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Abstract

Dynamic graphs are graphs that can change in time, by undergoing
a number of local updates. In a dynamic graph problem some property
of the graph must be maintained during these updates and queries must
be answered as efficiently as possible, without recomputing everything
from scratch using a classical static graph algorithm. Dynamic graph
problems have a wide range of applications and can also be used to
speed-up existing static algorithms.

Our dissertation is a comprehensive study of data structures, tech-
niques and algorithms used in solving dynamic graph problems. We
emphasize the practical aspect of these solutions, by giving an overview
of the experimental studies conducted for each of the most important
dynamic graph problems. In every case we summarize the current
state of the art and give recommendations for algorithms to be used in
practical applications, based on the expected structure of the graph and
operation sequence. The explanation of the algorithms is facilitated
by pseudocodes and figures.

Our most original contribution is the study of the debts’ clearing
problem. It is a problem with applications mainly in economics, which
can be naturally modeled using graph theory. We prove that the
problem is NP-hard, but provide an exact algorithm, that can be
useful for reasonable sizes of the input. Reformulating the problem
in dynamic graphs can have its own set of applications. We give a
data structure to solve the dynamic version of the problem, which can
also be used to develop a different solution for the static version. We
report the results of an extensive experimental study comparing these
algorithms and in the closing of our dissertation we propose a genetic
algorithm to solve the problem for large inputs.

Keywords: dynamic graph, debt clearing
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Table of Notations
Bold font New term

Capital font Abstract method name,
problem name

Typewriter font Abbreviation of an algorithm,
concrete implementation of a method

Italic font Variable names, mathematical notations
n Number of nodes in a graph
m Number of edges or arcs in a graph
nrq Number of queries in a dynamic graph algorithm
nru Number of updates in a dynamic graph algorithm
nr Total number of operations in a dynamic graph algorithm
tu Worst-case update time complexity
tq Worst-case query time complexity
tu Amortized update time complexity
tq Amortized query time complexity
ta Amortized time complexity per operation
tp Preprocessing time complexity per operation
tt Total expected worst-case running time complexity

u · · · v Path from node u to node v
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List of Acronyms
Abd97 Abdeddaïm’s algorithm, described in [Abd97]
Abd00 Abdeddaïm’s algorithm, described in [Abd00]
DSF Disjoint set forest, described in Section 2.1
Debt Our algorithm for fully dynamic debt clearing,

described in Section 4.2
ES Decremental connectivity algorithm by Even and Shiloach

FredI-85 Topological partition by Frederickson
FredI-91 Restricted partition by Frederickson
FredI-Mod Light partition by Amato et. al
FredII-85 Topology tree based on topological partitions by Frederickson
FredII-91 Topology tree based on restricted partitions by Frederickson
FredIII-85 2-dimensional topology tree based on FredII-85

FredIII-91 2-dimensional topology tree based on FredII-91

HK Fully dynamic connectivity algorithm by Henzinger and King
HT Refinement of HK by Henzinger and Thorup
HDT Fully dynamic connectivity algorithm by

Holm, De Lichtenberg and Thorup
HDTMST Fully dynamic minimum spanning tree algorithm by

Holm, De Lichtenberg and Thorup
Ital Partially dynamic transitive closure algorithms by Italiano

Ital-Gen Generalization of Ital by Frigioni et. al
KUF k-UF tree by Blum, described in Section 2.2

Spars(X) Sparsification described in Section 2.6 on top of algorithm X

ThoDec Decremental connectivity algorithm by Thorup
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1 Introduction

1.1 Motivation

Graph theory is an established area of research in combinatorial mathematics.
It is also one of the most active areas of mathematics that has found a large
number of applications in diverse areas including not only computer science,
but also chemistry, physics, biology, anthropology, psychology, geography,
history, economics, and many branches of engineering. Graph theory has
been especially useful in computer science, since any data structure can be
represented by a graph. Furthermore, there are applications in networking, in
the design of computer architectures, and generally, in virtually any branch
of computer science ([HarGup97]).

Traditional graph algorithms operate on static graphs. They deal with
the development of an algorithm, that, given a fixed graph as input, solves a
particular problem on it, for example: “is the graph connected?”.

Dynamic graphs are not fixed in time, but can evolve through local
changes of the graph. The problem has to be resolved quickly after each
modification. The challenge for an algorithm dealing with a dynamic graph
is to maintain in an environment of dynamic local changes, the desired graph
property efficiently, that is, without recomputing everything from scratch
after each dynamic change. Dynamic graphs model many graphs occurring
in real-life applications much more closely, because no large system is truly
static ([AlbEtAl98, Zar02]).

1.2 The structure of this work

In Section 1.1 we give the main motivational factors of this dissertation. A list
of our publications and original results can be found in Section 1.3. In Section
1.4 we lay down the theoretical base of the main concepts used throughout
this work along with our conventions for notations. In the theoretical analysis
of dynamic graph problems various computational models are used, which
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are shortly described in Section 1.5.
In Chapter 2 a collection of advanced data structures used in dynamic

graph algorithms can be found. In Chapters 3 and 4 the main dynamic
problems in undirected, respectively directed graphs are considered.

1.3 Own contribution

Our original contributions are listed below. Most of them were published
in [Pat09], [Pat11], [Pat11b] and [PatBar11]. Some related work can be also
found in [PatIon08] and [IonPat08].

• A comprehensive presentation of problems on directed and undirected
dynamic graphs, with comparisons of novel algorithms not only from a
theoretical but also a practical point of view.

• To the best of our knowledge the first detailed pseudocode for the
algorithm by Even and Shiloach and implementation details for other
algorithms.

• Mathematically rigorous proofs for NP-hardness, NP-hardness in the
strong sense and NP-easiness of the debts’ clearing problem in the
general case and in the case restricted to a single path.

• Algorithms and data structures developed to solve the debts’ clearing
problem in the static and also the dynamic version, tested in a set of
experiments.

• New recombination and mutation operators used in the genetic algo-
rithm.

1.4 Definitions and notations

In this section we state some well-known graph theoretical definitions, followed
by the definition of the dynamic graph and a short categorization of dynamic
graph problems.
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Definition 1.1 We call G = (V,E) a graph, where V is the set of nodes
or vertices, and E ⊆ V × V is the set of edges or arcs. 2

Definition 1.2 If (i, j) ∈ E ⇔ (j, i) ∈ E the graph is undirected, and
E is the set of edges, otherwise the graph is directed (sometimes called a
digraph) and we call E the set of arcs (sometimes noted by A). 2

Definition 1.3 If G is directed and contains no cycles, then it is called a
directed acyclic graph, commonly abbreviated as DAG. 2

Definition 1.4 In a weighted graph we have a weight associated to each
edge or arc, w : E → R. 2

Definition 1.5 A dynamic graph is a graph that changes in time by
undergoing a sequence of updates. An update is an operation that inserts or
deletes edges or nodes of the graph, or changes attributes associated to edges
or nodes. 2

Definition 1.6 A dynamic graph problem is said to be incremental if only
insertions are allowed. 2

Definition 1.7 A dynamic graph problem is said to be decremental if only
deletions are allowed. 2

Definition 1.8 A dynamic graph problem is said to be partially dynamic
if it is either incremental or decremental. 2

Definition 1.9 A dynamic graph problem is said to be fully dynamic if
there is no restriction regarding the type of updates. 2

1.5 Computational models

Several computational models have been developed to facilitate the theoretical
analysis of dynamic graph algorithms. A short description of the most
important ones is given in the corresponding sections of our dissertation.
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2 Data structures

2.1 Disjoint set forest

Introduction This data structure is used to represent disjoint sets of items
and is the main building block in incremental connectivity algorithms.

Supported operations Each set has a name, which in most of the cases
is just a member of the set (also called a representative). The supported
operations are:

• Make(x): Creates a new set, whose only member is x. Since the sets
are disjoint, x must not be in any other set.

• Union(x, y): Unites the sets having x and y as representatives. x 6= y

is assumed.

• Find(x): Returns the name of the set, that contains x.

Performance Let nru be the number of Union operations, nrq the number
of Find operations, n the number of Make operations and nr = nru+nrq+n.
As the sets ar disjoint, it is easy to deduce, that after n− 1 Union operations
only one set would remain, thus nru ≤ n− 1⇒ nru = O(n). We also assume,
that the Make operations are the first n operations performed.

Make and Union are supported in constant worst-case time, while Find
is tq = O(log n) in the worst case. A whole sequence of operations has
tt = O(n + nrq · α(nrq + n, n)) total expected time and Θ(n) memory is
needed to store the forest.

α is a very slowly growing function, which does not exceed four in any
practical application. It is defined as a functional inverse of Ackermann’s
function, defined as follows:

A(1, j) = 2j, if j ≥ 1
A(i, 1) = A(i− 1, 2), if i ≥ 2
A(i, j) = A(i− 1, A(i, j − 1)), if i, j ≥ 2
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α(m,n) = min{i ≥ 1|A(i, bm/nc) > log n}

2.2 k-UF tree

Introduction k-UF trees were introduced in [Blu85] to solve the disjoint
set union problem, also giving the best worst-case complexity per operation
for incremental connectivity.

Supported operations k-UF trees support the same operations as disjoint
set forests: Make, Union and Find.

Performance Both Find and Union take O(log n/ log log n) time in the
worst case, and their running time does not amortize. The memory complexity
is Θ(n).

2.3 Vertex cluster

Introduction Vertex clusters, topology trees and 2-dimensional topology
trees were first introduced in [Fre83] to support minimum spanning trees
under the operation of updating the cost of an edge in the graph, but
they have several other applications, such as efficiently maintaining the
minimum spanning tree in planar graphs, connectivity, generating the k
smallest spanning trees or 2-edge connectivity under edge and node insertion
and deletion ([Fre85, Fre97])).

Vertex clusters work on top of a spanning tree of the graph and are based
on grouping the nodes of the graph into sets that induce a connected subgraph.
All of the four different strategies of clustering we know of are described, each
having its own advantages and disadvantages.

Definition 2.1 To avoid confusion, in the rest of this work we refer to the
original tree as underlying tree, to differentiate it from the tree built upon
it. The underlying tree is sometimes a spanning tree of the original input
graph, which is called underlying graph. 2
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Definition 2.2 The edges from the underlying graph, that are not in the
underlying spanning forest, are called nontree edges. 2

Supported operations The following operations are supported:

• Switch(u, v, x, y): replaces tree edge (x, y) with (u, v). It is assumed,
that (x, y) is on the path connecting u and v in the tree.

• Remove(u, v): deletes edge (u, v) from the spanning tree and returns
a replacement edge, if it exists. It is assumed, that (u, v) is in the
spanning tree.

Performance Both Switch and Remove can be supported in O(m2/3),
using O(m) space and preprocessing time tp = O(m).

2.4 Topology tree

Introduction A topology tree is a hierarchical representation of clusters,
built by recursively applying a partition of the nodes, until one node is left.

Supported operations Topology trees support the same operations as
vertex clusters. Additionally to implement these operations one may need to
split a topology tree, or merge two topology trees.

• Split(T, u, v): splits the topology tree T after the deletion of tree edge
(u, v).

• Merge(T1, T2): merges the topology trees T1 and T2..

• Switch(u, v, x, y): replaces tree edge (x, y) with (u, v). It is assumed,
that (x, y) is on the path connecting u and v in the tree.

• Remove(u, v): deletes edge (u, v) from the spanning tree and returns
a replacement edge, if it exists. It is assumed, that (u, v) is in the
spanning tree.
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Performance The topology tree can be built in time linear on the number of
nodes of the spanning tree. Split and Merge can be carried out in O(log n),
where n is the number of vertices of the tree. Switch and Remove are
supported in O(

√
m logm) time, with the preprocessing time being tp = O(m)

and the space complexity also O(m).

2.5 2-dimensional topology tree

Supported operations 2-dimensional topology trees support the same
operations as topology trees.

Performance All operations take O(
√
m) time, with preprocessing time

tp = O(m) and O(m) space requirement.

2.6 Sparsification tree

Introduction Sparsification is a general technique, which applies to a wide
variety of dynamic graph problems. It can be applied on top of graph algo-
rithms to speed them up and can be used as a black box, that is it does not
require knowledge of the internal details of the underlying algorithm. It was
introduced in [EppEtAl92] improving time bounds for several dynamic graph
problems, such as minimum spanning trees, k smallest spanning trees, connec-
tivity, biconnectivity and 3-edge connectivity. Sparsification also provided the
first dynamic algorithm for 4-edge connectivity, k-edge connectivity, 3-vertex
connectivity, 4-vertex connected components and bipartiteness. Later the
technique was slightly improved in [EppGalIta93], then the results were sum-
marized in [EppEtAl97]. In [AmaCatIta97] the first version was called simple
sparsification, while the second version is called improved sparsification.
Both are described in detail in our dissertation.

Supported operations There are three types of sparsification strategies:

• Basic sparsification can be used to dynamize static algorithms.
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• Stable sparsification can be used to speed up existing fully dynamic
algorithms.

• Asymmetric sparsification is useful in applications with more
insertion than deletions for which partially dynamic algorithms exists
to support insertions.

Performance In order to apply basic sparsification we need to compute
efficiently sparse certificates. If we note the time to find a sparse certificate by
f(n,m), the time needed to construct a data structure for testing the property
by g(n,m), which can answer queries in q(n,m), then an update can be
supported by basic sparsification in O(f(n,O(n)) · log(m/n)+g(n,O(n)))
with simple sparsification and in O(f(n,O(n)) + g(n,O(n))) with improved
sparsification, and a query can be supported in q(n,O(n)).

Stable sparsification is useful, when we can maintain efficiently stable
sparse certificates. This variant transforms time bounds of the form O(mp) to
those of form O(np). More generally, if we note by f(n,m) the time needed
to maintain a stable sparse certificate per update, for which there is a data
structure to test the property with update time g(n,m) and query time q(n,m),
then the same time bounds hold as in the case of basic sparsification.

If we note by f(n,m) the time needed to find a sparse certificate, by g(n,m)
the time needed to construct a partially dynamic data structure for testing
the property, which can handle edge insertions in time p(n,m) and answer
queries in time q(n,m), then by the means of asymmetric sparsification
we can give a fully dynamic data structure which supports edge insertions in
O(f(n,O(n))+g(n,O(n))

n
+p(n,O(n))), edge deletions in f(n,O(n)) ·O(log(m/n))+

g(n,O(n)) and queries in q(n,O(n)).
The memory needed to store the sparsification tree is O(m) in case of

simple sparsification. For improved sparsification an O(m log(n2/m)) bound
is straightforward and can be improved to O(m) for basic sparsification
and O(m

n
· h(n)) in case of stable sparsification, where h(n) is the space

needed by a single node of the sparsification tree.
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The preprocessing time is O(m) for simple sparsification. For improved
sparsification, obtaining tp = O(m log(n2/m)) is trivial and can be optimized
to O(m

n
·h(n)) in case of basic sparsification and stable sparsification,

where h(n) is the time needed processing a single node of the sparsification
tree.

2.7 Euler Tour tree

Introduction Euler Tour trees were introduced in [HenKin99] as an ingre-
dient for their fully dynamic connectivity algorithm, which was the first to
achieve polylogarithmic bounds.

Supported operations Several operations can be carried out efficiently:

• Tree(u): return the root of the tree containing u.

• NontreeEdges(T ): return a list of nontree edges incident to tree T .
Edges with both endpoints in T are returned twice.

• InsertTree(u, v): inserts (u, v) as a new tree edge, connecting the
tree containing u with the tree containing v.

• InsertNontree(u, v): inserts nontree edge (u, v).

• DeleteTree(u, v): split the tree containing u and v by removing edge
(u, v).

• DeleteNontree(u, v): remove nontree edge (u, v).

• SampleAndTest(T ): selects randomly a nontree edge incident to T
and returns it if it has exactly one endpoint in T . Edges with both
endpoints in T have twice as much probability to be selected.

15



Acronym tp tu tq ta Memory
of algorithm complexity

DSF Θ(n) O(logn) O(logn) O(α(nrq + n, n))) Θ(n)
KUF Θ(n) O( log n

log log n
) O( log n

log log n
) O( log n

log log n
) Θ(n)

Figure 1: Comparison of incremental connectivity algorithms

Performance The connectivity algorithm form [HenKin99] uses two im-
plementation of Euler Tour trees, the first with binary trees and the second
with log n-ary trees. In the first implementation NontreeEdges runs in
O(m′ log n) time, where m′ is the size of the output, while the other opera-
tions need O(log n) time. In the second implementation DeleteTree and
InsertTree are slowed down to O(log2 n/ log log n), Tree is improved to
O(log n/ log log n), and the other operations stay the same.

An Euler Tour tree can be stored in O(n) space, with an additional
O(m) if nontree edges must be also maintained. Preprocessing time is tp =
O(m log n+ n) ([AlbCatIta97]).

3 Undirected dynamic graph problems

3.1 Incremental connectivity

The incremental connectivity problem can be defined as follows. Given
an undirected graph, initially containing n isolated nodes, the following
operations must be supported:

• Insert(u, v): adds an edge between nodes u and v.

• Connected(u, v): returns true if nodes u and v are in the same
connected component and false otherwise.

A comparative table of the algorithms presented in the dissertation is
shown in Figure 1. For the meaning of notations and abbreviations see the
Table of Notations and List of Acronyms from the beginning of this summary.
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3.2 Decremental connectivity

The decremental connectivity problem can be defined as follows. Given an
undirected graph G(V,E), the following operations must be supported:

• Delete(u, v): removes the edge between nodes u and v. It is assumed,
that (u, v) ∈ E.

• Connected(u, v): returns true if nodes u and v are in the same
connected component and false otherwise.

For the algorithm by Even and Shiloach (ES) tp = Θ(n + m), tu =
O(m), tq = O(1), ta = O(n) and the space usage is Θ(n+m). In the case of
Thorup’s algorithm (ThoDec) such bounds are much harder to give beside for
ta, which was proved in [Tho99], as they depend on the level of recursion the
algorithm reaches and also on the underlying fully dynamic algorithm. Using
the technique presented in [Tho00] the space complexity for each level of the
recursion can be reduced to O(m). Even then, the hidden constant is quite
large, as several instances of graphs are stored on each level.

3.3 Fully dynamic connectivity

In fully dynamic connectivity the following operations must be supported:

• Insert(u, v): adds an edge between nodes u and v. It is assumed, that
(u, v) 6∈ E.

• Delete(u, v): removes the edge between nodes u and v. It is assumed,
that (u, v) ∈ E.

• Connected(u, v): returns true if nodes u and v are in the same
connected component and false otherwise.

In Figure 2 various running times are shown, where known.
In Figure 3 the preprocessing time and memory usage of the algorithms

is compared. For HDT the memory usage refers to the one described for the
original paper, which can be improved to O(m) as described in [Tho00].
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Acronym of algorithm tu tq ta Average running time

FredI-85, FredI-91 O(m2/3) O(1) O(m2/3) O( n

m1/3 + logn)

FredII-85, FredII-91 O(
√
m logm) O(1) O(

√
m logm) O( n·

√
log m√
m

+ logn)

FredIII-85, FredIII-91 O(
√
m) O(1) O(

√
m) O( n√

m
+ logn)

Spars(FredIII) O(
√
n) O(1) O(

√
n) O(

√
n)

HK O(m logn) O( log n
log log n

) O(log3 n)
HT, HDT O(m logn) O( log n

log log n
) O(log2 n)

Figure 2: Comparison of update and query times of fully dynamic connectivity
algorithms

Acronym of algorithm tp Memory
complexity

FredI-85, FredI-91 O(m) O(m)
FredII-85, FredII-91 O(m) O(m)
FredIII-85, FredIII-91 O(m) O(m)
Spars(FredIII) O(m) O(m)
HK O(m+ n logn) O(m+ n logn)
HT, HDT O(m+ n logn) O(m+ n logn)

Figure 3: Comparison of preprocessing times and memory usage of fully
dynamic connectivity algorithms

3.4 Fully dynamic minimum spanning tree

We do not address specifically the incremental and decremental versions of the
minimum spanning tree problem for the following reasons. The incremental
problem can be easily solved in O(log n) per update using link-cut trees. On
the other hand, solving the decremental version of the problem is one of the
ingredients of the algorithm by Holm et. al described in the dissertation.

In the fully dynamic problem, given a weighted, undirected graphG(V,E,W ),
we would like to support:

• Insert(u, v, w): inserts an edge (u, v) in the graph with weight w.
(u, v) 6∈ E is assumed before the operation.

• Remove(u, v): removes edge (u, v) from the graph. We assume (u, v) ∈
E.
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Acronym of algorithm ta Memory complexity

FredI-85, FredI-91 O(m2/3) O(m)
FredII-85, FredII-91 O(

√
m logm) O(m)

FredIII-85, FredIII-91 O(
√
m) O(m)

Spars(FredIII) O(
√
n) O(m)

HDTMST O(log4 n) O(m logn)

Figure 4: Comparison of fully dynamic minimum spanning tree algorithms

• Change(u, v, w): changes the weight of edge (u, v) to w. We assume
(u, v) ∈ E.

• Mst(): returns the cost of the minimum spanning tree of the current
graph, and the edges it contains, if necessary. We use the term “tree”
without loss of generality, even if it is actually a forest, if the graph is
not connected.

We note, that Change(u, v, w) is not crucial, as it can be carried out
with a sequence of Remove(u, v) and Insert(u, v, w).

In Figure 4 amortized running times per operation and memory usage of
different fully dynamic minimum spanning tree algorithms are listed.

4 Directed dynamic graph problems

4.1 Dynamic transitive closure

We do not consider the partially dynamic and fully dynamic versions of the
problem separately, as experiments have conclusively shown ([KroZar08]),
that the currently best known theoretical fully dynamic algorithms are clearly
inferior to simple-minded approaches and to hybridizations of partially dy-
namic algorithms. Thus, we present only the incremental and decremental
algorithms with practical significance.

Given a directed graph G(V,A), we give the following definitions.
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Acronym of algorithm tp tt Memory complexity

Abd97 O(n ·m) O(k2 · (m+ nru) + (m+ nru)∗) O(k · n)
Abd00 O(n ·m) O(k · (m+ nru)∗) O(k · n)
Ital O(n2 + n ·m) O(n · (m+ nru)) O(n2)
Ital-Gen O(n2 + n ·m) O(m2) O(n2)
RZ O(n2 + n ·m) O(n ·m) O(n2)

Figure 5: Comparison of dynamic transitive closure algorithms

Definition 4.1 A node v is reachable by node u if and only if there is a
directed path from u to v in G. 2

Definition 4.2 The digraph G(V,A∗), that has the same node set with G
but has an arc (u, v) ∈ A∗ if and only if v is reachable by u in G is called
transitive closure of G. We shall denote |A∗| by m∗. 2

Definition 4.3 If v is reachable from u (in G), then we call v a descendant
or successor of u and u an ancestor or predecessor of v. 2

The operations to be supported are:

• Insert(u, v): adds the arc (u, v) into the graph.

• Remove(u, v): deletes the arc (u, v) from the graph.

• Reachable(u, v): returns true if there is a directed path from node u
to node v and false otherwise.

• SearchPath(u, v): Returns a path from u to v, or ∅ if there is none.

In Figure 5 various complexities of dynamic transitive closure algorithms
are shown. Abd97 and Abd00 are incremental only, and k is the number of node-
disjoint paths the original graph is decomposed in. Ital is either incremental
or decremental, the time bounds do not hold for a mixed sequence. The total
expected time for Ital-Gen is for the decremental part, the incremental part
having the same complexity as Ital. RZ is decremental only.
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List of borrowings:
Borrower Lender Amount of money

1 2 10
2 3 5
3 1 5
1 4 5
4 5 10

Solution:
Sender Reciever Amount of money

1 5 10
4 2 5

Figure 6: Example for the debts’ clearing problem

4.2 Fully dynamic debt clearing

Introduction In this section we discuss an original problem proposed in
2008 by us at the qualification contest of the Romanian national team of
informatics for the Central European Olympiad of Informatics and Balkan
Olympiad of Informatics.

The problem statement is the following:
Let us consider a number of n entities (eg. persons, companies), and a

list of m borrowings among these entities. A borrowing can be described by
three parameters: the index of the borrower entity, the index of the lender
entity and the amount of money that was lent. The task is to find a minimal
list of money transactions that clears the debts formed among these n entities
as a result of the m borrowings made.

In [Pat09] we model this problem using graph theory:

Definition 4.4 Let G(V,A,W ) be a directed, weighted multigraph without
loops, |V | = n, |A| = m, W : A→ Z, where V is the set of vertices, A is the
set of arcs and W is the weight function. G represents the borrowings made,
so we will call it the borrowing graph. 2
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Figure 7: The borrowing graph associated with the given example. An arc
from node i to node j with weight w means, that entity i must pay w amount
of money to entity j.

The borrowing graph corresponding to the example from Figure 6 is
depicted in Figure 7.

Definition 4.5 Let us define for each vertex v ∈ V the absolute amount
of debt over the graph G: DG(v) = ∑

v′ ∈ V

(v, v′) ∈ A

W (v, v′)− ∑
v′′ ∈ V

(v′′, v) ∈ A

W (v′′, v)

Sometimes for simplicity we will refer to the absolute amount of debt of a
node as D value. 2

Definition 4.6 Let G′(V,A′,W ′) be a directed, weighted multigraph without
loops, with each arc (i, j) representing a transaction of W ′(i, j) amount of
money from entity i to entity j. We will call this graph a transaction graph.
These transactions clear the debts formed by the borrowings modeled by
graph G(V,A,W ) if and only if:

DG(vi) = DG′(vi), ∀i = 1, n, where V = {v1, v2, . . . , vn}
We denote this by: G ∼ G′. 2

See Figure 8 for a transaction graph with minimal number of arcs corres-
ponding to the example from Figure 6.

Using the terms defined above, the debt’s clearing problem can be refor-
mulated as follows:
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Figure 8: The respective minimum transaction graph. An arc from node i to
node j with weight w means, that entity i pays w amount of money to entity
j.

Given a borrowing graph G(V,A,W ) we are looking for a minimal tran-
saction graph Gmin(V,Amin,Wmin), so that G ∼ Gmin and ∀G′(V,A′,W ′) :
G ∼ G′, |Amin| ≤ |A′| holds.

The problem’s relation to complexity classes Let us denote the opti-
mization problem described in the introduction as Debt. We will call the
corresponding decision problem Debt-decision, defined as follows:

Given a borrowing graph G(V,A,W ) and a natural number M ≤ |A|, is
there a transaction graph G′(V,A′,W ′), G ∼ G′, so that |A′| ≤M?

Lemma 4.7 Debt-decision is NP. 2

Lemma 4.8 Subset sum is reducible to Debt-decision. 2

Theorem 4.9 Debt-decision is NP-complete. 2

Corollary 4.10 Debt is NP-hard. 2

Lemma 4.11 3-Partition is pseudo-polynomially transformable in Debt-
decision. 2

Theorem 4.12 Debt-decision is NP-complete in the strong sense. 2

Corollary 4.13 Debt is NP-hard in the strong sense. 2
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Let us define the problem Debt-decision-partial as follows:
Given a borrowing graph G(V,A,W ), a "partial graph" Gp(V,Ap,W p) and

a natural number M ≤ |A|, can Gp "completed" to a transaction graph with at
most M arcs? More formally is there a transaction graph G′(V,A′,W ′), G ∼
G′, so that |A′| ≤M and Ap ⊂ A,W p(a) = W ′(a),∀a ∈ Ap?

Lemma 4.14 Debt-decision-partial is NP. 2

Lemma 4.15 ([Pat11b]) Debt is Turing reducible to Debt-decision-
partial. 2

Theorem 4.16 ([Pat11b]) Debt is NP-easy. 2

Corollary 4.17 Debt is NP-equivalent. 2

A restricted version Let us define the problem Debt-path as follows:
Given a borrowing graph G(V,A,W ), whose arcs form a path, find the

minimum transaction graph G′(V,A′,W ′), G ∼ G′. More formally A =
n−1⋃
i=1
{(vpi

, vpi+1)}, vpi
= vpj

⇒ i = j,∀i, j = 1, n.

Theorem 4.18 ([Pat11b]) Debt-path is NP-hard. 2

Theorem 4.19 ([Pat11b]) Debt-path is NP hard in the strong sense. 2

Theorem 4.20 Debt-path is NP-easy. 2

Corollary 4.21 Debt-path is NP-equivalent. 2

A solution based on dynamic programming We give a solution using
the dynamic programming method. It uses similar techniques to the algorithm
discovered independently by Bellman ([Bel62]), respectively Held and Karp
([HelKar62]) for solving the Traveling Salesman Problem.

The following observation is crucial in our solutions.

Theorem 4.22 ([PatBar11]) Any instance of the debt clearing problem can
be solved trivially by at most n− 1 transactions. 2
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Let us denote by Vleft the set of nodes having positive D values and by
Vright the set of nodes having negative D values, formally Vleft = {u|D(u) >
0}, Vright = {u|D(u) < 0}. Let n1 = |Vleft|, n2 = |Vright| and Vleft =
{left1, . . . , leftn1}, Vright = {right1, . . . , rightn2}. Let us define the subprob-
lems of the dynamic programming problem with two parameters i and j,
where i is a binary representation of n1 bits, and j is a binary representation of
n2 bits (i = 0, 2n1 − 1, j = 0, 2n2 − 1). A subproblem will have the following
meaning:

dpi,j = the number of arcs in the minimal transaction graph containing
only the nodes from Vleft determined by the bits of i and the nodes from
Vright determined by the bits of j.

The recursive formula to determine the values of the subproblems is the
following2:

dpi,j = min(dpi XOR i′,j XOR j′ + bitcount(i′) + bitcount(j′)− 1), where

1. i AND i′ = i′

2. j AND j′ = j′

3. ∑
i′ AND 2k 6=0

D(leftk) = − ∑
j′ AND 2k 6=0

D(rightk)

4. bitcount(x) returns the number of bits of x equal to 1.

Let us analyze the performance of the proposed algorithm. The number
of subproblems is 2n1 · 2n2 = 2n1+n2 , which in the worst case is 2n. Thus the
space complexity of our algorithm is Θ(2n). To solve a subproblem (i, j) we
need all the pairs (i′, j′), such that i′ is a subset of i and j′ is a subset of j.
We can codify any pair (i, i′) with a sequence of length n1 of ternary digits.
A digit will be 0, if the respective node is not in i, 1 if it is in i but not in
i′ and 2 if it is in i′ (and thus also in i). The same codification can be done
for any (j, j′) pair. Thus the number of steps performed by our algorithm is
proportional to 3n1 · 3n2 = 3n

2We note by AND the bitwise and operation and by XOR the bitwise exclusive or operation
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Figure 9: Result of the Query operation called after the third arc was added

The debts’ clearing problem in dynamic graphs In the dynamic debts’
clearing problem ([Pat11]) we want to support the following operations:

• InsertNode(u) - adds a new node u to the borrowing graph.

• RemoveNode(u) - removes node u from the borrowing graph. In order
for a node to be removed, all of its debts must be cleared first. In
order to affect the other nodes as little as possible, the debts of u will
be cleared in a way that affects the least number of nodes, without
compromising the optimal solution for the whole graph.

• InsertArc(u, v, x) - insert an arc in the borrowing graph. That is, u
must pay x amount of money to v.

• RemoveArc(u, v) - removes the debt between u and v.

• Query() - returns a minimal transaction graph.

For instance calling the Query operation after adding the third arc in
the borrowing graph corresponding to Figure 6 would result in the minimal
transaction graph from Figure 9.

A data structure for solving dynamic debts’ clearing As the static
version of the problem is NP-hard, it is not possible to support all these
operations in polynomial time (unless P = NP). Otherwise we could just
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build up the whole graph one arc at a time, by m calls of InsertArc, then
construct a minimal transaction graph by a call of Query, which would lead
to a polynomial algorithm for the static problem.

Our data structure used to support these operations is based on main-
taining the subset of nodes, that have non-zero absolute amount of debt
V ∗ = {u|D(u) 6= 0}. The sum of D values for all the 2|V ∗| subsets of V ∗ is
also stored in a hash table called sums.

InsertNode As for our data structure only nodes having non-zero D
values are important, and a new node always starts with no debts, it means
that nothing has to be done when calling InsertNode.

InsertArc When InsertArc is called, the D values of the two nodes
change, so V ∗ can also change. When a node leaves V ∗, we use a lazy updating
scheme for the subsets it is contained in, because when a new node enters V ∗

we have to calculate the sum of all of the subsets it is contained in anyway.
If both u and v were in V ∗ and remained in it after changing the D values,

then we simply add x to the sum of all subsets containing u, but not v,
and subtract x from those containing v but not u. The sum of the subsets
containing both nodes does not change.

If one of the nodes was just added to V ∗ (D[u] = x, or D[v] = −x),
then all the sums of the subsets containing it must be recalculated. This
recalculation can be done in O(1) for each subset, taking advantage of sums
already calculated for smaller subsets.

Query To carry out Query we observe, that finding a minimal transac-
tion graph is equivalent to partitioning V ∗ in a maximal number of disjoint
zero-sum subsets, more formally V ∗ = P1 ∪ . . . ∪ Pmax, sums[Pi] = 0,∀i =
1,max and Pi ∩ Pj = ∅, ∀i, j = 1,max, i 6= j. The reason for this is, that all
the debts in a zero-sum subset Pi can be cleared by |Pi| − 1 transactions (by
Theorem 4.22, also see [Pat09, Pat11b, Ver04]), thus to clear all the debts,
|V ∗| −max transactions are necessary.

27



Let S0 be the set of all subsets of V ∗, having zero sum: S0 = {S|S ⊂
V ∗, sums[S] = 0}. Then, to find the maximal partition, we use dynamic
programming.

Let dp[S] be the maximal number of zero-sum sets, S ⊂ V ∗ can be
partitioned in.

dp[S] =


not defined, if sums[S] 6= 0

0, if S = ∅
max{dp[S \ S ′] + 1|S ′ ⊂ S, S ′ ∈ S0}, otherwise

Building dp takes at most 2|V ∗| · |S0| steps.
As the speed at which Query can be carried out depends greatly on the

size of S0, we can use two heuristics to reduce its size, without compromising
the optimal solution. To facilitate the running time of these heuristics, S0

can be implemented as a linked list.

Clear pairs Choosing sets containing exactly two elements in the parti-
tion will never lead to a suboptimal solution, if the remaining elements are
partitioned correctly ([Ver04]). Thus, before building dp, sets having two
elements can be removed from S0, along with all the sets, that contain those
two elements (because we already added them to the solution, so there is
no need to consider sets that contain them in the dynamic programming):
S0 := S0 \ ({u, v}∪{S ′|u ∈ S ′ or v ∈ S ′}). The running time of this heuristic
is Θ(|S0|).

Clear non-atomic sets If a set Si ∈ S0 is contained in another set
Sj ∈ S0, then Sj can be safely discarded, because Sj \ Si will also be part
of S0, and combining Si with Sj \ Si always leads to a better solution, than
using Sj alone: S0 := S0 \ {Sj|∃Si ∈ S0 : Si ⊂ Sj}. This heuristic can be
carried out in Θ(|S0|2).

RemoveNode To delete a node u with the conditions listed in the
introduction is equivalent to finding a set P of minimal cardinality containing
u, that can still be part of an optimal partition, that is dp[V ∗] = dp[V ∗\P ]+1.
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This algorithm can not be used together with the Clear pairs heuristic,
because clearing pairs may compromise the optimal removal of u. The
running time is the same as for Query, because dp must be built.

RemoveArc Because clearing an arc between two nodes is the same as
adding an arc in the opposite direction, this can be easily implemented using
InsertArc. If the D values of the two nodes have the same sign, it means,
that no arc could appear in a minimal transaction graph between the two
nodes, so nothing has to be done.

A new algorithm for the static problem We can observe, that the
Query operation needs only the set S0 to be built, and in order to build S0

the sum of all subsets of V ∗ needs to be calculated. Thus, after processing all
the arcs in Θ(m) time and finding the D values, the sums hash table can be
built in Θ(2|V ∗|) by dynamic programming:

sums[S = {s1, . . . sk}] =


0, if S = ∅

D[s1], if |S| = 1
sums[{s2, . . . sk}] +D[s1], otherwise

After sums is built, we can construct S0 by simply iterating once again
over all the subsets of V ∗ and adding zero-sum subsets to S0. Then we clear
pairs and non-atomic sets, call Query and we are done. This yields to a
total complexity of Θ(m+ 2|V ∗| + |S0|2 + 2|V ∗| · |S0|).

Practical behavior As it can be seen from the time complexities of the op-
erations, the behavior of the presented algorithms depends on the cardinalities
of V ∗ and S0 and their running times may vary from case to case.

We have made some experiments to compare our new algorithms and
the static algorithm presented in [Pat09]. We used the same 15 test cases
which were used, when the problem was proposed in 2008 at the qualification
contest of the Romanian national team. Figure 10 contains the structure of
the graphs used for each test case.

In our first experiment we compared three algorithms: the old static
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Test n m |Amin| Short description
1 20 19 1 A path with the same weight on each arc
2 20 20 0 A cycle with the same weight on each arc
3 8 7 7 Minimal transaction graph equals to borrowing graph
4 20 19 19 Two connected stars
5 20 15 15 Yields to D[i] = 2,∀i = 1, 10, D[i] = −1,∀i = 11, 19 and

D[20] = −11, maximizing the number of triples
(zero-sets with cardinality three)

6 20 10 10 Yields to D[i] = 99,∀i = 1, 10, D[i] = −99,∀i = 11, 20,
maximizing the number of pairs

7 20 19 12 A path with random weights having close values (50± 10)
8 20 20 10 A cycle with random weights having close values (50± 10)
9 10 100 7 Random graph with weights ≤ 10
10 12 100 9 Random graph with weights ≤ 10
11 15 100 11 Random graph with weights ≤ 10
12 20 100 14 Random graph with weights ≤ 10
13 20 19 15 A path with consecutive weights
14 20 30 15 Ten pairs, a path, a star and triples put together
15 20 100 15 Dense graph with weights ≤ 3

Figure 10: The structure of the test cases

algorithm based on dynamic programming, our new static algorithm and the
dynamic graph algorithm. For the third algorithm we called InsertArc for
each arc, then Query once in the end, after all arcs were added.

In the second experiment we used the same methodology to compare the
old static algorithm and our new dynamic algorithm. For the first algorithm
the solution was recomputed from scratch each time an arc was read from
the input file, and for the second after each InsertArc a Query was also
executed. Detailed results can be found in our dissertation.

To better understand these results, we performed additional experiments.
First, we compared the running time of the two static algorithms on randomly
generated graphs having n = 16 nodes and m = 20 arcs having costs from
the [1,MAXV ALUE) interval. For every even MAXV ALUE ∈ [2, 80] we
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Figure 11: Total running times of the two static algorithms over 1000 random
instances of graphs having n = 16 nodes, m = 20 arcs and arc costs less than
MAXV ALUE.

generated 1000 different graphs and executed both algorithms on them. As
it can be seen in Figure 11 for small values of MAXV ALUE the old static
algorithm is faster, but from MAXV ALUE = 16 it becomes slower and
slower. We also note that the new algorithm is more robust, as its running
time does not fluctuate as wildly as in the case of the old algorithm.

To better understand the inner details of the algorithms, for instance
why the old algorithm gets slower as MAXV ALUE increases, we measured
separately the time spent in each phase of the algorithms.

In this experiment we generated 10000 random graphs having n = 16
nodes and m = 20 arcs and calculated the average running time of each
phase for both algorithms. We investigated two cases, one for which the old
algorithm is faster (Figure 12) and the other in which the new algorithm is
faster (Figure 13).

The running time of the old static algorithm is dominated by the prepro-
cessing time in both cases. A further investigation reveals, that the memory
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Figure 12: Total running times of various phases of the algorithms over 10000
random instances of graphs having n = 16 nodes, m = 20 arcs and arc costs
less than 10.

allocation part is the bottleneck of this algorithm. Even if both algorithms
have to allocate Θ(2|V ∗|) memory, it seems like allocating matrices of this
size is much more time consuming than allocating vectors of the same total
size. This could explain the fact, that the new algorithm has much smaller
preprocessing time.

When MAXV ALUE = 10, there is a bigger probability that pairs can be
found in the preprocessing phase of the old algorithm, thus reducing the total
amount of memory that needs to be allocated, explaining the increased running
time for MAXV ALUE = 50. This was confirmed by our experiments, the
average size of V ∗ after removing pairs being 9.8 and respectively 13.3.

The new algorithm behaves as expected, spending significantly more time
in the main part and the heuristics phase for MAXV ALUE = 10. The
reason is the bigger cardinality of S0 on average, which was about four times
greater compared to MAXV ALUE = 50 (615.5 and 153.2 respectively on
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Figure 13: Total running times of various phases of the algorithms over 10000
random instances of graphs having n = 16 nodes, m = 20 arcs and arc costs
less than 50.

average).
Our experiments are not meant to be an exact comparison among the

algorithms, as the running time can greatly depend on the details of the
implementation. Their purpose was just to get a general overview of the
behavior of the various algorithms for different kind of graphs.

Managing large instances Let us denote with n∗ the number of nodes
having a non zero D value, formally n∗ = |V ∗| = |{u|D(u) 6= 0}|. The
algorithms presented so far can find an optimal solution in reasonable time
only for instances of the magnitude of 20 - 30 for n∗. It could be also desirable
to find “sufficiently good” solutions for larger inputs.

As for many intractable problems, techniques from the field of artificial
intelligence are useful to obtain good solutions. We propose a genetic algorithm
([Hol75]) to solve the debts’ clearing problem ([PatBar11]).

We use the reformulation of the problem of partitioning V ∗ into disjoint
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zero-sum sets.

Representation A solution of the problem is represented by a permutation
of the D values of V ∗, the set of nodes. Thus a candidate solution is a vector
C = (c1, c2, . . . , cn), such that ci = D(u),∀i ∈ 1, n for some unique u ∈ V ∗.

The idea of permutation representations is used intensively in solutions of
the Traveling Salesman Problem ([GolLin85, OliSmiHol87, WhiStaFuq89]).

Fitness assignment To evaluate the fitness of a chromosome, we iterate
over the genes of the chromosome in increasing order and maintain the partial
sum obtained so far, that is si =

i∑
j=1

cj . For every si = 0, we have found a new

zero-sum subset of the partition (starting after the last encountered partial
sum equal to zero and ending at i), so we can add one to the fitness of the
chromosome.

Recombination Various operators for permutation representations are
discussed in [Dav85, GolLin85, Gor90, OliSmiHol87, Sys91, WhiStaFuq89].
We propose new recombination operators ([PatBar11]).

Operator 1 Let C1 and C2 be the two chromosomes, and k ∈ [1, n] a
random index. Then, the first descendant C ′1 can be obtained by copying the
first k genes from C1 and appending to it the elements of the permutation not
used so far in the same order as they appear in C2. The second descendant
C ′2 is obtained symmetrically.

Operator 2 The problem with Operator 1 is, that the first descendant
inherits most of its properties from C1 and very little from C2. Symmetrically
C ′2 inherits most of its properties from C2 and very little from C1. This is
undesirable, as both C1 and C2 can contain subsets from the optimal partition.

A better recombination operator may be the following. First, determine
the partitions codified by C1 and C2, as described at the evaluation of the
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fitness function. Let those be C1 = P1,1 ∪ P1,2 ∪ . . . and C2 = P2,1 ∪ P2,2 ∪ . . ..
Initialize C ′1 := C1 and C ′2 := C2.

Then, iterate over every P1,i. If some P1,i is contained in some P2,j, that
is P1,i ⊂ P2,j, replace P2,j in the second descendant with P1,i ∪ (P2,j \ P1,i).
Repeat the same procedure for C2 symmetrically.

Mutation Four new mutation operators are proposed (Operators 3–6),
having the property, that the fitness of the chromosome does not decrease
([PatBar11]).

Operator 1 The inversion operator described by Holland ([Hol75])
can be used without modification, on the sequence between the ith and jth

elements.

Operator 2 A simplified version of Operator 1 can be easily carried
out, by swapping the place of genes i and j in the chromosome.

Operators 3 and 4 Operators 1 and 2 can be used on the partition
C = P1 ∪ P2 ∪ . . . instead of the permutation representation. This method
guarantees that the fitness of the chromosome does not decrease.

Operators 5 and 6 Operators 1 and 2 can also be used inside some Pk
without decreasing the fitness.

Because of the strongly NP-hardness of the problem, it is challenging to
generate large test cases for which information about the optimal solution is
known. In our dissertation we describe four methods to generate large test
cases.

Forbidden transactions, interest rates, discounts It is natural to as-
sume, that transactions are not possible between any pair of entities because
of personal, practical, economical or other reasons.
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An instance of such a problem can be described by two graphs, the
borrowing graph G and the permission graph GP defined below.

Definition 4.23 A permission graph GP (V,AP ) is a directed unweighted
graph, which has an arc (u, v) ∈ AP if a transaction from u to v is allowed.2

The original version of the problem corresponds to a permission graph
equal to the complete graph. It can be easily seen, that by introducing the
permission graph we generalized the original problem, thus this version is also
NP-hard in the strong sense. Furthermore, the algorithms described above
cannot be easily adjusted to solve this more general version and it seems that
finding such algorithms is a difficult task.

To make our model even more realistic we can make the permission graph
weighted and impose that any amount of money paid by u to v will be
multiplied by the weight of the corresponding arc (u, v) in the permission
graph. Thus a weight bigger than one would mean a discount given to u by v,
and a weight smaller than one an interest rate. In this version of the problem
we can ask to minimize the sum of the money paid by all entities.
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