4. Reproduction
Step 4.1. Crossover (optional)

Apply crossover to the mating pool S for generating a set of offspring O
Step 4.2. Mutation (probabilistic)

Apply mutation to the offspring set O for obtaining its perturbed set O’
Step 5. Replacement

Replace the current population P
Step 6. Termination

If the termination criteria are not met, go to Step 2

Figure 3.1 Pseudo-code for simple evolutionary algorithm

This simple evolutionary algorithm is more complex than it seems at first glance. There
are five important decisions that factor into the design of the algorithm [Ashlock2006]: What
data structure will you use? What fitness function will you use? What reproduction (crossover
and mutation) operators will you use? How will you select parents from the population, and how
will you insert children into the population? What termination condition will end your
algorithm?

There are different EC paradigms [Engelbrecht2002]: Genetic algorithms (GAs),
Evolutionary programming (EP), Evolution strategies (ESs), Genetic programming (GP),
Differential evolution (DE), Cultural evolution (CE), Co-evolution (CoE). Further we will refer
only to Genetic algorithms (GAs), Evolutionary programming (EP) and Evolution strategies
(ESs).

Representation

As the structure of a solution varies from problem to problem, a solution of a particular
problem can be represented in a number of ways. Usually, a search method is most efficient in
dealing with a particular representation and is not so efficient in dealing with other
representations. Thus, the choice of an efficient representation scheme depends not only on the
underlying problem but also on the chosen search method. The efficiency and complexity of a
search algorithm largely depends on how the solutions have been represented and how suitable
the representation is in the context of the underlying search operators. In some cases, a difficult
problem can be made simpler by suitably choosing a representation that works efficiently with a
particular algorithm [DeJong1997].

Initial population

Evolutionary algorithms are stochastic, population-based search algorithms. Each EA
therefore maintains a population of candidate solutions. The first step in applying an EA to solve

 Evolutionary computation

26

an optimization problem is to generate an initial population. The standard way of generating an
initial population is to assign a random value from the allowed domain to each of the genes of
each chromosome. The goal of random selection is to ensure that the initial population is a
uniform representation of the entire search space. If regions of the search space are not covered
by the initial population, chances are that those parts will be neglected by the search process. The
size of the initial population has consequences in terms of computational complexity and
exploration abilities [Engelbrecht2002].

Fitness function

In the Darwinian model of evolution, individuals with the best characteristics have the
best chance to survive and to reproduce. In order to determine the ability of an individual of an
EA to survive, a mathematical function, called fitness function, is used to quantify how good the
solution represented by a chromosome is. Fitness function has an important role in an
evolutionary algorithm because the evolutionary operators usually make use of the fitness
evaluation of chromosomes [Engelbrecht2002].

Selection

Selection is one of the main operators used in evolutionary algorithms. The primary
objective of the selection operator is to emphasize better solutions in a population. This operator
does not create any new solution, instead it selects relatively good solutions from a population
and deletes the remaining, not-so-good, solutions [DeJong1997]. The identification of good or
bad solutions in a population is usually accomplished according to a solution’s fitness. The
essential idea is that a solution having a better fitness must have a higher probability of selection.
However, selection operators differ in the way the copies are assigned to better solutions. Some
operators sort the population according to fitness and deterministically choose the best few
solutions, whereas some operators assign a probability of selection to each solution according to
fitness and make a copy using that probability distribution. [DeJong1997].

There exist a various selection operators like proportionate selection, tournament
selection, ranking selection, etc. Selection operators are characterized by their selective pressure,
also referred to as the takeover time, which relates to the time it requires to produce a uniform
population. It is defined as the speed at which the best solution will occupy the entire population
by repeated application of the selection operator alone. An operator with a high selective
pressure decreases diversity in the population more rapidly than operators with a low selective
pressure, which may lead to premature convergence to suboptimal solutions. A high selective
pressure limits the exploration abilities of the population [Engelbrecht2002].

Reproduction (crossover and mutation)

Reproduction is the process of producing offspring from selected parents by applying
crossover and/or mutation operators.

Crossover is the process of creating one or more new individuals through the
combination of genetic material randomly selected from two or more parents. If selection
focuses on the most-fit individuals, the selection pressure may cause premature convergence due
to reduced diversity of the new populations [Engelbrecht2002].

 Evolutionary computation

27

Mutation is the process of randomly changing the values of genes in a chromosome. The
main objective of mutation is to introduce new genetic material into the population, thereby
increasing genetic diversity. [Engelbrecht2002].

Stopping criteria

The evolutionary operators are iteratively applied in an EA until a stopping condition is
satisfied. The simplest stopping condition is to limit the number of generations that the EA is
allowed to execute, or alternatively, a limit is placed on the number of fitness function
evaluations. This limit should not be too small, otherwise the EA will not have sufficient time to
explore the search space [Engelbrecht2002].

In addition to a limit on execution time, a convergence criterion is usually used to detect
if the population has converged. Convergence is loosely defined as the event when the
population becomes stagnant. In other words, when there is no genotypic or phenotypic change
in the population [Engelbrecht2002]:

3.2. Classification of parameter control techniques

The issue of setting the values of various parameters of an evolutionary algorithm (EA) is
crucial for good performance. In classifying parameter control techniques of an evolutionary
algorithm, many aspects can be taken into account [Siarry&Michalewicz2008]:

• What is changed (e.g., representation, evaluation function, operators, selection process,
mutation rate, population size, and so on)?

• How the change is made (i.e., deterministic heuristic, feedback-based heuristic, or self-
adaptive)?

• The evidence upon which the change is carried out (e.g., monitoring performance of
operators, diversity of the population, and so on)?

To classify parameter control techniques from the perspective of what component or
parameter is changed [Siarry&Michalewicz2008], it is necessary to agree on a list of all major
components of an evolutionary algorithm, which is a difficult task in itself: representation of
individuals, evaluation function, variation operators and their probabilities, selection operator
(parent selection or mating selection), replacement operator (survival selection or environmental
selection), population (size, topology, etc.).

Methods for changing the value of a parameter (i.e., the “how-aspect”) can be classified
into [Siarry&Michalewicz2008]: parameter tuning and parameter control. By parameter tuning
we mean the commonly practiced approach that amounts to finding good values for the
parameters before the run of the algorithm and then running the algorithm using these values,
which remain fixed during the run. Parameter control forms an alternative, as it amounts to
starting a run with initial parameter values that are changed during the run. We can further
classify parameter control into one of the three following categories [Siarry&Michalewicz2008]:
deterministic, adaptive and self-adaptive. This terminology leads to the taxonomy illustrated in
Figure 3.1.

 Evolutionary computation

28

Figure 3.1 Global taxonomy of parameter setting in EAs [Siarry&Michalewicz2008]

3.3. Evolutionary computation vs. classical optimization

While classical optimization algorithms have been shown to be very successful (and
more efficient than EAs) in linear, quadratic, strongly convex, unimodal and other specialized
problems, EAs have been shown to be more efficient for discontinuous, non-differentiable,
multimodal and noisy problems.EC and classical optimization (CO) differ mainly in the search
process and information about the search space used to guide the search process
[Engelbrecht2002]:

• The search process: CO uses deterministic rules to move from one point in the search
space to the next point. EC, on the other hand, uses probabilistic transition rules. Also,
EC applies a parallel search of the search space, while CO uses a sequential search. An
EA search starts from a diverse set of initial points, which allows parallel search of a
large area of the search space. CO starts from one point, successively adjusting this
point to move toward the optimum.

• Search surface information: CO uses derivative information, usually first order or
second-order, of the search space to guide the path to the optimum. EC, on the other
hand, uses no derivative information. The fitness values of individuals are used to
guide the search.

According to the no-free-lunch (NFL) theorem [Wolpert&Macready 1996]. there cannot

exist any algorithm for solving all (e.g. optimization) problems that is generally (on average)
superior to any competitor, the question of whether evolutionary algorithms (EAs) are
inferior/superior to any alternative approach is senseless. What could be claimed solely is that
EAs behave better than other methods with respect to solving a specific class of problems—with
the consequence that they behave worse for other problem classes [DeJong1997, Baeck. et. al
2000].

Part B - Contributions

4. Uniform parallel machines scheduling problem

The aim of this chapter is to present a new genetic algorithm for the uniform
parallel machines scheduling problem. The proposed algorithm not only obtains
better results than other algorithm it also computes the result faster.

Uniform parallel machines are a special class of resources [Blazewicz et. al. 2007] in
which machines have different speeds but the speed is constant and does not depends on tasks.
Because the problem was proven to be NP-hard [Garey&Johnson1979] we propose a new
genetic algorithm (GASP) in order to find a solution of this problem [Mihăilă&Mihăilă2008a].
We report some results and the performance of the presented approach are compared with other
optimization techniques. Empirical results indicate that GASP is more efficient
[Mihăilă&Mihăilă2008b].

4.1. Introduction

Scheduling is known to be NP-hard, therefore the use of heuristics is the de-facto
approach in order to cope in practice with its difficulty. Beside heuristic approaches like local
search [Ritchie&Levine2003], simulated annealing [Abraham et. al. 2000]
[Yarkhan&Dongarra2002], tabu search [Abraham et. al. 2000] and genetic algorithms [Abraham
et. al. 2000][Zomaya&The2001] were also used for scheduling problems. Ritchie and Levine
[Ritchie&Levine2004] combined an ant colony optimization algorithm with a tabu search
algorithm for the problem while Ye et al. [Guangchang et. al. 2006] formulated a multi-objective
optimization approach to simultaneously optimize the completion time and the total execution
cost. Other approaches for the problem include particle swarm optimization [Abraham et. al.
2006], fuzzy based scheduling [Kumar et. al. 2004] and economic-based approaches [Buyya et.
al. 2000].

 Uniform parallel machines scheduling problem

30

4.2. Uniform parallel machines scheduling problem

Formally, our scheduling problem, can be described as follows: n independent tasks T =
{T1, T2, …, Tn} must be allocated to m uniform parallel machines M = {M1, M2, …, Mm}
considering the objective of minimizing the completion time and utilizing the resources
effectively. The speed of each machine is expressed in number of cycles per unit time, and the
length of each task in number of cycles. Each task Ti has processing requirement Pi cycles and
machines Mk has speed of Sk cycles/second. Each task Ti has to be processed on machine Mk,
until completion [Grosan et. al. 2007].

The objective of our scheduling problem is to minimize makespan of the obtained
schedule.

4.3. Genetic algorithm for scheduling problem

The algorithm starts with a population of randomly generated chromosomes (potentially
solutions). In order to generate a new population we apply the following genetic operators
[Baeck et. al. 2000]: binary tournament selection, for parent selection, and one-point crossover
and gene mutation for generating new offspring chromosomes that will form a new population.
The evolution process is similar to the evolution scheme of a standard genetic algorithm. We
additionally used an elitism selection.

The solution to the scheduling problem is represented in the evolutionary algorithm as a
string (chromosome) of length equal to the number of tasks. The value corresponding to each
position i in the string represents the machine to which task i was allocated.

If we consider the case of 13 tasks and 3 machines then a chromosome of the task
allocation can be represented as follows:

The corresponding Gantt chart of the encoded scheduling is:

 Uniform parallel machines scheduling problem

31

4.4. Experimental results

In order to test our algorithm (GASP) we have conducted several experiments using four
test instances and we have compared the obtained results with other optimization techniques:
Genetic Algorithm (GA), Simulated Annealing (SA), Particle Swarm Optimization (PSO), Ant
Colony Optimization (ACO) and Multi-Objective Evolutionary Algorithm (MOEA).

Each experiment was repeated 10 times with different random seeds and each run was
conducted with the following parameter settings: population size: 20; number of iterations: 50 *
m * n; crossover probability: 0.45 (for instance 1) and 0.18 (for instance 2, 3, 4 and 5); mutation
probability: 0.35 (for instance 1) and 0.02 (for instances 2, 3, 4 and 5).

The average makespans and the standard deviation reported for 10 trials are illustrated in
Table 4.1.

Table 4.1. Average makespan and standard deviation.

Instance Optimal result Average makespan Standard deviation

1 46 46 0
2 85.5279 85.5431 0.009
3 41.5788 41.7395 0.0856
4 35.1303 35.3785 0.0477
5 59.1658 59.3041 0.0461

Figure 4.1 illustrates, for instances 1, 2, 3, 4 and 5, the optimum, the best and average

results (makespans) obtained by GASP.

0
10
20
30
40
50
60
70
80
90

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

Optimum

Best

Average

Figure 4.1. Best and average results obtained by GASP for instances 1, 2, 3, 4 and 5.

We compared the results obtained by our Evolutionary Algorithm for Scheduling

Problems (GASP) with other techniques used for scheduling optimization: Genetic algorithm
(GA), Simulated Annealing (SA), Particle Swarm Optimization (PSO) and Ant Colony
Optimization (ACO).

 Uniform parallel machines scheduling problem

32

The average makespan values [Abraham et. al. 2008] and standard deviations reported
for 10 trials are illustrated in Table 4.2, where am stands for average makespan and sd for
standard deviation (for PSO instance 2 we consider that there is a typing error). The results
obtained by considered algorithm for comparison were taken from [Abraham et. al.
2006][Abraham et. al. 2008]. As can be seen from Table 4.2 the GASP algorithm gave the best
result for all considered instances. We have conducted another experiment in order to see if the
performance holds in case of reduction of the number of iterations. We tested the algorithm for
25*m*n, GASP (2), and for m*n, GASP (3), number of iterations. The other parameters setting
remained unchanged.

Table 4.2. Performance comparison.

Instance 1 2 3 4 5
Optimum 46 85.5279 41.5788 35.1303 59.1658

GA
Am 47.1167 85.7431 42.927 38.0428
Sd ±0.7700 ±0.6217 ±0.415 ±0.6613

SA
Am 46.6 90.7338 55.4594 41.7889
Sd ±0.4856 ±6.3833 ±2.0605 ±8.0773

PSO
Am 46.2667 84.0544 41.9489 37.6668
Sd ±0.2854 ±0.5030 ±0.6944 ±0.6068

ACO
Am 46.2667 88.1575
Sd ±0.2854 ±0.6423

GASP Am 46 85.5431 41.7395 35.3785 59.3041
(1) Sd ±0 ±0.0090 ±0.0856 ±0.0477 ±0.0461

GASP Am 46.05 85.5595 41.8042 35.6098 59.3625
(2) Sd ±0.15 ±0.0092 ±0.0775 ±0.1398 ±0.0716

GASP Am 46.5667 85.681 42.3229 36.455 59.7058
(3) Sd ±0.3512 ±0.0803 ±0.3036 ±0.6077 ±0.1683

As can be seen from Table 4.2, the performance of GASP holds even if we halve the

number of iterations. This means that the GASP algorithm obtains very good results much faster
than the considered algorithms. For the case of m*n number of iterations, the GASP gave very
good results compared with other techniques taking into account the fact that other techniques
used 50*m*n number of iterations.

We also compared our algorithm (GASP) with Multi-Objective Evolutionary Algorithm
(MOEA) [Abraham et. al. 2008]. The average result (makespan) for 10 runs is presented in Table
4.3. Results for MOEA were taken from [Abraham et. al. 2008].

 Uniform parallel machines scheduling problem

33

Table 4.3. Performance comparison with MOEA

Instance 1 2 3 4 5
Optimum 46 85.53 41.58 35.13 59.17

MOEA am 46 36.68

GASP (1)
am 46 85.55 41.74 35.38 59.37
sd 0 0.0084 0.055 0.067 0.0659

GASP (2)
am 46.15 85.57 41.8 35.67 59.51
sd 0.2291 0.0108 0.074 0.2011 0.1328

GASP (3)
am 46.48 85.65 42.27 35.94 59.84
sd 0.3609 0.0484 0.29 0.3032 0.2112

Figure 4.2 Average makespan of MOEA and GASP for test instances 4.

As can be seen from Table 4.3 GASP gave good results even when the population size

and the number of iterations were halved. GASP (3) also gave good results taking into account
the values of population size and number of iterations. We mention that both GASP (2) and
GASP (3) have found the optimum value for instance 1. Figure 4.2 illustrates the average
makespan, for instance 4, of MOEA and GASP (with 3 parameters setting) in 10 trials.

4.5. Conclusions and further research

From the data reported above we can conclude that GASP has given excellent results
when compared to other techniques. Even though the GASP approach obtained better results for
the considered test problems, compared with the results obtained by other optimization
techniques, more conclusions could be drawn only after extensive validation using bigger
problems.

Our future research plan is to extend the approach for scheduling problems involving
unrelated parallel machines and dedicated machines and to test our algorithms with real data.

5. Permutation flow shop scheduling problem

The aim of this chapter is to present a new hybrid genetic algorithm for
permutation flow shop scheduling problem. The novelty of the proposed algorithm
consists in using a combination of a random initialization procedure and an
initialization procedure based on NEH construction heuristic, in defining a new
crossover operator and in using a mutation operator defined as a combination
between an operator based on NEH construction heuristic and shift mutation. The
results obtained by the proposed algorithm are comparable with the results
obtained by other algorithms.

The objective of the permutation flow shop scheduling problem is to find a job sequence
that will minimize a given criterion knowing that all jobs have the same processing order on
machines. Because the problem is NP-hard, many heuristic and meta-heuristic methods have
been proposed. The proposed algorithm [Mihăilă et.al.2008b] uses the NEH constructive
heuristic for generating a predefined percent of the chromosomes of initial population in order to
raise and speed up the chance of finding a good solution. The NEH constructive heuristics is also
used by mutation operator in order to improve the obtained chromosomes. The results obtained
by the proposed genetic algorithm are compared against the best results reported by an iterated
greedy algorithm.

5.1. Introduction

The permutation flow shop scheduling problem (PFSP) was first studied by Johnson in
1954 [Johnson1954] and since then many heuristic and meta-heuristic methods have been
proposed [Ruiz&Stützle2007]. The heuristic methods range from constructing heuristics like
Rapid Access [Dannenbring1977] or NEH [Nawaz et. al. 1983] to improvement heuristics like
RACS and RAES [Dannenbring1977] or that proposed by Suliman [Suliman2000]. The meta-
heuristic methods can also be viewed as improvement heuristics. These methods range from
those that improve a given schedule, like Tabu Search [Grabowski&Wodecki2004],
[Nowicki&Smutnicki1996], [Taillard1990] Simulated Annealing [Osman&Potts1989] or

 Permutation flow shop scheduling problem

35

Iterative Greedy [Ruiz&Stützle2007], to those working with a collection of schedules, like
Genetic Algorithm [Chen et. al. 1995] [Murata et. al. 1996], [Reeves&Yamada1998], [Ruiz et.
al. 2004]or Ant Colony [Rajendran&Ziegler2004].

5.2. Permutation flow shop scheduling problem

As we have already mentioned the objective of the permutation flow shop scheduling
problem is to find a sequence for processing a set of n jobs, J = {J1, …, Jn} on a set of m
processors or machines, P = {P1, … , Pm} such that a given criterion is optimized. The criterion
used in this chapter is the total idle time accumulated on the last machine and the objective is to
minimize this criterion.

Each job Ji, i = 1, …, n, is composed of a set of m tasks and each task k, k = 1, …, m, has
to be executed on a different machine, i.e. in order to be complete, a job has to be processed on
each machine. The processing time of task k of job Ji is denoted by pi,j.

In permutation flow shop problem all jobs have same processing order on machines and
therefore once the job sequence on the first machines is fixed it will be kept on all remaining
machines [Blazewicz et. al. 2007]. While the machine sequence of all jobs is the same, the
problem is to find the job sequence that will minimize the given criterion [Blazewicz et. al.
2007], in our case the total idle time accumulated on the last machines.

The permutation flow shop scheduling problem, as a particular case of the flow shop
scheduling problem fulfills several assumption that are commonly made regarding the flow
scheduling problem [Ruiz&Maroto2004]: each machine can handle only one job at a time
[Blazewicz et. al. 2007]; each job can be performed only on one machine at a time [Blazewicz et.
al. 2007]; there are no precedence constraints among tasks of different jobs [Blazewicz et. al.
2007]; all jobs are available for processing at time 0 [Ruiz&Maroto2004]; the set-up times of the
jobs on machines are negligible and therefore can be ignored [Ruiz&Maroto2004]; no
preemption is allowed, i.e. the processing of a job on a machine cannot be interrupted
[Ruiz&Maroto2004]; the machines are continuously available [Ruiz&Maroto2004]; in-process
inventory is allowed, i.e. if the next machine on the sequence needed by a job is not available,
the job can wait and joins the queue of that machines [Ruiz&Maroto2004].

In this chapter the permutation flow shop scheduling problems which comply with this
assumption are considered. Since the considered problem is known to be NP-hard
[Garey&Johnson1979] a meta-heuristic method was chosen in order to solve it.

5.3. Proposed genetic algorithm

In order to find a solution (schedule) to the permutation flow shop scheduling problem,
described in previous section, we used a generational genetic algorithm.

Genetic algorithms use a population (collection) of chromosome (encoded possible
solution) which evolves through genetic operators to a new population. This process of evolution
is guided by the fitness function which measure the goodness of chromosomes and is repeated by
a predefined number of times until a given stopping criteria is satisfied. The best chromosome

 Permutation flow shop scheduling problem

36

from the final population is reported as the output of the algorithm. The initial population is
usually randomly generated.

The solution of PFSP problem is encoded as a string permutation of the jobs. Thus the
chromosome has a length equal with the number of jobs and the value (gene) corresponding to
each position in the string represents a job. The relative order of the jobs in the permutation
indicates the processing order of the jobs by the machines [Ruiz et. al. 2004].

In order to evaluate the quality of a chromosome we use as a fitness function the total idle
time accumulated on the last machine.

Initial population was generated using a combination of a random initialization procedure
and an initialization procedure based on NEH construction heuristic [Nawaz et. al. 1983]. We
inserted the schedule (chromosome) constructed with NEH heuristic into the initial population
and we also kept it as a basis, called init hereafter, for constructing other schedules. Initialization
procedure based on NEH construction heuristic uses the idea of destruction-construction phases
introduced in [Ruiz&Stützle2007] for an iterated greedy algorithm. In order to generate a new
schedule (chromosome) some (%n) jobs are randomly removed from the init base and reinserted
using NEH construction heuristic. We insert the new scheduled (chromosome) into the initial
population and we update the init base to the value of new constructed schedule.Random
initialization procedure also uses init base for generating a new schedule but it does not update
its value. In order to generate a new schedule (chromosome) we first cut the init base after a
randomly generated cut point and swap the resulting two segments, and then we perform n swap
of two jobs randomly determined. The initial population is formed of 70% individuals created
using the random initialization procedure and 30% individuals generated using the initialization
procedure based on NEH.

In order to select the chromosome for the crossover operator we used binary tournament
selection [Back et. al. 2000] which consists in randomly picking two chromosomes from the
current population and choosing the best one.

Additionally we used an elitist selection [Back et. al. 2000] in order to prevent the loss of
best chromosomes obtained so far. In this respect 20% of best chromosomes of the current
population were copied into the next (new) population.

The crossover operator used in order to produce new (offspring) chromosome can be
described as follows:

• randomly generate one cut point
• copy, with a given probability, the first or the last segment from the parent

chromosomes into offspring chromosomes, i.e. if the first segment of the first parent
chromosome is copied as the first segment into the first offspring chromosome then
the first segment of the second parent chromosome will be copied as first segment
into the second offspring chromosome (the same tactic holds for the last segment)

• complete the remaining parts of the offspring chromosome, starting right after the
previous copied segment until the end, with the missing genes from the opposite
parent chromosomes, i.e. the first offspring chromosome will take the missing genes
from the second parent chromosome while the second offspring chromosome will be
completed with the genes from the first parent chromosome. If the first segment was
copied previously then the parent chromosomes will be traversed from the cut point

 Permutation flow shop scheduling problem

37

to right and when the end of the chromosome is reached the traversing order will
begin from the first gene and will continue until the cut point is found. If the last
segment was copied previously then the traversing policy is reversed.

As a mutation operator we used a combination between an operator based on NEH
construction heuristic, named NEH mutation hereafter, which is similar with the initialization
procedure based on NEH construction heuristic and shift mutation [Ruiz et. al. 2004] operator
which consists in randomly selecting a position of the chromosome and relocating the gene (job)
corresponding to chosen position to another randomly selected position while the genes (jobs)
between these two positions move along. The NEH mutation operator has the goal to improve
the chromosomes obtained by the crossover operator while the shift mutation introduces new
chromosomes in order to reduce the loss the diversity of population.

Taking into account the suggestion from [Ruiz et. al. 2004] we have modified the
survival operator of the generational genetic algorithm in the sense that we inserted into the next
(new) population only distinct chromosome in order limit the effect of premature convergence
and to increase the populations’ diversity.

5.4. Experimental results

In order to test the performance of our algorithm we used the standard benchmark set
[Taillard1993] from which we have chosen the 10 instances of 50 jobs and 20 machines and 10
instances of 100 jobs and 20 machines. These instances were chosen because it has been proven
that some of these instances are very difficult to solve[Ruiz&Stützle2007].

Each experiment (instance) was repeated 10 times with different random seeds. Specific
parameter settings for each run are described in Table 5.1.

Table 5.1 Parameter settings
Parameter Value

Population dimension 100
number of generations 1000
crossover probability 0.5
mutation probability 0.1

The best and average results and the lower and upper bounds indicate the total

completion time of a schedule, known as makespan. In order to determine the makespan of our
result we added the total idle time accumulated on the last machine (computed by the fitness
function) to the total execution time of the last machine.

Figure 5.1 and Figure 5.2 graphically presents, for each considered instances, the best and
average results compared against the best known upper bound.

 Permutation flow shop scheduling problem

38

3500

3600

3700

3800

3900

4000

ta051 ta052 ta053 ta054 ta055 ta056 ta057 ta058 ta059 ta060

Upper bound Best result Average result

Figure 5.1 Best and average results for instances ta051-ta060

5000

5500

6000

6500

7000

ta081 ta082 ta083 ta084 ta085 ta086 ta087 ta088 ta089 ta090

Upper bound Best result Average result

Figure 5.2 Best and average results for instances ta081-ta090

As can be seen from Figure 5.1 the results obtained are very close to upper bonds. The

difference between best results and upper bounds are in the range 0.43% and 1.16% while the
difference between average results and upper bound range from 1.05% to 1.74% for instances
ta051-ta060.

We compared the obtained results with the result obtained by an iterated greedy
algorithm with local search [Ruiz&Stützle2007]. The best results of the iterated greedy algorithm
were taken from [Ruiz&Stützle2007]. The comparison of best results is illustrated in Figure 5.3
and Figure 5.4.

 Permutation flow shop scheduling problem

39

5000

5500

6000

6500

7000

ta081 ta082 ta083 ta084 ta085 ta086 ta087 ta088 ta089 ta090

IG GA

Figure 5.3 Comparison of best results for instances ta051-ta060

3000

3500

4000

4500

ta051 ta052 ta053 ta054 ta055 ta056 ta057 ta058 ta059 ta060

IG GA

Figure 5.4 Comparison of best results for instances ta081-ta090

As can be seen from Figure 5.3 and Figure 5.4 the results obtained by the proposed

genetic algorithm are very close to the results obtained by the iterated greedy algorithm. The
difference between the best results of iterated greedy algorithm and the best results of genetic
algorithm ranges from 0.40% to 1.08% for instances ta051-ta060 and 1.05% to 2.69% for
instances ta081-ta090.

5.5. Conclusions and further research

In this chapter a genetic algorithm for solving permutation flow shop scheduling
problems has been presented. The results obtained by the proposed algorithm are close to the
result reported by other algorithms.

In future, other test instance from the standard benchmark set (e.g. 100 jobs and 20
machines, 200 jobs and 20 machines) will be considered for testing the performance of the
proposed algorithm and the influence of different genetic operators, i.e. crossover and mutation,
will be investigated.

6. Video-proxy cache scheduling problem

The aim of this chapter is to present two new ways of defining the utility of the
objects stored inside a video proxy-cache and a new genetic algorithm used for
determining the coefficients that appear in those two definitions with the aim of
maximizing the byte hit rate. The obtained result by the proposed algorithm with
one utility function is similar or even better than those obtained by other metric.

For video-proxy cache scheduling problem we introduce two new utility functions that

consider the utility of the objects when performing cache replacement operations. The
coefficients that fine-tune those functions are determined using a genetic algorithm
[Mihăilă&Cobârzan2008]. Measurements regarding the efficiency in terms of byte hit rate when
using those utility functions are made and the obtained results are compared with those yielded
by classic cache replacement algorithms [Cobârzan&Mihăilă2008].

6.1. Introduction

The volume of multimedia and especially video content on the Internet has constantly
increased in recent years. Due to the characteristics of this types of popular data (large sizes,
limits on accepted latency during playback etc.) there is a lot of stress on the transport
infrastructure which is in the general case the Internet. A proxy-cache is an entity which acts like
an intermediary in a transaction in which a client requests a multimedia/video object. In such a
case, the proxy-cache acting on behalf of the client, starts retrieving the object from an origin
server and streams it towards the client. In the case a cache is also active, the content being
streamed, or parts of it, can be saved locally.

There are numerous approaches to video caching: caching of a prefix in [Sen et. al.
1999], caching of a prefix and of selected frames in [HsiuMa&Du2000], caching of a prefix
combined with periodic broadcast in [Yang& Towsley2002] or caching of hotspot segments in
[Fabmi et. al. 2001]. Other proposals in the same category include caching of a prefix based on
popularity [Park et. al. 2001], segment-based prefix caching [Wu et. al. 2001], and variable sized
chunk caching [Balafoutis et. al. 2002]. There have been distributed approaches to the problem

 Video-proxy cache scheduling problem

41

too: multiple video servers accessible via the web managing tertiary storage systems in
[Brubeck&Brubeck1996] or cooperative caching video server in [Acharya2002] .

6.2. Proposed distributed video proxy-cache system

In [Cobârzan2005] a distributed system for video proxy-caching that is able to
dynamically adjust the number of participating nodes in the federate cache depending on client
request patterns and current load was introduced. Within the proposed system, cache
replacement operations are performed with respect to the utility value of the objects, meaning
that the objects with the smallest utility will be discarded when space has to be freed to
accommodate new objects. The utility of an object is computed using a function u defined in
[Cobârzan2005] as follows: RLCu →: (LC is the content of the local cache)

() () () () ()ouequalityValcoefohitCountcoef
ocesstimeLastAc

coefosizecoefou ∗+∗+∗+∗= 4321
1 ,

(6.1)
where:

• size(o) is the size of the object,
• timeLastAccess(o) indicates the last time the object has been requested,
• hitCount(o) shows the number of times the object has been served from the cache
• qualityValue(o) ∈ [0..1] is the measure of the object’s quality
• coef1, coef2, coef3, coef4 ∈ [0, 1] and coef1 + coef2 + coef3 + coef4 = 1.
During the initial performance evaluation of the system we have noticed that when using

the formula in defined in [Cobârzan2005] the impact of the timeLastAccess and hitCount is
negligible due to the difference in magnitude order when compared to size and hitCount. In order
to correct the observed negative aspects we introduce two new ways of defining the utility of an
object:

() () ()

() ()ouequalityValcoef
MHC

ohitCountcoef

MTLA
ocesstimeLastAccoef

MSIZE
osizecoefou

∗+∗+

+∗+∗=

43

21

 (6.2)

and

() () ()

() ()⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∗+∗+

+∗+∗

−=

ouequalityVal
coef

ohitCount
coef

ocesstimeLastAc
coef

osize
coef

ou
11

11

43

421

 (6.3)

where:
• MSIZE - the size of the largest stored object within the local cache LC until that

moment;
• MTLA - the moment in time of the last request for an object in LC;

 Video-proxy cache scheduling problem

42

• MHC - the number of times the most popular object in LC has been requested.
Additionally coef1, coef2, coef3, coef4 ∈ [0, 1] as well coef1 + coef2 + coef3 + coef4 = 1 still have
to hold for both equation (6.2) and (6.3). We also have to note that the formulae (6.2) and (6.3)
might require further tuning since we have not considered the quality value for objects during
our measurements.

In [Cobârzan2005] we considered some fix values for coef1 to coef4. Our aim is to be able
to provide an intelligent method of determining those coefficients so that different metrics are
maximized/minimized (byte hit ratio, object hit ratio/latency). This has lead to our current
approach of using genetic algorithms. As a first step we have focused on choosing the four
values coef1 to coef4 in the utility formulae (6.2) and (6.3) based on the client request patterns
(number of request for each object, moment in time when it is requested) as well as on objects
characteristics (size distribution) so that the byte hit ratio is maximal.

6.3. Genetic algorithm for determining utility function coefficients

In order to find “good” values of coefficients for the utility functions defined in (6.2) and
(6.3) we have used a genetic algorithm (GeCo) which starts with a population of randomly
generated solutions (chromosomes). A new population is generated by applying the following
genetic operators [Baeck et. al. 2000]: binary tournament selection for parent selection, and
convex crossover and radius gene mutation for generating new offspring chromosomes that will
form a new population. The evolution process is similar to the evolution scheme of a standard
genetic algorithm. We additionally used an elitist selection.

The solution is represented as a string (chromosome) of length equal to the number of
coefficients minus 1. We have considered only the first three coefficients disregarding the last
one which has the value set to 0. For our problem this means that we are not interested in the
quality of the requested/retrieved objects. The use of the forth coefficient makes sense only if
transcoding operations are supported within the video proxy-cache. The value corresponding to
each position i in the string represents the ith coefficient. These values range from 0 to 1.

We have used both formulae (6.2) and (6.3) when computing the utility of an object.
Before this we scale the gene values from the chromosome in order to assure that the sum of
coefficients equals 1. Thus, the value of each coefficient is computed using the formula:

∑
=

= 3

1i
i

i
i

gene

gene
coef (6.4)

where chromosome = (gene1, gene2, gene3).
The quality evaluation of each solution (chromosome) was done by computing the byte

hit ratio. Our goal was to maximize this value.

6.4. Experimental results

The GeCo algorithm was tested by performing a series of experiments during which we
were interested in the values obtained for byte hit ratio. A number of 12 test instances were used.

 Video-proxy cache scheduling problem

43

We compare the results obtained when using utility based cache replacement strategies (utility
functions (6.2) and (6.3) whose coefficients are generated using GeCo with the ones computed
when classic cache replacement algorithms (LRU and LFU) [Podlipnig&Böszörményi2003]
were used.

When performing the measurements, we made the assumption that no segmentation of
video objects is used (web like treatment of objects) and that once requested, an object is fully
retrieved from an origin server (if it is not already cached) and it is viewed from start to end with
no interruptions or cancellations. Also no bandwidth limitations nor transmission errors were
considered. While we are aware that those assumptions are unrealistic, the obtained results make
a good reference point for the ideal case.

The data used for the experiments has been generated using WebTraff
[Markatchev&Williamson2002] a synthetic web traffic generator. The characteristics of the 12
traces used are presented in Table 6.1.

Table 6.1 Characteristics of artificial trace logs

Trace ID Number of
requests

Number of
objects

One-Timers(% of
total objects)

Zipf slope

1 1000 300 70 0.3
2 1000 300 30 0.3
3 1000 300 70 0.75
4 1000 300 30 0.75
5 5000 1500 70 0.3
6 5000 1500 30 0.3
7 5000 1500 70 0.75
8 5000 1500 30 0.75
9 10000 3000 70 0.3
10 10000 3000 30 0.3
11 10000 3000 70 0.75
12 10000 3000 30 0.75

Our intent was to measure byte hit ratio under both lightly skewed (Zipf α = 0.3) and
more severe skewed (Zipf α = 0.75) object popularity distribution and with varying amount of
one-timers (objects requested only once) (30% for traces 2, 4, 6, 8, 10 and 12 vs. 70% in traces 1,
3, 5, 7, 9 and 11). We have also varied the size of the cache from 1% to 10% of the overall size
of the requested objects (the size of all objects requested multiple times was considered only
once).

The optimum value for each of the 12 traces was computed using the formula:

edDatafTransferrTotalSizeO
ectsfUniqueObjTotalSizeO

−1 (5)

The genetic algorithm (GeCo) we have used had the following setup: population size

100, number of generations 10, crossover probability 0.7 and mutation probability 0.6.

 Video-proxy cache scheduling problem

44

We present the results in terms of byte hit rate in Figure 6.1 and Figure 6.2 obtained for
traces 11 and 12 with the coefficients (obtained using the GeCo algorithm). When studying the
results it can be seen that using utility (6.2) yields much better results than when using utility
(6.3) (Figure 6.1). In cases when the object popularity distribution is more severe skewed (Zipf
α = 0.75) utility (6.2) clearly generates better results than LRU while in case the object
popularity distribution is lightly skewed (Zipf α = 0.3) utility (6.2) provides comparable results
with LRU (but still slightly better) (Figure 6.2).

Also it is interesting to notice that for large traces the increases in terms of byte hit ratio
are negligible, for cache size greater than 7%. This means that we do not need extremely large
cache sizes in order to obtain good byte hit ratio values which translates in reduced amount of
used external bandwidth.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

LRU LFU Average U2 Average U3

Figure 6.1 Byte hit ratio values for trace 11

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

LRU LFU Average U2 Average U3

Figure 6.2 Byte hit ratio values for trace 12

 Video-proxy cache scheduling problem

45

Table 6.2 summarizes by exactly how much is utility (6.2) better than LRU when byte hit

rate best and average results are considered. The average is about 1.7% which can be significant
if pricing models are to be considered.

Table 6.2 Mean BHR difference between situations when using utility

Trace ID Mean Best Mean Average
1 1.0287% 0.6782%
2 1.1965% 0.9833%
3 4.0188% 3.7725%
4 0.3896% 0.1306%
5 1.1521% 0.6752%
6 0.3955% 0.0694%
7 2.4681% 2.1730%
8 0.8924% 0.6412%
9 1.0731% 0.8707%
10 0.7187% 0.4404%
11 1.8760% 1.7511%
12 1.3319% 1.1791%

Average 1.3784% 1.1137%

6.5. Conclusions and further research

We have proposed two new ways (equation (6.2) and (6.3)) of defining the utility of the
objects stored inside a video proxy-cache that provide better balancing between considered
characteristics (size, timeLastAccess, hitCount) for each object. We have also used a genetic
algorithm (GeCo) for determining the coefficients that appear in those two definitions with the
aim of maximizing the byte hit rate. The obtained results in terms of byte hit rate when the GeCo
algorithm and the utility function (6.2) were used are similar or even better than those obtained
for LRU.

We intend to use an approach similar to the one presented in GeCo in order to determine
the coefficients that regulate the dynamics of the system proposed in [Cobârzan2005] and
[Cobârzan&Böszörményi2007] namely the addition of new proxy-caching nodes to the federate
cache, respectively their elimination when they are no longer needed. Considering segmentation
strategies for the cached video objects while using the GeCo algorithm also needs further
investigation.

Conclusions and further research

The aim of this thesis was to investigate the use of genetic algorithms in solving different
classes of scheduling problems. Because the problems addressed are NP-hard the alternative of
using genetic algorithms has been proven to be a good one.

In this respect basic elements of a scheduling problem (tasks, resources and objective

functions), some aspects related to these elements, a classification scheme of scheduling problem
and the complexity of these problems was presented first. Next an overview of the basic
elements of a genetic algorithm (representation, fitness function, selection, crossover, mutation
and parameters) was conducted.

Using the aforementioned background three scheduling problems were addressed:
• A uniform parallel machines scheduling problem was solved using a new genetic

algorithm for the uniform parallel machines scheduling problem. The proposed
algorithm obtained better results than other algorithms.

• A permutation flow shop scheduling problem was solved using a new hybrid genetic
algorithm. The novelty of the proposed algorithm consisted in using a combination of
a random initialization procedure and an initialization procedure based on NEH
construction heuristic, in defining a new crossover operator and in using a mutation
operator defined as a combination between an operator based on NEH construction
heuristic shift mutation. The results obtained by the proposed algorithm are
comparable with the results obtained by other algorithms.

• Video-proxy cache scheduling problem was addressed. For this problem two new
formulas for utility of the objects stored inside a video proxy-cache were defined. A
new genetic algorithm was used for determining the coefficients that appear in these
two definitions with the aim of maximizing the byte hit rate. The results obtained by
the proposed algorithm with one of utility formula are similar or even better than
those obtained by other metric.

 Conclusions and future research

47

I intend to focus my future research on the following convergent direction:
• project management scheduling in order to investigate the field of tasks and resources

allocation in projects that seems to be driving force for economic growth
• multi-objective optimization in order to consider more than just one objective

function as a goal for optimization
• optimization in dynamic environments in order to simulate/capture the changes that

appear during the lifecycle of a project
• stochastic scheduling in order to better simulate real life situations

References

[Abraham et. al. 2000] Abraham A., Buyya R. and Nath B., Nature's Heuristics for Scheduling
Jobs in Computational Grids, in Proceedings of 8th IEEE International Conference on
Advanced Computing and Communications, Tata McGraw-Hill Publishing Co. Ltd, New
Delhi, pp. 45-52, 2000.

[Abraham et. al. 2006] Abraham A, Liu H, Zhang W, Chang TG, Scheduling Jobs on
Computational Grids Using Fuzzy Particle Swarm Algorithm, Proceedings of 10th
International Conference on Knowledge-Based & Intelligent Information & Engineering
Systems, England, pp. 500-507, 2006.

[Abraham et. al. 2008] Abraham A, Liu H., Grosan C., and Xhafa F., Nature Inspired
Metaheuristics for Grid Scheduling: Single and Multiobjective Optimization Approaches,
Metaheuristics for Scheduling: Distributed Computing Environments, Studies in
Computational Intelligence, Springer Verlag, Germany, pp. 247-272, 2008.

[Acharya2002] S. Acharya and B. Smith. Middleman: A video caching proxy server. In
Proceedings of the 10th International Workshop on Network and Operating System
Support forDigital Audio and Video, 2002.

[Ashlock2006] Ashlock, D., Evolutionary Computation for Modeling and Optimization,
Springer, 2006

[Back et. al. 2000] Back T., D.B. Fogel, and Z. Michalewicz (Eds), Evolutionary Computation:
Basic Algorithms and Operators, Vol. 1 and Vol. 2, Institute of Physics Publishing,
Philadelphia, PA, 2000.

[Baeck2000] Baeck, T., Fogel, D., Michalewicz. (eds)., Evolutionary Computation, vol. 1 and 2,
Institute of Physics Publishing, 2000.

[Balafoutis et. al. 2002] E. Balafoutis, A. Panagakis, N. Laoutaris, and I. Stavrakakis. The impact
of replacement granularity on video caching. In IFIP Networking 2002, volume 2345 of
Lecture Notes in Computer Science. Springer, 2002.

[Blazewicz et. al. 2007] Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G. and Weglarz, J.,
Handbook on scheduling. From Theory to Applications, Springer, 2007.

 References

49

[Blazewicz1983] Blazewicz J., Lenstra, J.K., A.H.G. Rinnooy Kan, Scheduling subject to
resource constraints: classification and complexity, Discrete Applied Mathematics 5, p.
11-24, 1883

[Brubeck&Brubeck1996] D. W. Brubeck and L. A. Rowe. Hierarchical storage management in a
distributed vod system. IEEE MultiMedia, 3(3):37–47, 1996.

[Brucker1999] Brucker, P., Drexl, A., Moehring, R., Neumann, K., Pesch, E., Resource-
Constrained Project Scheduling: Notation, Classification, Models and Methods,
European Journal of Operational Research, no. 112, pp. 3-41, 1999.

[Brucker2007] Brucker, P., Scheduling Algorithms, Springer, 2007

[Budiu1999] Budiu, M., 1999, http://www.cs.cmu.edu/~mihaib/articole/

[Buyya et. al. 2000] Buyya R, Abramson D, Giddy J, Grid Resource Management, Scheduling,
and Computational Economy, International Workshop on Global and Cluster Computing,
Japan, 2000.

[Chen et. al. 1995] Chen, C.-L., Vempati, V. S., and Aljaber, N. (1995). An application of
genetic algorithms for flow shop problems. European Journal of Operational Research,
80(2):389–396.

[Cobârzan&Böszörményi2007] C. Cobârzan and L. Böszörményi. Further developments of a
dynamic distributed video proxy-cache system. In Proceedings of the 15th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP
2007), pages 349–357. IEEE Computer Society, 2007.

[Cobârzan2005] C. Cobârzan. Dynamic proxy-cache multiplication inside LANs. In Euro-Par
2005, volume 3648 of Lecture Notes in Computer Science, pages 890–900. Springer,
2005.

[Cobârzan&Mihăilă2008] Cobârzan C., Mihăilă C., A Genetic Algorithm for Utility Based
Video Proxy-Caching, in Proceedings of the International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), 231-238, Timişoara, România,
2008

[Conway2003] R. Conway, W. Maxwell and L. Miller. Theory of scheduling. Dover Publications
Inc., reprint edition, 2003.

[Cook1971] Cook, S., The Complexity of Theorem Proving Procedures, in Proceedings of the
third annual ACM symposium on Theory of computing, pp.151–158, 1971.

[Dannenbring1977] Dannenbring, D. G. An evaluation of flow shop sequencing heuristics.
Management Science, 23, 11 (1977), 1174--1182.

[Demeulemeester2002] Demeulemeester, E.L., Herroelen, W.S., Project Scheduling: A Research
Handbook, Kluwer Academic Publishers, Dordrecht, 2002.

[Drozdowski1996] Drozdowski M., Selected Problems of Scheduling Tasks in Multiprocessor
Computer Systems, Poznan University of Technology Press, Poznan, 1996.

References

50

[Dumitrescu2000] Dumitrescu, D., Lazzerini, B., Jain, L., Dumitrescu, A., Evolutionary
Computation. CRC Press, Boca Raton, FL, 2000.

[Dumitrescu et.al.2002a] Dumitrescu, D., Iantovics, B., Florea, C., Multi-Agent Systems: a new
allocation protocol and evolutionary search for equilibrium; , in Proceedings of the
Symposium “Zilele academice clujene” - Computer Science Section, 119-133, Cluj-
Napoca, Romania, 2002.

[Dumitrescu et.al.2002b]Dumitrescu, D., Florea, C., Patranjan; P., Evolutionary Reorganization
in MAS; , in Proceedings of the European Conference on Information Technology
(ECIT02), 1-5, Iasi, Romania, 2002.

[Dumitrescu et.al.2002c]Dumitrescu, D., Florea, C., Patranjan; P., A New Evolutionary Model
for Multi Agent Systems, in Proceedings of the 4th International Workshop on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC02), 137-143, Timisoara,
Romania, 2002.

[Eiben2003] Eiben, A.E., Smith, J.E., Introduction to Evolutionary Computing, Springer, 2003.

[Fabmi et. al. 2001] H. Fabmi, M. Latif, S. Sedigh-Ali, A. Ghafoor, P. Liu, and L. Hsu. Proxy
servers for scalable interactive video support. Computer, 34(9):54–60, 2001.

[Florea&Dumitrescu2003] Florea, C., Dumitrescu, D., Negotiation in Multiagent Systems; in
Proceedings of the Conference on Applied and Industrial Mathematics (CAIM03),
Oradea, Romania, 2003.

[Fogel1966] Fogel, L.J., Owens, A.J., Walsh, M.J., Artificial Intelligence through Simulated
Evolution, John Wiley, 1966.

[Garey&Johnson1979] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to
the theory of NP-completeness. W. H. Freeman, New York, 1979.

[Garey1979] Garey, M.R., Johnson, D.S., Computers and Intractability: A Guide to the Theory
of NP-Completeness, WH Freeman&Co, San Francisco, 1979.

[Goldberg1989] Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine
Learning, Kluwer Academic Publishers, Boston, MA, 1989.

[Grabowski&Wodecki2004] Grabowski, J. and Wodecki, M. (2004). A very fast tabu search
algorithm for the permutation flow shop problem with makespan criterion. Computers &
Operations Research, 31(11):1891–1909.

[Graham1979] Graham, R.L., Lawler, E.L., Lenstra, J.K., A.H.G. Rinnooy Kan, Optimization
and approximation in deterministic sequencing and scheduling theory: a survey, Annals
of Discrete Mathematics 5, p. 287-326, 1979

[Gro�an et.al.2003] Groşan, C., Oltean, M., Florea, C., NP-complete problems using
Evolutionary Algorithms, Lucrarile Seminarului de Didactica Matematicii al
Universitatii Babes-Bolyai, Vadu-Crisului, Romania, 2003.

[Grosan et. al. 2007] Grosan, C., Abraham, A., and Helvik, B., Multiobjective Evolutionary
Algorithms for Scheduling Jobs on Computational Grids, IADIS International
Conference, Applied Computing 2007, pp. 459-463, 2007.

 References

51

[Guangchang et. al. 2006] Guangchang Ye, Ruonan Rao, Minglu Li, A Multiobjective Resources
Scheduling Approach Based on Genetic Algorithms in Grid Environment, Fifth
International Conference on Grid and Cooperative Computing Workshops, pp. 504-509,
2006.

[Holland1975] Holland, J.H., Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, 1975.

[HsiuMa&Du2000] W. Hsiu Ma and D. H.-C. Du. Reducing bandwidth requirement for
delivering video over wide area networks with proxy server. In IEEE International
Conference onMultimedia and Expo (II), pages 991–994. IEEE Computer Society, 2000.

[Johnson1954] Johnson, S. M. Optimal two-and three-stage production schedules. Naval
Research Logistics Quarterly, 1 (1954), 61--68.

[Karp1972] Karp, R.M., Reducibility Among Combinatorial Problems, Complexity of Computer
Computations, pp. 85-103, Plenum Press, 1972

[Kumar et. al. 2004] Kumar , K.P., Agarwal , A., and Krishnan, R., Fuzzy based resource
management framework for high throughput computing, in Proceedings of the 2004
IEEE International Symposium on Cluster Computing and the Grid, 555-562, 2004.

[Leung2000] Leung, J.Y-T. (ed.), Handbook of Scheduling. Algorithms, Models and
Performance Analysis, Chapman & Hall/CRC Press, Boca Raton, 2000.

[Leung2004] Leung, J.Y-T, Anderson, J.H., Handbook of Scheduling: Algorithms, Models, and
Performance Analysis, Chapman and Hall / CRC, Boca Raton, Florida, 2004.

[Liu1995] Liu, Z., Sanlaville, E., Preemptive scheduling with variable profile, precedence
constraints and due dates, Discrete Applied Mathematics 58, p. 253-280, 1995

[Markatchev&Williamson2002] N. Markatchev and C. Williamson. Webtraff: A gui for web
proxy cache workload modeling and analysis. In MASCOTS’02: Proceedings of the 10th
IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS’02). IEEE Computer Society, 2002.

[Mihăilă&Cobârzan2008] Mihăilă C., Cobârzan C., Evolutionary approach for multimedia
caching, in IEEE Proceedings of the Evolutionary Techniques in Data Processing
Workshop, International Conference on Database and Expert Systems Application
(DEXA), 531-536, Torino, Italia, 2008

[Mihăilă&Dumitrescu] Mihăilă, C., Dumitrescu, D., Quantum Computing and Multiagent
Systems, in Proceedings of the Symposium “Colocviul Academic Clujean de
Informatica”, Cluj-Napoca, Romania, 2005.

[Mihăilă&Mihăilă2008a] Mihăilă C., Mihăilă A., An Evolutionary Algorithm for Uniform
Parallel Machines Scheduling, in IEEE Proceedings of the European Modelling
Symposium, 76-80, Liverpool, United Kingdom, 2008.

[Mihăilă&Mihăilă2008b] Mihăilă A., Mihăilă C., Uniform Parallel Machines Scheduling using
an Evolutionary Algorithm, in IEEE Proceedings of the International Workshop on
Evolutionary Multiobjective Optimization Design and Applications, International

References

52

Conference on Intelligent Systems Design and Applications (ISDA), 401-406,
Kaohsiung, Taiwan, 2008

[Mihăilă et.al.2008a] Mihăilă A., Mihiş A., Mihăilă C., Genetic Algorithm for Logical Topic
Text Segmentation, in IEEE Proceedings of the International Conference on Digital
Information Management, 500-505, London, United Kingdom, 2008

[Mihăilă et.al.2008b] Mihăilă C., Niţchi, I.Ş., R., Mihăilă, A., Coroş R., A genetic algorithm for
permutation flow shop scheduling problem, in Annals of Tiberiu Popoviciu Seminar of
Functional Equation, Approximation and Convexity, p. 241-250, Cluj-Napoca, România,
2008

[Mihi� et.al.2006] Mihiş, A., Creţu, C., Mihăilă, C., Şerban, C., Code Simplification using
Boolean Functions Simplification, in Proceedings of the International Conference of
Mathematics & Informatics, Supplement of “Studii si cercetari stiintifice. Seria
Matematică”, no.16, University of Bacau, 493-502, Bacău, Romania, 2006.

[Montana2007]Montana, D., Hussain, T., Vidaver, G., A Genetic-Algorithm-Based
Reconfigurable Scheduler, Evolutionary Scheduling, Springer, 2007.

[Murata et. al. 1996] Murata, T., Ishibuchi, H., and Tanaka, H. (1996). Genetic algorithms for
flowshop scheduling problems. Computers & Industrial Engineering, 30(4):1061–1071.

[Nawaz et. al. 1983] Nawaz, M., Enscore Jr., E. E., and Ham, I. A heuristic algorithm for the m-
machine, n-job flow shop sequencing problem. OMEGA, 11, 1 (1983), 91--95.

[Niţchi et.al.2007a] Niţchi, I.Ş., Mihăilă, A., Mihăilă, C., About Project Management Planning
Optimization using Genetic Algorithms, in Proceedings of the International Conference
on Knowledge Engineering Principles and Technologies, Special issue of Studia
Universitatis Babes-Bolyai Informatica Series, 79-82 ,Cluj-Napoca, România, 2007.

[Niţchi et.al.2007b] Niţchi, I.Ş., Avram-Niţchi, R., Mihăilă, A., Mihăilă, C., About the Logical
Model for Intelligent Agents, in Proceedings of the International Conference on
Knowledge Engineering Principles and Technologies, Special issue of Studia
Universitatis Babes-Bolyai Informatica Series, 83-90, Cluj-Napoca, România, 2007.

[Niţchi et.al.2007c] Niţchi, I.Ş., Avram-Niţchi, R., Mihăilă, A., Mihăilă, C., On the
collaborative systems for e-business, in Proceedings of the International Conference on
Competitiveness and European Integration, 266-272, Cluj-Napoca, România, 2007.

[Nowicki&Smutnicki1996] Nowicki, E. and Smutnicki, C. (1996). A fast tabu search algorithm
for the permutation flowshop problem. European Journal of Operational Research,
91(1):160–175.

[Oltean et.al.2009] Oltean M., Groşan C., Dioşan L., Mihăilă C., Genetic Programming with
Linear Representation a Survey, International Journal on Artificial Intelligence Tools,
197-238, 2009

[Osman&Potts1989] Osman, I. and Potts, C. (1989). Simulated annealing for permutation flow-
shop scheduling. OMEGA, The International Journal of Management Science,
17(6):551–557.

 References

53

[Park et. al. 2001] S.-H. Park, E.-J. Lim, and K.-D. Chung. Popularity-based partial caching for
vod systems using a proxy server. In Proceedings of the 15th International Parallel &
Distributed Processing Symposium (IPDPS-01). IEEE Computer Society, 2001.

[Podlipnig&Böszörményi2002] S. Podlipnig and L. Böszörményi. Replacement strategies for
quality based video caching. In IEEE International Conference on Multimedia and Expo
(ICME), Vol. 2, pages 49–53. IEEE Computer Society, 2002.

[Podlipnig&Böszörményi2003] S. Podlipnig and L. Böszörményi. A survey of web cache
replacement strategies. ACMComput. Surv., 35(4):374–398, 2003.

[Rajendran&Ziegler2004] Rajendran, C., and Ziegler, H. Ant-colony algorithms for permutation
flowshop scheduling to minimize makespan/total flowtime of jobs. European Journal of
Operational Research, 155, 2 (2004), 426--438.

[Rechenberg1973] Rechenberg, I., Evolution Strategy , Frommann-Holzboog, Stuttgart, pp.147-
159, 1973.

[Reeves&Yamada1998] Reeves, C. and Yamada, T. (1998). Genetic algorithms, path relinking,
and the flowshop sequencing problem. Evolutionary Computation, 6(1):45–60.

[Rejaie&Kangasharju2001] R. Rejaie and J. Kangasharju. Mocha: A quality adaptive multimedia
proxy cache for internet streaming. In Proceedings of the International Workshop on
Network and Operating Systems Support for Digital Audio and Video, pages 3–10. ACM
Press, 2001.

[Ritchie&Levine2003] Ritchie, G. and Levine, J., A fast, effective local search for scheduling
independent jobs in heterogeneous computing environments, Technical report, Centre for
Intelligent Systems and their Applications, School of Informatics, University of
Edinburgh, 2003.

[Ritchie&Levine2004] Ritchie, G. and Levine, J., A hybrid ant algorithm for scheduling
independent jobs in heterogeneous computing environments, in 23rd Workshop of the UK
Planning and Scheduling Special Interest Group, 2004.

[Ruiz et. al. 2004] Ruiz, R., Maroto, C., and Alcaraz, J. (2004). Two new robust genetic
algorithms for the flowshop scheduling problem. OMEGA, the International Journal of
Management Science.

[Ruiz&Maroto2004] Ruiz, R. and Maroto, C. (2004). A comprehensive review and evaluation of
permutation flowshop heuristics. European Journal of Operational Research. In press.

[Ruiz&Stützle2007] Ruiz, R., and Stützle, T. A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem. European Journal of Operational
Research, 177 (2007), 2033--2049.

[Sasabe et. al. 2001] M. Sasabe, N. Wakamiya, M. Murata, and H. Miyahara. Proxy caching
mechanisms with video quality adjustment. In Proceedings of SPIE International
Symposium on The Convergence of Information Technologies and Communications,
pages 276–284, 2001.

[Schmidt1984] Schmidt, G., Scheduling on semi-identical processors, Zeitschrift für Operations
Research. A28, p. 153-162, 1984

References

54

[Sen et. al. 1999] S. Sen, J. Rexford, and D. F. Towsley. Proxy prefix caching for multimedia
streams. In IEEE INFOCOM, pages 1310–1319. IEEE Computer Society, 1999.

[Smith 2005] Smith, S.F., Is Scheduling a Solved Problem?, Multidisciplinary Scheduling:
Theory and Applications, Springer, pp. 3-17, 2005.

[Suliman2000] Suliman, S. (2000). A two-phase heuristic approach to the permutation flow-shop
scheduling problem. International Journal of Production Economics, 64:143–152.

[Taillard1990] Taillard, E. Some efficient heuristic methods for the flowshop sequencing
problems. European Journal of Operational Research, 47 (1990), 65--74.

[Taillard1993] Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal
of Operational Research, 64(2):278–285.

[Taillard2004] Taillard, E. (2004). Summary of best known lower and upper bounds of Taillard’s
instances. http://mistic.heig-vd.ch/taillard/.

[Tompkins2003] Tompkins, M. F., Optimization Techniques for Task Allocation and Scheduling
in Distributed Multi-Agent Operations, Master's thesis, Massachusetts Institute of
Technology, Cambridge, MA, 2003.

[Veltman1993] Veltman, B., Multiprocessor Scheduling with Communication Delays, Ph.D
Thesis, CWI-Amstrerdam, 1993.

[Weawer2006] Weawer Patrick, A brief history of scheduling, myPrimavera06, Canberra, 2006,
http://www.pmforum.org/library/papers/2006/A_Brief_History_of_Scheduling.pdf

[Wu et. al. 2001] K.-L. Wu, P. S. Yu, and J. L. Wolf. Segment-based proxy caching of
multimedia streams. In WWW ’01: Proceedings of the 10th international conference on
World Wide Web, pages 36–44. ACM Press, 2001.

[Yang& Towsley2002] S. S. Yang Guo and D. Towsley. Prefix caching assisted periodic
broadcast for streaming popular videos. In Proceedings of ICC (International Conference
on Communications), pages 2607 – 2612. IEEE Computer Society, 2002.

[Yarkhan&Dongarra2002] Yarkhan, A. and Dongarra, J., Experiments with scheduling using
simulated annealing in a grid environment, in 3rd International Workshop on Grid
Computing (GRID2002), 232-242, 2002.

[Zomaya&The2001] Zomaya, A.Y. and The, Y.H., Observations on using genetic algorithms for
dynamic load-balancing, IEEE Transactions On Parallel and Distributed Systems,
12(9):899-911, 2001.

