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Introduction

The equilibrium theory, which is a part of the nonlinear analysis, provides a general, unified
and natural framework for the study of a large variety of problems, such as: optimization prob-
lems, variational inequalities problems, saddle point problems, complementarity problems, Nash
equilibria problems and fixed point problems. These problems often occur in economics, finance,
network analysis, mechanics, physics, etc.

The first equilibrium problem studied in the literature, was the scalar equilibrium problem
which consists in:

(EP ) find ā ∈ A such that ϕ(ā, b) ≥ 0 for all b ∈ B,

where A and B are two nonempty sets, and ϕ : A × B → R is a given function. The reference
paper for the study of (EP ) is considered to be the paper of E. Blum and W. Oettli [20]. They
supposed that B = A and ϕ(a, a) = 0 for all a ∈ A. Under the assumption B = A, A. N. Iusem
and W. Sosa [77] presented six particular cases of (EP ). They underlined the fact that the set
of solutions of (EP ) equals the set of solutions of convex minimization problems, of fixed point
problems, of complementarity problems, of Nash equilibria problems in noncooperative games, of
variational inequality problems, and of vector minimization problems, respectively.

In the last years, there has been an increasing interest in the study of existence results of
solutions of (EP ) and its particular cases, see for instance: M. Bianchi and S. Schaible [17], G.
Bigi, M. Castellani and G. Kassay [19], D. Inoan and J. Kolumbán [78], A. N. Iusem and W.
Sosa [77], G. Kassay and J. Kolumbán [82], and J. C. Yao [115].

The extension of the scalar equilibrium problem to vector equilibrium problems can be achieved
in different ways. Given a real topological linear space Z, a convex cone C ⊆ Z with intC 6= ∅
(where intC denotes the interior of C), two nonempty sets A and B, and a bifunction ϕ : A×B →
Z, there can be formulated the following vector equilibrium problems:

(WVEP ) find ā ∈ A such that ϕ(ā, b) /∈ − intC for all b ∈ B;

(V EP ) find ā ∈ A such that ϕ(ā, b) /∈ −C \ {0} for all b ∈ B;

(SV EP ) find ā ∈ A such that ϕ(ā, b) /∈ C for all b ∈ B.

Let us denote by S1, S2 and S3 the set of solutions of the vector equilibrium problems (WVEP ),
(V EP ) and (SV EP ), respectively. Then the following inclusion holds:

S3 ⊆ S2 ⊆ S1.

These problems were introduced in the literature by Q. H. Ansari, W. Oettli and D. Schläger [6],
in a more general framework, M. Bianchi, N. Hadjisavvas and S. Schaible [17] and W. Oettli [99].

In the last decade a large number of papers have been devoted to the study of existence results
regarding these vector equilibrium problems and their particular cases. Q. H Ansari [3], Q. H.
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Ansari, W. Oettli and D. Schläger [6], Q. H. Ansari and J. C. Yao [9], M. Bianchi, G. Kasay and
R. Pini [16], G.-Y. Chen and Q. M. Cheng [41], Y. P. Fang and N. J. Huang [51], X. H. Gong [58],
I. V. Konnov and S. Schaible [85], W. Oettli [99] and T. Tanaka [108] presented existence results
for solutions of the above-mentioned vector equilibrium problems and their particular cases using
separation theorems in infinite dimensional spaces, the partition of the unity, a fixed point theorem
due to E. Tarafdar [109], a Fan-Browder fixed point theorem due to S. Park [101], Ky Fan’s lemma,
a generalized dual equilibrium problem, Ekeland’s principle, etc.

The present thesis aims to extend the existence results obtained by G. Kassay and J. Kolumbán
[82] for the scalar equilibrium problem to vector and multifunction equilibrium problems and to
present new existence results for vector equilibrium problems.

The thesis consists of six chapters.
The mathematical notions and auxiliary results necessary for the study of vector equilibrium

problems and multifunction equilibrium problems are recalled in Chapter 1. Section 1.1 contains
properties concerning cones, convex sets, separation theorems in infinite dimensional spaces and
different generalizations of the upper semicontinuity from the scalar case. Then, in Section 1.2
weakened convexity notions for vector-valued functions and multifunctions and their characteriza-
tions are presented. Section 1.3 focuses on specific notions from Fenchel’s duality theory.

Chapter 2 is devoted to the presentation of some sufficient conditions for the existence of solu-
tions for the weak vector equilibrium problem (WVEP ), which most of the time is studied under
the assumptions B = A and ϕ(a, a) ∈ C for all a ∈ A. In Section 2.1, using Eidelheit’s separation
theorem in infinite dimensional spaces, there are obtained under certain assumptions, existence re-
sults for (WVEP ). Based on the definition of C-subconvexlikeness of a vector-valued function and
its characterization, a new convexity notion for vector-valued bifunctions is introduced. Working in
the scalar setting, the main theorem permits to recover an earlier existence result of G. Kassay and
J. Kolumbán [82] concerning the scalar equilibrium problem (EP ). Dealing with the same setting,
in Section 2.2 existence results for a generalized equilibrium problem with composed functions are
stated. A new convexity notion of a vector-valued bifunction which takes values in a product space
is introduced. The section ends with an existence result given for classical assumptions on the sets
and functions involved.

The Chapter 3 is the largest chapter of the thesis. The strong vector equilibrium problem
(V EP ) is studied, and existence results of solutions and proper solutions of (V EP ) are obtained.
Section 3.1 presents sufficient conditions for the existence of solutions of (V EP ), by using Ei-
delheit’s separation theorem in infinite dimensional spaces, under the hypothesis of a cone with
nonempty interior. To see which assumptions satisfy the hypothesis of the main result of this
section, a new upper semicontinuity notion for vector-valued functions is defined, and it seems
that it is equivalent to the one introduced by W. W. Breckner and G. Orbán [31]. Moreover, using
scalarization techniques, an existence result which generalizes Theorem 3.2 of X. H. Gong [58] is
obtained. This improvement consists in: two different sets, A and B, are considered, a weaker
convexity assumption is needed, and a supremum condition is considered instead of ϕ(a, a) ∈ C for
all a ∈ A. In Section 3.2, with the aid of a generalized dual strong vector equilibrium problem and
Ky Fan’s lemma, there are obtained existence results of solutions of (V EP ), considering B = A
and ϕ(a, a) ∈ C for all a ∈ A. Some of the results are given under pseudomonotonicity assumptions
and some are given without pseudomonotonicity assumptions. The results allow to recover earlier
existence results due to Ky Fan [49] and W. Oettli [99]. Section 3.3 focuses on existence results
of proper solutions of (V EP ). For a cone C, which has an empty interior, the concepts of Henig
dilating cone for C and family of Henig dilating cones for C are given, and new proper efficient
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solutions are defined. In this way, the problem that the interior of C may be empty is overcome.
Thus, existence results for K-Henig weakly efficient solutions, K-Henig efficient solutions, Henig
weakly efficient solutions, Henig efficient solutions, superefficient solutions and globally efficient
solutions of (V EP ) are presented. Under a certain hypothesis, it is shown (see Theorem 3.3.18)
that a net of Ki-Henig weakly efficient solutions of (V EP ), where (Ki)i∈I is a net of Henig dilating
cones for C, admits a subnet converging to a solution of (V EP ).

Chapter 4 is devoted to the following generalization of the scalar equilibrium problem (EP ),
when the scalar function is replaced by a multifunction:

(WWMEP ) find ā ∈ A such that ϕ(ā, b) * − intC for all b ∈ B,

where ϕ : A × B → 2Z is a multifunction. In Section 4.1 sufficient conditions for the existence
of solutions of (WWMEP ) are established, by using Eidelheit’s separation theorem in infinite
dimensional spaces. Further, a new convexity notion for multifunctions of two variables is defined.
Since the gap multifunctions help to analyze whether a point is a solution of (WWMEP ), in
Section 4.2 a gap multifunction and a gap function are constructed. For the gap function Fenchel’s
duality theory is used.

The last two chapters contain applications of the equilibrium problems considered in the previ-
ous chapters. In Section 5.1, with the aid of a scalar equilibrium problem, an existence result for a
weak vector optimization problem (WVMP ) is obtained. Further, by an example it is shown that
the semicontinuity assumption from this result can not be weakened. Section 5.2 and Section 5.3
deal with weak cone saddle points and strong cone saddle points, respectively. Each strong cone
saddle point is a weak cone saddle point, but the viceversa does not hold, as Example 5.3.2 shows.
To have a better view on the relation between vector equilibrium problems and cone saddle point
problems, two examples are provided which show that not every cone saddle point is a solution of
the corresponding vector equilibrium problem. By using scalarization and perturbation techniques,
existence results are presented (see Theorem 5.2.4 and Theorem 5.3.5).

In Chapter 6, there are obtained existence results for different kinds of Minty and Stampac-
chia type vector variational inequalities and multifunction variational inequalities, respectively.
The results are given under convexity, v-hemicontinuity, monotonicity and pseudomonotonicity
assumptions. Some of the existence results are new, while one of them (namely Theorem 6.2.7)
slightly generalizes a result established by Y. P. Fang and N. J. Huang [51]. The improvement
consists in dealing with a coercivity condition instead of the compactness assumption. Section
6.2 and 6.3 are answers to the open problem proposed by G.-Y. Chen and S. H. Hou [42] about
existence results for strong vector variational inequalities.

The author’s original contributions are the following:
Chapter 2: Theorem 2.1.1, Definition 2.1.2, Proposition 2.1.3, Corollary 2.1.4, Corollary 2.1.6,

Theorem 2.2.3, Definition 2.2.5, Theorem 2.2.6, Corollary 2.2.7.
Chapter 3: Theorem 3.1.1, Definition 3.1.3, Proposition 3.1.4, Proposition 3.1.5, Corollary 3.1.6,

Corollary 3.1.7, Theorem 3.1.9, Corollary 3.1.10, Proposition 3.2.3, Theorem 3.2.4, Corollary 3.2.5,
Remark 3.2.6, Corollary 3.2.9, Corollary 3.2.10, Definition 3.3.7, Theorem 3.3.11, Corollary 3.3.12,
Definition 3.3.14, Theorem 3.3.15, Theorem 3.3.16, Theorem 3.3.18, Example 3.3.20, Theorem
3.3.24, Corollary 3.3.25, Theorem 3.3.26, Theorem 3.3.27, Corollary 3.3.28.

Chapter 4: Theorem 4.1.1, Definition 4.1.2, Theorem 4.1.3, Theorem 4.2.2, Corollary 4.2.4,
Corollary 4.2.5, Proposition 4.2.6, Theorem 4.2.8.

Chapter 5: Proposition 5.1.1, Example 5.1.2, Proposition 5.1.3, Example 5.1.5, Proposition
5.1.6, Example 5.2.3, Theorem 5.2.4, Example 5.3.2, Example 5.3.4, Theorem 5.3.5.
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Chapter 6: Theorem 6.1.1, Corollary 6.1.2, Theorem 6.1.5, Example 6.2.2, Proposition 6.2.4,
Theorem 6.2.5, Example 6.2.6, Theorem 6.2.7, Theorem 6.3.4, Corollary 6.3.5, Corollary 6.3.6,
Corollary 6.3.7, Proposition 6.3.8, Theorem 6.3.9, Theorem 6.3.10, Theorem 6.4.1, Theorem 6.4.3.

These results are partly included in the following papers: G. Bigi, A. Capătă and G. Kassay [18],
R. I. Boţ and A. E. Capătă [27], A. Capătă [34], [35], [36], [37], A. Capătă and G. Kassay [38],
and A. Capătă, G. Kassay and B. Mosoni [39].
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Chapter 1

Preliminary notions and results

This Chapter contains the mathematical tools that we need in the present doctoral thesis.

1.1 Convex sets and convex cones

Section 1.1 recalls notions which regard to cones, separation theorems of convex sets, and different
generalizations of the upper semicontinuity of a scalar function. Among them, there is the base of a
cone, Eidelheit’s separation theorem, Tukey’s separation theorem, Ky Fan’s lemma, the cone upper
semicontinuity of a vector-valued function, and the cone upper semicontinuity of a multifunction.

1.2 Functions satisfying certain weakened convexity assumptions

Section 1.2 focuses on the definition of different weakened convexity assumptions, and their char-
acterizations, for vector-valued functions and multifunctions. So, there are reminded the cone
convexlikeness, the cone subconvexlikeness of a vector-valued function, and the cone convexlike-
ness, the cone subconvexlikeness, the cone λ-convexity of a multifunction, respectively.

1.3 Fenchel’s duality theory

In the final part of this chapter notions regarding to Fenchel’s duality theory are recalled. So, Sec-
tion 1.3 contains the notion of Fenchel-Moreau conjugate and the infimal convolution of functions.
Moreover, a recent theorem, concerning the existence of strong duality between a problem and its
dual problem, is recalled.
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Chapter 2

Existence results for weak vector
equilibrium problems

Throughout this chapter we suppose that A is a nonempty subset of a topological space E, B is
a nonempty set, Z is a real topological linear space, and C ⊆ Z is a solid convex cone. Given
vector-valued bifunction ϕ : A×B → Z, we study the so-called weak vector equilibrium problem:

(WVEP ) find ā ∈ A such that ϕ(ā, b) /∈ −intC for all b ∈ B.

2.1 Existence results established via Eidelheit’s theorem

Our first result provides sufficient conditions for the existence of solutions of the weak vector
equilibrium problem (WVEP ). In the proof of this result we use Eidelheit’s separation theorem.

Theorem 2.1.1 (A. Capătă and G. Kassay [38]) Let A be a compact set, and let the bifunction
ϕ : A×B → Z satisfy the following conditions:

(i) for each b ∈ B, the function ϕ(·, b) : A→ Z is C-upper semicontinuous on A;

(ii) for all a1, . . . , am ∈ A, all λ1, . . . , λm ≥ 0 with λ1 + · · · + λm = 1, and all b1, . . . , bn ∈ B,
there exists c∗ ∈ C∗ \ {0} such that

min
1≤j≤n

m∑
i=1

λic
∗(ϕ(ai, bj)

)
≤ sup

a∈A
min

1≤j≤n
c∗

(
ϕ(a, bj)

)
;

(iii) for all b1, . . . , bn ∈ B and all c∗1, . . . , c
∗
n ∈ C∗ not all zero, one has

sup
a∈A

n∑
j=1

c∗j
(
ϕ(a, bj)

)
≥ 0.

Then problem (WVEP ) admits a solution.

Assumption (ii) of Theorem 2.1.1 is a kind of generalized concavity of the bifunction ϕ in
its first variable with respect to the cone C. In a similar way, as the C-subconvexlikeness of a
vector-valued function was characterized in Section 1.2, we introduce a new convexity concept for
vector-valued bifunctions.
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Definition 2.1.2 (A. Capătă and G. Kassay [38]) A bifunction ϕ : A×B → Z is said to be:

(i) C-subconcavelike in its first variable if, for all c ∈ intC, all a1, a2 ∈ A and all λ ∈ [0, 1],
there exists a ∈ A such that

ϕ(a, b) ≥C λϕ(a1, b) + (1− λ)ϕ(a2, b)− c for all b ∈ B;

(ii) C-subconvexlike in its second variable if, for all c ∈ intC, all b1, b2 ∈ B and all λ ∈ [0, 1],
there exists b ∈ B such that

ϕ(a, b) ≤C λϕ(a, b1) + (1− λ)ϕ(a, b2) + c for all a ∈ A;

(iii) C-subconcavelike – subconvexlike if it is C-subconcavelike in its first variable and C-subconvexlike
in its second variable.

When Z := R and C := R+, then we use the terms subconcavelike, subconvexlike and subcon-
cavelike – subconvexlike instead of R+-subconcavelike, R+-subconvexlike and R+-subconcavelike –
subconvexlike, respectively.

The C-subconcavelikeness of a bifunction can be characterized as follows.

Proposition 2.1.3 (A. Capătă and G. Kassay [38]) A bifunction ϕ : A×B → Z is C-subconcavelike
in its first variable if and only if, for all c ∈ intC, all a1, . . . , am ∈ A, all λ1, . . . , λm ≥ 0 with
λ1 + · · ·+ λm = 1, there exists a ∈ A such that

ϕ(a, b) ≥C

m∑
i=1

λiϕ(ai, b)− c for all b ∈ B.

Using Proposition 2.1.3 we obtain by Theorem 2.1.1 the following result.

Corollary 2.1.4 (A. Capătă and G. Kassay [38]) Let A be a compact set, and let the bifunction
ϕ : A×B → Z satisfy the following conditions:

(i) ϕ is C-upper semicontinuous on A and C-subconcavelike in its first variable;

(ii) for all b1, . . . , bn ∈ B, all c∗1, . . . , c
∗
n ∈ C∗ not all zero, one has

sup
a∈A

n∑
j=1

c∗j
(
ϕ(a, bj)

)
≥ 0.

Then problem (WVEP ) admits a solution.

In what follows we deal with the scalar case. Let Z := R, and let C := R+. Then, our weak
vector equilibrium problem (WVEP ) becomes the following scalar equilibrium problem:

(EP ) find ā ∈ A such that ϕ(ā, b) ≥ 0 for all b ∈ B.

Theorem 2.1.1 permits us to reobtain a result of G. Kassay and J. Kolumbán [82] concerning
the existence of solutions for (EP ).
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Corollary 2.1.5 (G. Kassay and J. Kolumbán [82]) Let A be a compact set, and let ϕ : A×B → R
satisfy the following conditions:

(i) for each b ∈ B, the function ϕ(·, b) : A→ R is upper semicontinuous on A;

(ii) for all a1, . . . , am ∈ A, all λ1, . . . , λm ≥ 0 with λ1 + · · ·+ λm = 1, and all b1, . . . , bn ∈ B, one
has

min
1≤j≤n

m∑
i=1

λiϕ(ai, bj) ≤ sup
a∈A

min
1≤j≤n

ϕ(a, bj);

(iii) for all b1, . . . , bn ∈ B, all µ1, . . . , µn ≥ 0 with µ1 + · · ·+ µn = 1, one has

sup
a∈A

n∑
j=1

µjϕ(a, bj) ≥ 0.

Then problem (EP ) admits a solution.

Assumption (iii) of Corollary 2.1.5 is satisfied if the bifunction ϕ is subconvexlike in its second
variable and an additional condition, namely sup

a∈A
ϕ(a, b) ≥ 0 for each b ∈ B, is satisfied. This fact

is illustrated in the next corollary. When we deal with B = A, then this additional condition can
be replaced by a stronger one, namely that ϕ(a, a) = 0 for all a ∈ A.

Corollary 2.1.6 (A. Capătă and G. Kassay [38]) Let A be a compact set, and let the bifunction
ϕ : A×B → R satisfy the following conditions:

(i) for each b ∈ B, the function ϕ(·, b) : A→ R is upper semicontinuous on A;

(ii) ϕ is subconcavelike – subconvexlike;

(iii) sup
a∈A

ϕ(a, b) ≥ 0 for each b ∈ B.

Then problem (EP ) admits a solution.

2.2 Existence results for the generalized equilibrium problem with
composed functions

Let E and Y be real topological linear spaces, the latter being partially ordered by a convex closed
cone K, let A be a nonempty subset of E, and let h : A → Y and g : Y → R be given functions.
Further, let Z := R, let C := R+, let B := A, and let ϕ : A× A→ R satisfy the property

ϕ(a, a) = 0 for each a ∈ A.

In this section we investigate the following generalized equilibrium problem with composed func-
tions:

(GEPC) find ā ∈ A such that ϕ(ā, b) + g ◦ h(b) ≥ g ◦ h(ā) for all b ∈ A.

Definition 2.2.1 (D. T. Luc [95]) The function g : Y → R is said to be K-increasing if, for all
y1, y2 ∈ Y such that y1 ≤K y2, one has g(y1) ≤ g(y2).

8



Proposition 2.2.2 (D. T. Luc [95]) Let h : E → Y be K-lower semicontinuous at x0 ∈ E, and let
g : Y → R be K-increasing and lower semicontinuous at h(x0). Then g◦h is lower semicontinuous
at x0.

Theorem 2.2.3 (R. I. Boţ and A. E. Capătă [27]) Let A be a compact set, and let the following
conditions be fulfilled:

(i) for each b ∈ A, the function ϕ(·, b) is upper semicontinuous on A;

(ii) h is K-lower semicontinuous on A;

(iii) g is lower semicontinuous on Y ;

(iv) the bifunction
∀ (a, b) ∈ A× A 7→ ϕ(a, b)− g(h(a)) ∈ R

is subconcavelike in its first variable;

(v) the bifunction
∀ (a, b) ∈ A× A 7→ ϕ(a, b) + g(h(b)) ∈ R

is subconvexlike in its second variable.

Then problem (GEPC) admits a solution.

Remark 2.2.4 It is an easy exercise to verify that the assumptions (iv) and (v) in Theorem 2.2.3
are consequences of:

(vi) the bifunction
∀ (a, b) ∈ A× A 7→ (ϕ(a, b),−g(h(a))) ∈ R2

is R2
+-subconcavelike in its first variable and, respectively,
(vii) the bifunction

∀ (a, b) ∈ A× A 7→ (ϕ(a, b), g(h(b))) ∈ R2

is R2
+-subconvexlike in its second variable. �

When the function g : Y → R is convex andK-increasing one can give some sufficient conditions
for the hypotheses (vi) and (vii) in the above remark which involve only the vector function h. To
this end we consider two generalized convexity notions that are analogues of those introduced in
Definition 2.1.2.

Definition 2.2.5 (R. I. Boţ and A. E. Capătă [27]) We say that:

(i) the bifunction
∀ (a, b) ∈ A× A 7→ (ϕ(a, b),−h(a)) ∈ R× Y

is subconcavelike – K-concavelike in its first variable whenever, for all ε > 0, all λ ∈ [0, 1]
and all a1, a2 ∈ A, there exists a ∈ A such that

(ϕ(a, b),−h(a)) ≥R+×K λ(ϕ(a1, b),−h(a1))+

+(1− λ)(ϕ(a2, b),−h(a2))− (ε, 0) for all b ∈ A;
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(ii) the bifunction
∀ (a, b) ∈ A× A 7→ (ϕ(a, b), h(b)) ∈ R× Y

is subconvexlike – K-convexlike in its second variable whenever, for all ε > 0, all λ ∈ [0, 1]
and all b1, b2 ∈ A, there exists b ∈ A such that

(ϕ(a, b), h(b)) ≤R+×K λ(ϕ(a, b1), h(b1))+

+(1− λ)(ϕ(a, b2), h(b2)) + (ε, 0) for all a ∈ A.

Now we can state a second result on the existence of solutions for (GEPC).

Theorem 2.2.6 (R. I. Boţ and A. E. Capătă [27]) Let A be a compact set, and let the following
conditions be fulfilled:

(i) for each b ∈ A, the function ϕ(·, b) is upper semicontinuous on A;

(ii) h is C-lower semicontinuous on A;

(iii) g is convex, lower semicontinuous on Y and K-increasing;

(iv) the bifunction
∀ (a, b) ∈ A× A 7→ (ϕ(a, b),−h(a)) ∈ R× Y

is subconcavelike – K-concavelike in its first variable;

(v) the bifunction
∀ (a, b) ∈ A× A 7→ (ϕ(a, b), h(b)) ∈ R× Y

is subconvexlike – K-convexlike in its second variable.

Then problem (GEPC) admits a solution.

Imposing classical assumptions on the sets and functions involved in the formulation of problem
(GEPC), this problem has a solution, as the next corollary shows.

Corollary 2.2.7 (R. I. Boţ and A. E. Capătă [27]) Let A be a convex and compact set, and let
the following conditions be fulfilled:

(i) for each b ∈ A, the function ϕ(·, b) is upper semicontinuous on A;

(ii) h is K-convex and K-lower semicontinuous on A;

(iii) g is convex, lower semicontinuous on Y and K-increasing;

(iv) the bifunction ϕ is concave – convex.

Then problem (GEPC) admits a solution.

10



Chapter 3

Existence results for strong vector
equilibrium problems

Let A be a nonempty subset of a topological space E, let B be a nonempty set, and let C be a
nontrivial pointed convex cone of a real topological linear space Z, and let ϕ : A × B → Z be a
given bifunction. In Q. H. Ansari, W. Oettli and D. Schläger [6], the scalar equilibrium problem
(EP ) (see Section 2.1) was extended to vector-valued bifunctions in the following way:

(V EP ) find ā ∈ A such that ϕ(ā, b) /∈ −C \ {0} for all b ∈ B.

Throughout this chapter we deal with (V EP ), which is called the strong vector equilibrium problem.

3.1 Existence results established via Eidelheit’s theorem

In this section, the cone C is supposed to be solid. The next theorem states the existence of
solutions of the strong vector equilibrium problem.

Theorem 3.1.1 (G. Bigi, A. Capătă and G. Kassay [18]) Let ϕ : A×B → Z satisfy the following
conditions:

(i) if the family (Ub)b∈B covers A, then it contains a finite subcover, where

Ub := {a ∈ A |ϕ(a, b) ∈ −C\{0}};

(ii) for all a1, . . . , am ∈ A, all λ1, . . . , λm ≥ 0 with λ1 + · · · + λm = 1, and all b1, . . . , bn ∈ B,
there exists c∗ ∈ C] such that

min
1≤j≤n

m∑
i=1

λic
∗(ϕ(ai, bj)

)
≤ sup

a∈A
min

1≤j≤n
c∗

(
ϕ(a, bj)

)
;

(iii) for all b1, . . . , bn ∈ B, and all c∗1, . . . , c
∗
n ∈ C∗ not all zero, one has

sup
a∈A

n∑
j=1

c∗j
(
ϕ(a, bj)

)
> 0.
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Then problem (V EP ) admits a solution.

The following generalization of the upper semicontinuity, extending the upper semicontinuity
of real-valued functions, was also given by W. W. Breckner and G. Orbán [31].

Definition 3.1.2 (W. W. Breckner and G. Orbán [31]) Let C be a convex cone. A vector-valued
function f : A→ Z is said to be upper semicontinuous at a point a0 ∈ A if, for each c ∈ C \ {0},
there exists a neighbourhood U of a0 such that

f(a) ∈ f(a0) + c− C for all a ∈ U ∩ A.

Under the hypothesis that C is a pointed convex cone, the upper semicontinuity introduced in
Definition 3.1.2 is equivalent to the next one, introduced by G. Bigi, A. Capătă and G. Kassay [18].

Definition 3.1.3 (G. Bigi, A. Capătă and G. Kassay [18]) A vector-valued function f : A→ Z is
said to be:

(i) properly C-upper semicontinuous at a point a0 ∈ A if, for each c ∈ C \ {0}, there exists a
neighbourhood U of a0 such that

f(a) ∈ f(a0) + c− C \ {0} for all a ∈ U ∩ A;

(ii) properly C-upper semicontinuous on A if, it is properly C-upper semicontinuous at each
point a0 ∈ A;

(iii) properly C-lower semicontinuous at a0 ∈ A (respectively properly C-lower semicontinuous
on A) if −f is properly C-upper semicontinuous at a0 ∈ A (respectively properly C-upper
semicontinuous on A).

Notice that every properly C-upper semicontinuous function f : A → Z is C-upper semicon-
tinuous, but not the viceversa. For example, if we take A := Z and C ⊆ Z is any cone such that
C \ {0} is not open, then the identity function is not properly C-upper semicontinuous.

Proposition 3.1.4 (G. Bigi, A. Capătă and G. Kassay [18]) Given a function f : A → Z, the
following properties are equivalent:

(i) f is properly C-upper semicontinuous on A;

(ii) For each z ∈ Z, the set f−1(z − C\{0}) is open with respect to the induced topology on A.

Proposition 3.1.5 (G. Bigi, A. Capătă and G. Kassay [18]) Suppose that A is a compact set, and
that for each b ∈ B the function ϕ(·, b) : A → Z is properly C-upper semicontinuous on A. Then
condition (i) in Theorem 3.1.1 is satisfied.

By Proposition 3.1.5 and Definition 2.1.2 (i), we obtain the next corollary of Theorem 3.1.1.

Corollary 3.1.6 (G. Bigi, A. Capătă and G. Kassay [18]) Let C be such that C] 6= ∅, and let
ϕ : A×B → Z satisfy the following conditions:

(i) for all b ∈ B, ϕ(·, b) : A→ Z is properly C-upper semicontinuous on A;

(ii) ϕ is C-subconcavelike in its first variable;
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(iii) for all b1, . . . , bn ∈ B, and all c∗1, . . . , c
∗
n ∈ C∗ not all zero, the inequality

sup
a∈A

n∑
j=1

c∗j
(
ϕ(a, bj)

)
> 0

holds.

Then problem (V EP ) admits a solution.

In the particular case when Z := R and C := R+, Corollary 3.1.6 yields the next result.

Corollary 3.1.7 (G. Bigi, A. Capătă and G. Kassay [18]) Let A be a compact set, and let ϕ :
A×B → R satisfy the following conditions:

(i) for all b ∈ B, ϕ(·, b) : A→ R is upper semicontinuous on A;

(ii) ϕ is subconcavelike in its first variable;

(iii) for all b1, . . . , bn ∈ B and all µ1, . . . , µn ≥ 0 with µ1 + · · ·+ µn = 1, one has

sup
a∈A

n∑
j=1

µjϕ(a, bj) > 0.

Then problem (EP ) admits a solution.

Theorem 3.1.8 (C. L. de Vito [112]) Let E be a normed space, and let A be a subset of E that is
weakly compact. Then every sequence of points of A has a subsequence that is weakly convergent
to a point of A.

The next result follows from Corollary 3.1.7.

Theorem 3.1.9 (G. Bigi, A. Capătă and G. Kassay [18]) Let E be a normed space, let A be a
weakly compact set, and let c∗ ∈ C]. Suppose that ϕ : A×B → Z satisfies the following conditions:

(i) for each b ∈ B, the function a ∈ A 7→ c∗(ϕ(a, b)) ∈ R is weakly upper semicontinuous on A;

(ii) ϕ is C-subconcavelike – subconvexlike;

(iii) for all b ∈ B, one has
sup
a∈A

c∗(ϕ(a, b)) ≥ 0.

Then problem (V EP ) admits a solution.

Theorem 3.1.9 allows us to get the following slight generalization of Theorem 3.2 established
by X. H. Gong [58], in which convexlikeness is replaced by the weaker subconvexlikeness.

Corollary 3.1.10 Let E be a normed space, let A be a weakly compact set, and let c∗ ∈ C].
Suppose that ϕ : A×B → Z satisfies the following conditions:

(i) for each b ∈ B, the function a ∈ A 7→ c∗(ϕ(a, b)) ∈ R is weakly upper semicontinuous on A;
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(ii) ϕ is C-subconcavelike – subconvexlike;

(iii) ϕ(a, a) ∈ C for all a ∈ A

Then problem (V EP ) admits a solution.

It should be remarked that Theorem 3.1.9 extends the above-mentioned Theorem 3.2 estab-
lished by X. H. Gong [58] also in two other directions: on the one hand, in Theorem 3.1.9 there are
considered two different sets A and B, on the other hand, the equilibrium condition ϕ(a, a) ∈ C is
replaced by a weaker assumption involving an appropriate supremum over A.

3.2 Existence results established via Ky Fan’s lemma

This section is devoted to the study of a special case of the strong vector equilibrium problem
(V EP ) by using a generalized dual problem.

Throughout this section, E is a real Hausdorff topological linear space, A ⊆ E is a nonempty
convex subset, B = A, and C is a pointed convex cone of the real topological linear space Z. So,
problem (V EP ) becomes:

(PV EP ) find ā ∈ A such that ϕ(ā, b) /∈ −C \ {0} for all b ∈ A.

With the help of an operator, we attach to problem (PV EP ) a dual problem. Let D be an
operator from F(A,Z) := {ψ | ψ : A × A → Z} into itself, which is called the duality operator.
In fact, D is a set of fixed rules applied to problem (PV EP ). By means of D we introduce the
following generalized dual strong vector equilibrium problem:

(DV EP ) find ā ∈ A such that D(ϕ)(ā, b) /∈ −C \ {0} for all b ∈ A.

The following proposition shows that, under a certain hypothesis, the generalized dual of this dual
problem becomes the initial problem.

Proposition 3.2.1 If
D ◦ D(ϕ) = ϕ,

then the generalized dual problem of (DV EP ) is problem (PV EP ).

Let G : A× A→ Z be defined by

G(a, b) := −D(ϕ)(b, a) for all a, b ∈ A.

In this framework, problem (DV EP ) can be written as:

(GV EP ) find ā ∈ A such that G(b, ā) /∈ C \ {0} for all b ∈ A.

The next notions are generalizations of the g-monotonicity and maximal g-monotonicity, re-
spectively, introduced by W. Oettli [99] in the scalar case.

Definition 3.2.2 The bifunction ϕ : A× A→ Z is said to be:

(i) G-pseudomonotone if, for all a, b ∈ A,

ϕ(a, b) /∈ −C \ {0} implies G(b, a) /∈ C \ {0};
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(ii) maximally G-pseudomonotone if it is G-pseudomonotone and, for all a, b ∈ A, the following
implication holds:

G(x, a) /∈ C \ {0} for all x ∈ ]a, b] implies ϕ(a, b) /∈ −C \ {0}.

Proposition 3.2.3 (A. Capătă [35]) If ϕ : A×A→ Z is maximally G-pseudomonotone, then the
sets of solutions of problems (PV EP ) and (GV EP ) coincide.

By using the dual formulation (GV EP ) of problem (PV EP ) we obtain the following existence
results for solutions of problem (PV EP ).

Theorem 3.2.4 (A. Capătă [35]) Suppose that ϕ : A × A → Z and G : A × A → Z satisfy the
following conditions:

(i) ϕ(a, a) ∈ C for all a ∈ A;

(ii) ϕ is maximally G-pseudomonotone;

(iii) for each b ∈ A, the set S(b) := {a ∈ A | G(b, a) /∈ C \ {0}} is closed;

(iv) for each a ∈ A, the set W (a) := {b ∈ A | ϕ(a, b) ∈ −C \ {0}} is convex;

(v) there exist a nonempty, compact and convex set D ⊆ A as well as an element b̃ ∈ D such
that

ϕ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Then problem (PV EP ) admits a solution.

Corollary 3.2.5 (A. Capătă [35]) Suppose that ϕ : A × A → Z and G : A × A → Z satisfy the
following conditions:

(i) ϕ(a, a) ∈ C for all a ∈ A;

(ii) ϕ is maximally G-pseudomonotone;

(iii) for each b ∈ A, the set S(b) := {a ∈ A | G(b, a) /∈ C \ {0}} is closed;

(iv) for each a ∈ A, the function ϕ(a, ·) : A→ Z is C-quasiconvex;

(v) there exist a nonempty, compact and convex set D ⊆ A as well as an element b̃ ∈ D such
that

ϕ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Then problem (PV EP ) admits a solution.

Remark 3.2.6 (A. Capătă [35]) Assumption (iv) in Theorem 3.2.4 does not imply assumption
(iv) of Corollary 3.2.5. Indeed, let E = Z, let C ⊆ Z be a pointed convex cone such that the
ordering defined by C is not total on A, and let ϕ : A× A→ Z be defined by

ϕ(a, b) := b for all a, b ∈ A.
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In order to verify assumption (iv) of Theorem 3.2.4, fix a ∈ A and take b1, b2 ∈ W (a). Thus
b1, b2 ∈ −C \ {0}. Because −C \ {0} is convex, we have

λb1 + (1− λ)b2 ∈ −C \ {0} for every λ ∈ [0, 1].

So, W (a) is a convex set.
Now, let b1, b2 ∈ A and λ ∈ [0, 1]. Suppose that ϕ(a, ·) : A → Z is C-quasiconvex. Thus, we

obtain
b1 ∈ b2 + C or b2 ∈ b1 + C.

Since b1 and b2 were arbitrarily chosen and the ordering induced by C on A is not total, it follows
that the function ϕ(a, ·) is not C-quasiconvex. �

In what follows we consider two particular cases of the operator D. Firstly we define the
operator D : F(A,Z) → F(A,Z) by

(3.1) D(ψ)(a, b) := −ψ(b, a) for all a, b ∈ A.

So, the generalized dual strong vector equilibrium problem becomes:

(DV EP1) find ā ∈ A such that ϕ(b, ā) /∈ C \ {0} for all b ∈ A.

Under pseudomonotonicity assumptions we will give an existence result for the strong vector equi-
librium problem (PV EP ). Taking into consideration that G : A × A → Z, associated with the
operator D : F(A,Z) → F(A,Z) defined by (3.1), coincides with ϕ, Definition 3.2.2 yields the
following definition.

Definition 3.2.7 The bifunction ϕ : A× A→ Z is said to be:

(i) pseudomonotone if, for all a, b ∈ A,

ϕ(a, b) /∈ −C \ {0} implies ϕ(b, a) /∈ C \ {0};

(ii) maximally pseudomonotone if it is pseudomonotone and, for all a, b ∈ A, the following
implication holds:

ϕ(x, a) /∈ C \ {0} for all x ∈ ]a, b] implies ϕ(a, b) /∈ −C \ {0}.

Proposition 3.2.8 If ϕ : A×A→ Z is maximally pseudomonotone, then the sets of solutions of
problems (PV EP ) and (DV EP1) coincide.

Theorem 3.2.4 provides the next existence result of solutions of (PV EP ) under a pseudomono-
tonicity assumption.

Corollary 3.2.9 (A. Capătă [35]) Suppose that the bifunction ϕ : A×A→ Z satisfies the following
conditions:

(i) ϕ(a, a) ∈ C for all a ∈ A;

(ii) ϕ is maximally pseudomonotone;
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(iii) for each b ∈ A, the set S(b) := {a ∈ A | ϕ(b, a) /∈ C \ {0}} is closed;

(iv) for each a ∈ A, the set W (a) := {b ∈ A | ϕ(a, b) ∈ −C \ {0}} is convex;

(v) there exist a nonempty, compact and convex set D ⊆ A as well as an element b̃ ∈ D such
that

ϕ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Then problem (PV EP ) admits a solution.

Now, if we define D : F(A,Z) → F(A,Z) by D(ψ) := ψ, then we obtain an existence result
for problem (PV EP ) without pseudomonotonicity assumptions. It is easy to verify that the
assumption of ϕ to be maximally G-pseudomonotone is fulfilled.

In this case, the generalized dual problem of problem (PV EP ) is exactly (PV EP ):

(DV EP2) find ā ∈ A such that ϕ(ā, b) /∈ −C \ {0} for all b ∈ A.

Corollary 3.2.10 (A. Capătă [35]) Suppose that the bifunction ϕ : A × A → Z satisfies the
following conditions:

(i) ϕ(a, a) ∈ C for all a ∈ A;

(ii) for each b ∈ A, the set S(b) := {a ∈ A | ϕ(a, b) /∈ −C \ {0}} is closed;

(iii) for each a ∈ A, the set W (a) := {b ∈ A | ϕ(a, b) ∈ −C \ {0}} is convex;

(iv) there exist a nonempty, compact and convex set D ⊆ A as well as an element b̃ ∈ D such
that

ϕ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Then problem (PV EP ) admits a solution.

Theorem 3.2.4 and Corollary 3.2.10 allow us to reobtain Lemma 1 and Theorem 2 established
by W. Oettli [99], which are existence results for scalar equilibrium problems. Indeed, in what
follows assume that Z := R and C := R+.

Corollary 3.2.11 Let the bifunctions ϕ : A × A → R and G : A × A → R satisfy the following
conditions:

(i) ϕ(a, a) ≥ 0 for all a ∈ A;

(ii) ϕ is maximally G-pseudomonotone;

(iii) for each b ∈ A, the set S(b) := {a ∈ A | G(b, a) ≤ 0} is closed;

(iv) for each a ∈ A, the set W (a) := {b ∈ A | ϕ(a, b) < 0} is convex;

(v) there exist a nonempty, compact and convex set D ⊆ A as well as an element b̃ ∈ D such
that

ϕ(x, b̃) < 0 for all x ∈ A \D.

Then problem (EP ) considered in Section 2.1 with B = A admits a solution.
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Corollary 3.2.12 Suppose that the bifunction ϕ : A× A→ R satisfies the following conditions:

(i) ϕ(a, a) ≥ 0 for all a ∈ A;

(ii) for each b ∈ A, the set S(b) := {a ∈ A | ϕ(a, b) ≥ 0} is closed;

(iii) for each a ∈ A, the set W (a) := {b ∈ A | ϕ(a, b) < 0} is convex;

(iv) there exist a nonempty, compact and convex set D ⊆ A as well as an element b̃ ∈ D such
that

ϕ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Then problem (EP ) considered in Section 2.1 with B = A admits a solution.

Corollary 3.2.12 is a slight generalization of an existence result established by K. Fan [49] and
recovered by L. J. Lin, Z. T. Yu and G. Kassay [94].

Corollary 3.2.13 (K. Fan [49]) Let A be a compact set, and let ϕ : A×A→ R satisfy the following
conditions:

(i) ϕ(a, a) ≥ 0 for all a ∈ A;

(ii) ϕ(·, b) : A→ R is upper semicontinuous for all b ∈ A;

(iii) ϕ(a, ·) : A→ R is quasiconvex for all a ∈ A.

Then problem (EP ) considered in Section 2.1 with B = A admits a solution.

3.3 Existence results for proper efficient solutions of strong vector
equilibrium problems

Under the assumption that C is a solid convex cone, we have proved in Section 2.1 and Section
3.1 existence results for the vector equilibrium problems (WVEP ) and (V EP ). But, there are
important ordered topological linear spaces whose ordering cones have an empty interior. For
example, when Z := Lp(T, µ), where (T, µ) is a σ-finite measure space and p ∈ [1,+∞[, the cone

C := {u ∈ Lp(T, µ) | u(t) ≥ 0 a.e. in [0, T ]}

has an empty interior.
In what follows we state existence results proper solutions of the strong vector equilibrium

problem (V EP ).
Let Z be a real topological linear space, and let C ⊆ Z be a nontrivial pointed convex cone.

Definition 3.3.1 A subset K ⊆ Z is said to be a Henig dilating cone for C if it satisfies the
following conditions:

(i) K is a pointed convex cone;

(ii) C \ {0} ⊆ intK.
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Remark 3.3.2 If K ⊆ Z is a Henig dilating cone for C, then K∗ \ {0} ⊆ C]. Indeed, let
c∗ ∈ K∗ \ {0}. Since c∗(c) ≥ 0 for all c ∈ K and intK 6= ∅, it follows (see, for instance, W.
W. Breckner [30, pp. 352-353, Lemma 6.3.1]) that c∗(c) > 0 for all c ∈ intK. By virtue of
C \ {0} ⊆ intK, we conclude that c∗ ∈ C]. �

Definition 3.3.3 A family (Ki)i∈I of subsets of Z is said to be a family of Henig dilating cones
for C if each Ki (i ∈ I) is a Henig dilating cone for C.

To see that such families exist we give two examples.

Example 3.3.4 Let Z be a real normed space, and let C ⊆ Z be a based cone. So, we can choose
a subset B ⊆ C satisfying the following conditions: B is nonempty and convex; C = R+B; and
0 /∈ clB. Set

d := inf {‖ b ‖ | b ∈ B}.

Further, let U0 be the closed unit ball of Z. For every ε ∈ ]0, d[ put

Kε(B) := R+(B + εU0).

We claim that (Kε(B))ε∈ ]0,d[ is a family of Henig dilating cones for C.
Fix any ε ∈ ]0, d[. Then the set B + εU0 is nonempty and convex. Moreover, we have

‖b+ εy‖ ≥ ‖b‖ − ε‖y‖ ≥ d− ε for all b ∈ B and all y ∈ U0,

whence
inf {‖z‖ | z ∈ B + εU0} ≥ d− ε > 0.

This inequality implies that 0 /∈ cl(B+ εU0). Thus, Kε(B) is a based cone, hence a pointed convex
cone. Finally, we prove that

C \ {0} ⊆ intKε(B).

Let z ∈ C \ {0}. Then there exists λ ∈ ]0,∞[ such that z ∈ λB. Consequently, it follows that

z + λεU0 ⊆ λ(B + εU0) ⊆ Kε(B),

whence z ∈ intKε(B). Summing up, Kε(B) is a Henig dilating cone for C. �

Example 3.3.5 Let Z be a real locally convex space, and let C ⊆ Z be a based cone. So,
there exists a nonempty and convex subset B ⊆ C such that C = R+B and 0 /∈ clB. By Tukey’s
separation theorem, there exists a functional z∗ ∈ Z∗ such that

r := inf {z∗(b) | b ∈ B} > 0.

The set
VB(z

∗) := {z ∈ Z | |z∗(z)| < r

2
}

is a convex and balanced neighbourhood of the origin of Z. Further, set

U := {U | U is a convex neighbourhood of the origin of Z with U ⊆ VB(z
∗)}.

For every U ∈ U put
KU(B) := R+(B + U).
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We claim that (KU(B))U∈U is a family of Henig dilating cones for C.
Fix any U ∈ U . Then the set B + U is nonempty and convex. Moreover, we have

|z∗(b+ y)| ≥ |z∗(b)| − |z∗(y)| ≥ r − r

2
for all b ∈ B and all y ∈ U0,

whence
inf{|z∗(z)| | z ∈ B + U} ≥ r

2
> 0.

This inequality implies that 0 /∈ cl(B + U). Thus, KU(B) is a based cone, hence a pointed convex
cone. Finally, we prove that

C \ {0} ⊆ intKU(B).

Let z ∈ C \ {0}. Then there exists λ ∈ ]0,∞[ such that z ∈ λB. Consequently, it follows that

z + λU ⊆ λ(B + U) ⊆ KU(B),

whence z ∈ intKU(B). Summing up, KU(B) is a Henig dilating cone for C. �

Definition 3.3.6 Let K ⊆ Z be a Henig dilating cone for C. A point ā ∈ A is said to be:

(i) a K-Henig weakly efficient solution of (V EP ) if

ϕ(ā, B) ∩ (− intK) = ∅.

(ii) a K-Henig efficient solution of (V EP ) if

ϕ(ā, B) ∩ (−K) = {0}.

The next definition generalizes the Henig efficient solutions introduced by X. H. Gong, W. T.
Fu and W. Liu [65].

Definition 3.3.7 (A. Capătă [37]) Let (Ki)i∈I (where Ki ⊆ Z for each i ∈ I) be a family of Henig
dilating cones for C. A point ā ∈ A is said to be:

(i) a Henig weakly efficient solution of (V EP ) if there exists i0 ∈ I such that ā is a Ki0-Henig
weakly efficient solution of (V EP );

(ii) a Henig efficient solution of (V EP ) if there exists i0 ∈ I such that ā is a Ki0-Henig efficient
solution of (V EP ).

Theorem 3.3.8 Let A be a compact set, let K ⊆ Z be a Henig dilating cone for C, and let
ϕ : A×B → Z satisfy the following conditions:

(i) for each b ∈ B, the function ϕ(·, b) : A→ Z is K-upper semicontinuous on A;

(ii) for all a1, . . . , am ∈ A, all λ1, . . . , λm ≥ 0 with λ1 + · · · + λm = 1, and all b1, . . . , bn ∈ B,
there exists k∗ ∈ K∗ \ {0} such that

min
1≤j≤n

m∑
i=1

λik
∗(ϕ(ai, bj)

)
≤ sup

a∈A
min

1≤j≤n
k∗

(
ϕ(a, bj)

)
;
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(iii) for all b1, . . . , bn ∈ B and all k∗1, . . . , k
∗
n ∈ K∗ not all zero, one has

sup
a∈A

n∑
j=1

k∗j
(
ϕ(a, bj)

)
≥ 0.

Then problem (V EP ) admits a K-Henig weakly efficient solution.

Theorem 3.3.9 Let A be a compact set, let K ⊆ Z be a Henig dilating cone for C, and let
ϕ : A×B → Z satisfy the following conditions:

(i) for each b ∈ B, the function ϕ(·, b) : A→ Z is properly K-upper semicontinuous on A;

(ii) for all a1, . . . , am ∈ A, all λ1, . . . , λm ≥ 0 with λ1 + · · · + λm = 1, and all b1, . . . , bn ∈ B,
there exists k∗ ∈ K] such that

min
1≤j≤n

m∑
i=1

λik
∗(ϕ(ai, bj)

)
≤ sup

a∈A
min

1≤j≤n
k∗

(
ϕ(a, bj)

)
;

(iii) for all b1, . . . , bn ∈ B and all k∗1, . . . , k
∗
n ∈ K∗ not all zero, one has

sup
a∈A

n∑
j=1

k∗j
(
ϕ(a, bj)

)
> 0.

Then problem (V EP ) admits a K-Henig efficient solution.

Let K := (Ki)i∈I (where Ki ⊆ Z for each i ∈ I) be a family of Henig dilating cones for C.
In the sequel we give existence results for Henig weakly efficient solutions of (V EP ) by using the
following set:

K4 := {c∗ ∈ E∗ | ∃ i ∈ I : c∗ ∈ K∗
i \ {0}}.

By virtue of Remark 3.3.2 it follows that K4 ⊆ C].

Proposition 3.3.10 (X. H. Gong [58], [59]) If K is the family (Kε(B))ε∈ ]0,d[ of Henig dilating
cones for C constructed in Example 3.3.4 or the family (KU(B))U∈U of Henig dilating cones for C
constructed in Example 3.3.5, then

K4 = {c∗ ∈ C] | inf c∗(B) > 0}.

Theorem 3.3.11 (A. Capătă [37]) Let A be a compact set, let K := (Ki)i∈I be a family of Henig
dilating cones for C, and let ϕ : A×B → Z satisfy the following conditions:

(i) for each b ∈ B and each i ∈ I, the function ϕ(·, b) : A → Z is Ki-upper semicontinuous on
A;

(ii) there exists c∗ ∈ K4 such that, for all a1, . . . , am ∈ A, all the numbers λ1, . . . , λm ≥ 0 with
λ1 + · · ·+ λm = 1, and all b1, . . . , bn ∈ B, the functional c∗ satisfies

min
1≤j≤n

m∑
i=1

λic
∗(ϕ(ai, bj)

)
≤ sup

a∈A
min

1≤j≤n
c∗

(
ϕ(a, bj)

)
;
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(iii) for all b1, . . . , bn ∈ B, each i ∈ I, and all k∗1, . . . , k
∗
n ∈ K∗

i not all zero, one has

sup
a∈A

n∑
j=1

k∗j
(
ϕ(a, bj)

)
≥ 0.

Then problem (V EP ) admits a Henig weakly efficient solution.

We observe that the assumptions (i) and (iii) of Theorem 3.3.11 are stronger than the assump-
tions (i) and (iii) of Theorem 3.3.8, while assumption (ii) of Theorem 3.3.8 has not to be satisfied
for all cones Ki (i ∈ I).

The next corollary is stated under stronger assumptions than those of Theorem 3.3.11.

Corollary 3.3.12 (A. Capătă [37]) Let A be a compact set, let K := (Ki)i∈I be a family of Henig
dilating cones for C, and let ϕ : A×B → Z satisfy the following conditions:

(i) for each b ∈ B and each i ∈ I, the function ϕ(·, b) : A → Z is Ki-upper semicontinuous on
A;

(ii) there exists c∗ ∈ K4 such that c∗ ◦ ϕ is subconcavelike in its first variable;

(iii) for all b1, . . . , bn ∈ B, each i ∈ I, and all k∗1, . . . , k
∗
n ∈ K∗

i not all zero, one has

sup
a∈A

n∑
j=1

k∗j
(
ϕ(a, bj)

)
≥ 0.

Then problem (V EP ) admits a Henig weakly efficient solution.

Remark 3.3.13 When ϕ is Ki-subconcavelike for each i ∈ I, then assumption (ii) of Corollary
3.3.12 is satisfied. �

In order to give another existence result for Henig weakly efficient solutions of problem (V EP ),
we need the following notion.

Definition 3.3.14 (A. Capătă [37]) Let (Ki)i∈I (where Ki ⊆ Z for each i ∈ I) be a family of
Henig dilating cones for C. A pair (Ki1 , Ki2), where i1, i2 ∈ I, is said to be admissible if

Ki1 +Ki2 = Ki0 for some i0 ∈ I.

It is easy to see that the family of Henig dilating cones for C constructed in Example 3.3.4
admits such kind of pairs. This remark is also true for the family of Henig efficient cones for C
constructed in Example 3.3.5. Indeed, when U1, U2 ∈ U , then U3 := co(U1 ∪ U2) belongs to U and
KU1(B) +KU2(B) = KU3(B).

Theorem 3.3.15 (A. Capătă [37]) Let A be a compact set, let K := (Ki)i∈I be a family of Henig
dilating cones for C, let (Ki1 , Ki2) be an admissible pair, and let ϕ : A × B → Z satisfy the
following conditions:

(i) for each b ∈ B, the function ϕ(·, b) : A→ Z is Ki1-upper semicontinuous on A;
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(ii) for each i ∈ I, all a1, . . . , am ∈ A, all λ1, . . . , λm ≥ 0 with λ1 + · · · + λm = 1, and all
b1, . . . , bn ∈ B, there exists k∗ ∈ K∗

i \ {0} such that

min
1≤j≤n

m∑
i=1

λik
∗(ϕ(ai, bj)

)
≤ sup

a∈A
min

1≤j≤n
k∗

(
ϕ(a, bj)

)
;

(iii) for all b1, . . . , bn ∈ B and all k∗1, . . . , k
∗
n ∈ K∗

i2
not all zero, one has

sup
a∈A

n∑
j=1

k∗j
(
ϕ(a, bj)

)
≥ 0.

Then problem (V EP ) admits a Henig weakly efficient solution.

Let K := (Ki)i∈I (where Ki ⊆ Z for each i ∈ I) be a family of Henig dilating cones for C. Put

KN := {c∗ ∈ E∗ | ∃ i ∈ I : c∗ ∈ K]
i}.

Obviously, we have KN ⊆ K4.

Theorem 3.3.16 Let A be a compact set, let K := (Ki)i∈I be a family of Henig dilating cones for
C, and let ϕ : A×B → Z satisfy the following conditions:

(i) for each b ∈ B and each i ∈ I, the function ϕ(·, b) : A→ Z is properly Ki-upper semicontin-
uous on A;

(ii) there exists c∗ ∈ KN such that, for all a1, . . . , am ∈ A, all the numbers λ1, . . . , λm ≥ 0 with
λ1 + · · ·+ λm = 1, and all b1, . . . , bn ∈ B, the following inequality is satisfied:

min
1≤j≤n

m∑
i=1

λic
∗(ϕ(ai, bj)

)
≤ sup

a∈A
min

1≤j≤n
c∗

(
ϕ(a, bj)

)
;

(iii) for all b1, . . . , bn ∈ B, each i ∈ I, and all k∗1, . . . , k
∗
n ∈ K∗

i not all zero, one has

sup
a∈A

n∑
j=1

k∗j
(
ϕ(a, bj)

)
> 0.

Then problem (V EP ) admits a Henig efficient solution.

Let K := (Ki)i∈I be a family of Henig dilating cones for C. If, for each i ∈ I there exists i0 ∈ I
such that Ki0 \ {0} ⊆ intKi, then each Henig weakly efficient solution is a Henig efficient solution
and K4 = KN. Obviously, the family of Henig dilating cones K := (Kε(B))ε∈]0,d[, constructed in
Example 3.3.4 admits cones with this property. This remark is also true for the family of Henig
dilating cones constructed in Example 3.3.5, as J. H. Qiu and Y. Hao noticed in [102, Lemma 3.3].

Let (Ki)i∈I be a family of Henig dilating cones for C. For any i ∈ I and any k∗i ∈ K∗
i \ {0}, let

us consider the following scalar equilibrium problem:

(EPk∗i ) find ā ∈ A such that k∗i (ϕ(ā, b)) ≥ 0 for all b ∈ B.
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Proposition 3.3.17 Let (Ki)i∈I be a family of Henig dilating cones for C, and take any i ∈ I and
any k∗i ∈ K∗

i \ {0}. Then, each solution of the scalar equilibrium problem (EPk∗i ) is a Ki-Henig
weakly efficient solution of problem (V EP ).

The next statement proves that under certain assumptions each net of Ki-weakly efficient solu-
tions of (V EP ) (where (Ki)i∈I is a family of Henig dilating cones for C), obtained by scalarization,
admits a subnet converging to a solution of (V EP ).

Theorem 3.3.18 (A. Capătă [37]) Let A be a compact subset of a Hausdorff topological space E,
let Z be a real Hausdorff locally convex space, let (Ki)i∈I be a family of Henig dilating cones for
C, and let (k∗i )i∈I be a net of functionals with k∗i ∈ Ki \ {0} for all i ∈ I such that the following
conditions are satisfied:

(i) for each b ∈ B, the function ϕ(·, b) is C-upper semicontinuous on A;

(ii) the set ϕ(A×B) is weakly bounded;

(iii) the net (k∗i )i∈I converges with respect to β(Z∗, Z) to a functional k∗ ∈ C].

Then any net (āi)i∈I in A, where āi ∈ A is a solution of problem (EPk∗i ), admits a subnet converging
to a solution of problem (V EP ).

Now, we turn our attention on existence results of superefficient solutions of problem (V EP ).
For being able to give the following results, we assume, in addition, that Z is a Hausdorff locally
convex space and work with the Henig family of dilating cones for C from Example 3.3.5. By
Example 3.3.5 it follows that C4 6= ∅.

The next concepts of proper efficient solutions were introduced in locally convex spaces by X.
H. Gong, W. T. Fu and W. Liu [65] and X. H. Gong [59].

Definition 3.3.19 A point a ∈ A is said to be:

(i) a superefficient solution to (V EP ) if, for each neighbourhood V of the origin of Z, there
exists a neighbourhood U of the origin of Z such that

cone (ϕ(a,B)) ∩ (U − C) ⊆ V ;

(ii) a globally efficient solution to (V EP ) if there exists a Henig dilating cone K ⊆ Z for C such
that

ϕ(a,B) ∩ (−K \ {0}) = ∅.

The sets of Henig weakly efficient solutions, superefficient solutions and globally efficient solu-
tions, respectively, are denoted by VH(ϕ), VS(ϕ) and VG(ϕ), respectively.

To see that the set of Henig weakly efficient solutions, defined by the family of Henig dilating
cones from Example 3.3.5, is larger than the set of superefficient solutions we give an example.

Example 3.3.20 Let Z := R2, C := R2
+, A := [−2,−1], B := [1, 2], and let the bifunction

ϕ : [−2,−1]× [1, 2] → R2 be defined by

ϕ(x, y) :=

{
(2,−2) if (x, y) = (−2, 1)
(x, y) otherwise.
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Take the base B to be the set
{(x, y) ∈ R2

+ | x+ y = 2}.

We observe that this base is a closed and convex subset of R2. Let

z∗(b) := 〈(1, 1), (b1, b2)〉 = b1 + b2 for all b := (b1, b2) ∈ B.

So, we get r = 2 and
VB(z

∗) := {z ∈ Z | | z∗(z) |< 1} = B(0, 1).

For each a ∈ [−2,−1] there exists a convex neighbourhood Ua of the origin of R2, with Ua ⊆ B(0, 1),
such that

ϕ(a,B) ∩ (− intCUa(B)) = ∅

This means that all the points a ∈ [−2,−1] are Henig weakly efficient solutions of the vector
equilibrium problem (V EP ).

On the other part, each point a ∈ ] − 2,−1] is a superefficient solution of (V EP ). Hence, we
have the following inclusion

VS(ϕ) = ]− 2,−1] ⊆ [−2,−1] = VH(ϕ),

which assures that the set of Henig weakly efficient solutions is larger than the set of superefficient
solutions. �

Definition 3.3.21 Given a functional c∗ ∈ C∗ \ {0}, a point ā ∈ A is said to be a c∗-efficient
solution to (V EP ) if

c∗(ϕ(ā, b)) ≥ 0 for all b ∈ B.

By Vc∗(ϕ) we denote the set of all c∗-efficient solutions to (V EP ).

Lemma 3.3.22 ( X. H. Gong [59]) If C is closed and has a closed and bounded base B, then

intC∗ = C4(B),

where intC∗ is the interior of C∗ with respect to the strong topology β(Z∗, Z).

In normed spaces, this property was proved by X. Y. Zheng [119].

Theorem 3.3.23 (X. H. Gong [61]) Assume that, for each a ∈ A, ϕ(a,A) is a C-convex set. If
C is based, then the following properties hold:

(i) VG(ϕ) =
⋃
c∗∈C] Vc∗(ϕ).

(ii) VH(ϕ) =
⋃
c∗∈C4 Vc∗(ϕ).

(iii) If C is closed and has a closed and bounded base, then

VS(ϕ) =
⋃

c∗∈intC∗

Vc∗(ϕ).

So, by Lemma 3.3.22 and Theorem 3.3.23, a point ā ∈ A is a superefficient solution of (V EP )
if and only if ā is a Henig efficient solution.

By Theorem 3.3.11, Corollary 3.3.12, and Theorem 3.3.15 we have the following results.
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Theorem 3.3.24 Let E be a real Hausdorff topological linear space, let A be a compact set, let
B = A, let ϕ(a,A) be a C-convex set for each a ∈ A, let C be a closed cone with a closed and
bounded base B, and let ϕ : A×B → Z satisfy the following conditions:

(i) for each b ∈ A and for each convex neighbourhood U of the origin of Z satisfying U ⊆ VB(z
∗),

the function ϕ(·, b) : A→ Z is KU(B)-upper semicontinuous on A;

(ii) there exists c∗ ∈ K4 such that, for all a1, . . . , am ∈ A, all the numbers λ1, . . . , λm ≥ 0 with
λ1 + · · ·+ λm = 1, and all b1, . . . , bn ∈ A, the following inequality is satisfied:

min
1≤j≤n

m∑
i=1

λic
∗(ϕ(ai, bj)

)
≤ sup

a∈A
min

1≤j≤n
c∗

(
ϕ(a, bj)

)
;

(iii) for all b1, . . . , bn ∈ A, each convex neighbourhood U of the origin of Z satisfying U ⊆ VB(z
∗),

and all k∗1, . . . , k
∗
n ∈ K∗

U(B) not all zero, one has

sup
a∈A

n∑
j=1

k∗j
(
ϕ(a, bj)

)
≥ 0.

Then problem (V EP ) admits a superefficient solution.

Corollary 3.3.25 Let E be a real Hausdorff topological linear space, let A be a compact set, let
B = A, let ϕ(a,A) be a C-convex set for each a ∈ A, let C be a closed cone with a closed and
bounded base B, and let ϕ : A×B → Z satisfy the following conditions:

(i) for each b ∈ A and each convex neighbourhood U of the origin of Z with U ⊆ VB(z
∗), the

function ϕ(·, b) : A→ Z is KU(B)-upper semicontinuous on A;

(ii) there exists c∗ ∈ K4 such that c∗ ◦ ϕ is subconcavelike in its first variable;

(iii) for all b1, . . . , bn ∈ A, each convex neighbourhood U of the origin of Z satisfying U ⊆ VB(z
∗),

and all k∗1, . . . , k
∗
n ∈ K∗

U(B) not all zero, one has

sup
a∈A

n∑
j=1

k∗j
(
ϕ(a, bj)

)
≥ 0.

Then problem (V EP ) admits a superefficient solution.

Theorem 3.3.26 Let E be a real Hausdorff topological linear space, let A be a compact set, let
B = A, let ϕ(a,A) be a C-convex set for each a ∈ A, let C be a closed cone with a closed and
bounded base B, let (KU1(B), KU2(B)) be an admissible pair, and let ϕ : A × B → Z satisfy the
following conditions:

(i) for each b ∈ B, the function ϕ(·, b) : A→ Z is KU1(B)-upper semicontinuous on A;

(ii) for each convex neighbourhood U of the origin of Z satisfying U ⊆ VB(z
∗), and all the points

a1, . . . , am ∈ A, all λ1, . . . , λm ≥ 0 with λ1 + · · ·+λm = 1, and all b1, . . . , bn ∈ B, there exists
k∗ ∈ K∗

U(B) \ {0} such that

26



min
1≤j≤n

m∑
i=1

λik
∗(ϕ(ai, bj)

)
≤ sup

a∈A
min

1≤j≤n
k∗

(
ϕ(a, bj)

)
;

(iii) for all b1, . . . , bn ∈ B and all k∗1, . . . , k
∗
n ∈ K∗

U2
(B) not all zero, one has

sup
a∈A

n∑
j=1

k∗j
(
ϕ(a, bj)

)
≥ 0.

Then problem (V EP ) admits a superefficient solution.

Finally, we present sufficient conditions for the existence of globally efficient solutions of the
vector equilibrium problem (V EP ).

Theorem 3.3.27 Let A be a compact set, and let ϕ : A×B → Z satisfy the following conditions:

(i) for each b ∈ B, the function ϕ(·, b) : A → Z is properly C-upper semicontinuous on the set
A;

(ii) there exists c∗ ∈ C] such that, for all a1, . . . , am ∈ A, all numbers λ1, . . . , λm ≥ 0 with
λ1 + · · ·+ λm = 1, and all b1, . . . , bn ∈ B, the following inequality is satisfied:

min
1≤j≤n

m∑
i=1

λic
∗(ϕ(ai, bj)

)
≤ sup

a∈A
min

1≤j≤n
c∗

(
ϕ(a, bj)

)
;

(iii) for all b1, . . . , bn ∈ B, and all c∗1, . . . , c
∗
n ∈ C∗ not all zero, one has

sup
a∈A

n∑
j=1

c∗j
(
ϕ(a, bj)

)
> 0.

Then problem (V EP ) admits a globally efficient solution.

Corollary 3.3.28 Let A be a compact set, and let ϕ : A×B → Z satisfy the following conditions:

(i) for each b ∈ B, the function ϕ(·, b) : A → Z is properly C-upper semicontinuous on the set
A;

(ii) there exists c∗ ∈ C] such that c∗ ◦ ϕ is concavelike in its first variable;

(iii) for all b1, . . . , bn ∈ B, and all c∗1, . . . , c
∗
n ∈ C∗ not all zero, one has

sup
a∈A

n∑
j=1

c∗j
(
ϕ(a, bj)

)
> 0.

Then problem (V EP ) admits a globally efficient solution.

When Z := R and C := R+, then this corollary reduces to Corollary 3.1.7.
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Chapter 4

Existence results and gap multifunctions
for weak multifunction
equilibrium problems

Throughout this chapter E and Z are real topological linear spaces. Further, suppose that A is a
nonempty subset of E, B is a nonempty set, C ⊆ Z is a convex and solid cone, and ϕ : A×B → 2Z

is a multifunction.
The weak vector equilibrium problem (WVEP ), studied in Section 2.1, can be extended to

multifunctions in two ways:

(WWMEP ) find ā ∈ A such that ϕ(ā, b) * −intC for all b ∈ B;

(SWMEP ) find ā ∈ A such that ϕ(ā, b) ∩ (−intC) = ∅ for all b ∈ B.

In what follows we present existence results for the problem (WWMEP ), which is called the
weak multifunction equilibrium problem. Furthermore, there are constructed two gap functions
associated with the studied problem, one of them by means of Fenchel’s duality theory.

4.1 Existence results established via Eidelheit’s theorem

Our first result is a technical result. Its proof is based on Eidelheit’s separation theorem. In what
follows, we denote by C(Z) the set of all compact subsets of the space Z.

Theorem 4.1.1 (A. Capătă, G. Kassay and B. Mosoni [39]) Let ϕ : A × B → 2Z satisfy the
following conditions:

(i) ϕ(a, b) ∈ C(Z) for every (a, b) ∈ A×B;

(ii) if the family (Ub,c) covers A, then it contains a finite subcover, where Ub,c is defined by

Ub,c := {a ∈ A |ϕ(a, b) + c ⊆ −intC} for all b ∈ B, c ∈ intC;

(iii) for all a1, . . . , am ∈ A, all λ1, . . . , λm ≥ 0 with λ1 + · · ·+ λm = 1, all b1, . . . , bn ∈ B, and all
dij ∈ ϕ(ai, bj), where i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, there exists c∗ ∈ C∗ \ {0} such that
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min
1≤j≤n

m∑
i=1

λic
∗(dij) ≤ sup

a∈A
min

1≤j≤n
max c∗(ϕ(a, bj));

(iv) for all b1, . . . , bn ∈ B and all c∗1, . . . , c
∗
n ∈ C∗ not all zero, one has

sup
a∈A

n∑
j=1

max c∗j(ϕ(a, bj)) ≥ 0.

Then problem (WWMEP ) admits a solution.

Taking into consideration the characterization of C-subconvexlikeness of a multifunction pre-
sented in Section 1.2, we introduce a new convexity notion for multifunctions of two variables.

Definition 4.1.2 (A. Capătă, G. Kassay and B. Mosoni [39]) We say that the multifunction
ϕ : A×B → 2Z is:

(i) C-subconvexlike in its first variable if, for all c ∈ intC, all a1, a2 ∈ A and all λ ∈ [0, 1], there
exists an a3 ∈ A such that

c+ λϕ(a1, b) + (1− λ)ϕ(a2, b) ⊆ ϕ(a3, b) + intC for all b ∈ B.

(ii) C-subconcavelike in its first variable if −ϕ is C-subconvexlike in its first variable.

The next result provides sufficient conditions for the existence of solutions of (WWMEP ) by
means of convexity and continuity assumptions.

Theorem 4.1.3 (A. Capătă, G. Kassay and B. Mosoni [39]) Let A be a compact set, and let
ϕ : A×B → 2Z satisfy the following conditions:

(i) ϕ(a, b) ∈ C(Z) for every (a, b) ∈ A×B;

(ii) for all b ∈ B, ϕ(·, b) : A→ C(Z) is C-upper semicontinuous on A;

(iii) ϕ is C-subconcavelike in its first variable;

(iv) for all b1, . . . , bn ∈ B and all c∗1, . . . , c
∗
n ∈ C∗ not all zero, one has

sup
a∈A

n∑
j=1

max c∗j(ϕ(a, bj)) ≥ 0.

Then problem (WWMEP ) admits a solution.

4.2 Gap multifunctions

In connection with scalar equilibrium problems and their particular cases the so-called gap functions
play an important role. They help to analyze whether a point is a solution of these problems.
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4.2.1 A gap multifunction

First let us recall the definition of a gap multifunction.

Definition 4.2.1 (N. J. Huang, J. Li and S. Y. Wu [76]) A multifunction T : A → 2Z is said to
be a gap multifunction for (WWMEP ) if:

(i) T (a) ⊆ −C for all a ∈ A;

(ii) 0 ∈ T (a) if and only if a ∈ A is a solution of (WWMEP ).

In what follows we give an example of a gap multifunction for the problem (WWMEP ). In
this way we extend a result from N. J. Huang, J. Li and S. Y. Wu [76] to a multifunction that
takes values in a real topological linear space.

Consider the following assumption:
Assumption A.

Let B = A. If a ∈ A is a solution of (WWMEP ), then
⋂
b∈A

{ϕ(a, b) ∩ C} 6= ∅.

Theorem 4.2.2 (A. Capătă, G. Kassay and B. Mosoni [39]) Suppose that the following conditions
are satisfied:

(i) C is a pointed cone;

(ii) ϕ(a, a) ⊆ −C for all a ∈ A;

(iii) Assumption A holds.

Then the multifunction T : A→ 2Z, defined by

T (a) :=
⋂
b∈A

ϕ(a, b) for each a ∈ A,

is a gap multifunction for (WWMEP ).

Now let us consider the particular case of (WWMEP ) which has been studied by N. J. Huang,
J. Li and S. Y. Wu [76]. For n ∈ N, N := {1, . . . , n} and Fl : A × A → 2R (l ∈ N), consider the
problem (WWMEP ) for the multifunction defined by

F (a, b) := F1(a, b)× · · · × Fn(a, b),

i.e.

(GFV EP1) find ā ∈ A such that F (ā, b) * − int Rn
+ for all b ∈ A.

Define a multifunction T1 : A→ 2R as follows:

(4.1) T1(a) :=
⋂
b∈A

⋃
l∈N

Fl(a, b) for all a ∈ A.
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Further, consider the following assumption used by N. J. Huang, J. Li and S. Y. Wu [76]:
Assumption B. Let B = A. If a ∈ A and

⋃
l∈N Fl(a, b) ∩ R+ 6= ∅ for all b ∈ A, then⋂

b∈A

⋃
l∈N

{Fl(a, b) ∩ R+} 6= ∅.

Corollary 4.2.3 ( N. J. Huang, J. Li and S. Y. Wu [76], Theorem 4.4) If

Fl(a, a) ⊆ −R+ for each a ∈ A and each l ∈ N,

and Assumption B holds, then the multifunction T1 defined by (4.1) is a gap multifunction for
(GFV EP1) in the sense of Definition 4.2.1, where Z := R and C := R+.

4.2.2 A gap function using Fenchel’s duality

Throughout this section let Z := R and C := R+. Then ϕ : A × B → 2R and (WWMEP )
becomes:

(MEP ) find ā ∈ A such that ϕ(ā, b) * − int R+ for all b ∈ B.

For the equilibrium problem (MEP ), we establish the following results by means of the exis-
tence results given for (WWMEP ) in Section 4.1.

Corollary 4.2.4 (A. Capătă, G. Kassay and B. Mosoni [39]) Let ϕ : A × B → 2R satisfy the
following conditions:

(i) ϕ(a, b) ∈ C(R) for every (a, b) ∈ A×B;

(ii) if the family (Ub,c) covers A, then it contains a finite subcover, where Ub,c is defined by

Ub,c = {a ∈ A |ϕ(a, b) + c ⊆ ]−∞, 0[ } for all b ∈ B and c ∈ ]−∞, 0[;

(iii) for all a1, . . . , am ∈ A, all λ1, . . . , λm ≥ 0 with λ1 + · · ·+ λm = 1, all b1, . . . , bn ∈ B, and all
dij ∈ ϕ(ai, bj) where i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, one has

min
1≤j≤n

m∑
i=1

λid
i
j ≤ sup

a∈A
min

1≤j≤n
max ϕ(a, bj);

(iv) for all b1, . . . , bn ∈ B and all µ1, . . . , µn ≥ 0 with µ1 + · · ·+ µn = 1, one has

sup
a∈A

n∑
j=1

max µjϕ(a, bj) ≥ 0.

Then problem (MEP ) admits a solution.

Corollary 4.2.5 (A. Capătă, G. Kassay and B. Mosoni [39]) Let A be a compact set, and let
ϕ : A×B → 2R satisfy the following conditions:

(i) ϕ(a, b) ∈ C(R) for every (a, b) ∈ A×B;
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(ii) for all b ∈ B, ϕ(·, b) is −R+-upper semicontinuous on A;

(iii) ϕ is R+-subconcavelike in its first variable;

(iv) for all b1, . . . , bn ∈ B and all µ1, . . . , µn ≥ 0 with µ1 + · · ·+ µn = 1, one has

sup
a∈A

n∑
j=1

maxµjϕ(a, bj) ≥ 0.

Then problem (MEP ) admits a solution.

In the final part of this section we suppose that A is a closed and convex subset of a real locally
convex space E, B = A, and that ϕ(a, b) ∈ C(R) for every (a, b) ∈ A×A. We observe that (MEP )
is equivalent to the following problem:

find ā ∈ A such that max ϕ(ā, b) ≥ 0 for all b ∈ A,

or, equivalently:

(EPψ) find ā ∈ A such that ψ(ā, b) ≥ 0 for all b ∈ A,

where ψ : E × E → R ∪ {+∞}, with A× A ⊆ domψ, is defined by

ψ(a, b) := maxϕ(a, b) for all a, b ∈ A.

Further, suppose that
maxϕ(a, a) = 0 for all a ∈ A.

Let a ∈ E. According to L. Altangerel, R. I. Boţ and G. Wanka [2], (EPψ) can be reduced to
the following scalar minimization problem:

(Pa) inf
b∈A

ψ(a, b).

Indeed, it is easy to check that ā ∈ A is a solution of (EPψ) if and only if it is a solution of (Pā).
The next definition is a particular case of Definition 4.2.1, when C := −R+. A function

γ : E → R∪{−∞,+∞} is said to be a gap function for (EPψ) (see G. Mastroeni [96]) if it satisfies
the following conditions:

(i) γ(a) ≥ 0 for all a ∈ A;

(ii) γ(a) = 0 and a ∈ A if and only if a is a solution for (EPψ).

By means of the indicator function δA, we can rewrite problem (Pa) as follows:

(Pa) inf
b∈E

{ψ(a, b) + δA(b)}.

Proposition 4.2.6 (A. Capătă, G. Kassay and B. Mosoni [39]) Let a ∈ A. If the multifunction
b ∈ A 7→ ϕ(a, b) ∈ 2R is λ-concave for each λ ∈ ]0, 1[ and d-upper semicontinuous on A, where d is
the absolute value on R, then the function

(4.2) b ∈ A 7→ ψ(a, b) ∈ R ∪ {+∞}
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is convex and lower semicontinuous on A.

Let the assumptions of the previous proposition be satisfied. The Fenchel dual of (Pa) is

(Da) sup
x∗∈E∗

{−ψ∗b (a, x∗)− σA(−x∗)},

where
ψ∗b (a, x

∗) := sup
b∈E

[x∗(b)− ψ(a, b)].

For problem (Pa), the regularity condition (FRC) introduced in Section 1.3 becomes

(FRC; a) ψ∗b�σA is a lower semicontinuous function and exact at 0,

where
(ψ∗b�σA)(x∗) := inf {ψ∗b (x∗1) + σA(x∗2) | x∗1 + x∗2 = x∗}.

Theorem 4.2.7 (R. I. Boţ and G. Wanka [29]) Assume that, for all a ∈ A, the following conditions
are satisfied:

(i) the regularity condition (FRC; a) is fulfilled;

(ii) the function (4.2) is convex and lower semicontinuous on A.

Then the function γ : E → R ∪ {−∞,+∞}, defined by

γ(a) := −v(Da),

is a gap function for (EPψ).

By Proposition 4.2.6 and Theorem 4.2.7 we have the next result.

Theorem 4.2.8 (A. Capătă, G. Kassay and B. Mosoni [39]) Assume that, for all a ∈ A, the
following conditions are astisfied:

(i) the regularity condition (FRC; a) is fulfilled;

(ii) the multifunction (4.2) is λ-concave for each λ ∈ ]0, 1[ and d-upper semicontinuous on A.

Then γ, defined in Theorem 4.2.7, is a gap function for (MEP ).
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Chapter 5

A vector optimization problem and cone
saddle points

5.1 The vector optimization problem

The weak vector equilibrium problem (WWEP ) studied in Section 2.1 contains as particular cases,
vector optimization problems, vector variational inequalities and cone saddle point problems (see
e.g. Q. H. Ansari [3]). The vector optimization problems consist in finding the subset of weak
minima (or weak maxima) of a set in a real topological linear space Z with respect to a solid,
convex cone C of Z.

Let S ⊆ Z. A point z0 ∈ S is said to be a weak minimum of S with respect to the cone C if

S ∩ (z0 − intC) = ∅.

By Minw S we denote the set of weak minima of S with respect to the cone C.
Let A be a nonempty subset of a topological space E, let F : A→ Z be a given function, and

let c∗ ∈ C∗ \ {0}. We consider the scalar equilibrium problem:

(EP c∗) find ā ∈ A such that f(ā, b) ≥ 0 for all b ∈ A,

where f : A× A→ R is given by f(a, b) := c∗(F (b)− F (a)).
Denoting by ϕ : A× A→ Z the vector bifunction defined by

ϕ(a, b) := F (b)− F (a) for all a, b ∈ A,

it is easy to see that problem (WVEP ), considered in Chapter 2, becomes for this ϕ the weak
vector minimization problem:

(WVMP ) find ā ∈ A such that F (b)− F (ā) /∈ − intC for all b ∈ A.

A point ā ∈ A is a solution of (WVMP ) if and only if F (ā) ∈ MinwF (A).

Proposition 5.1.1 (A. Capătă and G. Kassay [38]) For each c∗ ∈ C∗ \ {0}, the set of solutions
of (EPc∗) is contained in the set of solutions of (WVMP).

Observe that the reverse implication in Proposition 5.1.1 is not true in general, as the following
example shows.
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Example 5.1.2 (A. Capătă and G. Kassay [38]) Let F : R → R2 be the function defined by

F (a) :=

 (−1,
1

| a |
) if a 6= 0

(0, 0) if a = 0.

Take C := R2
+, and define c∗ : R2 → R by

c∗(x1, x2) := 〈(1, 0), (x1, x2)〉 = x1 for all (x1, x2) ∈ R2.

Thus, we have

f(0, b) = 〈(1, 0), F (b)− F (0)〉 =

{
−1 if b 6= 0
0 if b = 0,

thus ā := 0 is not a solution of the scalar equilibrium problem (EPc∗).
We verify whether ā is a solution of (WVMP ). Indeed,

ϕ(0, b) = F (b)− F (0) =

 (−1,
1

| b |
) if b 6= 0

(0, 0) if b = 0.

This relation shows that ϕ(0, b) /∈ −int R2
+ for each b ∈ R, which implies that ā is a solution of

(WVMP ). �

It is interesting to notice that in the previous example every a 6= 0 is a solution of (EPc∗).
Indeed,

f(a, b) = 〈(1, 0), F (b)− F (a)〉 =

{
0 if b 6= 0
1 if b = 0,

hence f(a, b) ≥ 0 for all b ∈ R, i.e. a 6= 0 is a solution of (EPc∗). By Proposition 5.1.1 it follows
that each real number is a solution of (WVMP ).

The next result is a consequence of Corollary 2.1.5.

Proposition 5.1.3 (A. Capătă and G. Kassay [38]) If A is a compact set and the function F :
A → Z is C-lower semicontinuous on A, then the scalar equilibrium problem (EPc∗) admits a
solution for every c∗ ∈ C∗ \ {0}.

In vector optimization different concepts of lower semicontinuity have been used. The next
concept (considered in J. Borwein, J. Penot and M. Théra [25] and M. Théra [110]) is a slight
relaxation of lower semicontinuity.

Definition 5.1.4 Let A be a nonempty subset of a topological space. A vector-valued function
f : A→ Z is said to be quasi-lower semicontinuous at a ∈ A if, for each z ∈ Z such that z �C f(a),
there exists a neighbourhood U of a such that

z �C f(u) for each u ∈ U ∩ A.

The question whether the C-lower semicontinuity in Proposition 5.1.3 can be weakened to
quasi-lower semicontinuity arises naturally. The next example shows that the answer is negative.
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Example 5.1.5 Let Z := R3, C := R3
+, A := [0, 1], and define F : R → R3 by

F (t) :=

{ (
− 1,−2

t
,
1

t

)
if t 6= 0

(0, 0, 0) if t = 0.

It is easy to verify that F is quasi-lower semicontinuous at 0, but it is not R3
+-lower semicon-

tinuous at 0.
Let the functional c∗ : R3 → R be defined by

c∗(x1, x2, x3) := 〈
( 1√

3
,

1√
3
,

1√
3

)
, (x1, x2, x3)〉 =

1√
3
(x1 + x2 + x3) for all (x1, x2, x3) ∈ R3.

Further, define f : A×A→ R by f(a, b) := c∗(F (b)−F (a)). We claim that (EPc∗) does not admit
any solution.

Indeed, if a 6= 0, we obtain

f(a, b) = 〈
( 1√

3
,

1√
3
,

1√
3

)
, F (b)− F (a)〉 =


1√
3

(1

a
− 1

b

)
if b 6= 0

1√
3

(
1 +

1

a

)
if b = 0,

Therefore we have f(a, b) < 0 for b < a. This shows that a 6= 0 is not a solution of (EPc∗).
For a := 0 the bifunction f becomes

f(0, b) = 〈
( 1√

3
,

1√
3

)
, F (b)− F (0)〉 =


1√
3

(
− 1

b
− 1

)
if b 6= 0

0 if b = 0 .

We observe that f(0, b) < 0 for each b ∈]0, 1]. This means that a is not a solution of (EPc∗).
By consequence problem (EPc∗) has no solutions, although the set of solutions of (WVMP ) is
[0, 1]. �

The Propositions 5.1.1 and 5.1.3 provide the following existence result for (WVMP ).

Proposition 5.1.6 (A. Capătă and G. Kassay [38]) If A is a compact set and F : A → Z is
C-lower semicontinuous on A, then problem (WVMP) admits a solution.

5.2 Existence results for weak cone saddle points

By using the existence results for the weak vector equilibrium problem (WVEP ), presented in
Section 2.1, in what follows we give existence results for weak cone saddle points of a bifunction.
For this, let X and Y to be nonempty subsets of topological spaces, let Z be a real topological
linear space, and let f : X × Y → Z be a bifunction. For x ∈ X and y ∈ Y we introduce the sets

f(x, Y ) := {f(x, y)| y ∈ Y } and f(X, y) := {f(x, y)|x ∈ X}.
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Let S ⊆ Z be a nonempty set, and let C ⊆ Z be a solid, convex cone. By Maxw S the set of weak
maxima of S with respect to the cone C, i.e. z0 ∈ MaxwS means that

z0 ∈ S and S ∩ (z0 + intC) = ∅.

We recall the following concept which extends the classical definition of a saddle point of a
scalar functions.

Definition 5.2.1 (T. Tanaka [108]) A point (x0, y0) ∈ X × Y is said to be a weak C-saddle point
of f if

f(x0, y0) ∈ Maxw f(X, y0) ∩Minw f(x0, Y ).

Proposition 5.2.2 Let A := X×Y , B := X×Y , and let the bifunction ϕ : A×B → Z be defined
by

ϕ(a, b) := f(x, v)− f(u, y) for all a := (x, y) and b := (u, v) ∈ X × Y.

If ā ∈ A is a solution for (WVEP), then ā is a weak C-saddle point of f.

We notice that the converse of Proposition 5.2.2 does not hold. To show this, we give an
example.

Example 5.2.3 Let X := [−1, 1], Y := [−1, 1], Z := R2, C := R2
+. Further, let the bifunction

f : [−1, 1]× [−1, 1] → R2 be defined by

f(x, y) :=

{
(x, y) if x ≥ 0 and y ≤ 0 or, x ≤ 0 and y ≥ 0
(0, 0) otherwise.

It is easy to check that ā := (0, 0) is a weak R2
+-saddle point of the bifunction f .

In order to verify whether the point ā is a solution for (WVEP ), let the set A := [−1, 1]×[−1, 1],
and let B := A. So, we have to check whether

ϕ(ā, b) = f(0, v)− f(u, 0) /∈ − int R2
+ for all b := (u, v) ∈ A.

Taking b := (1,−1) ∈ A, we have

ϕ(ā, b) = f(0,−1)− f(1, 0) = (−1,−1) ∈ − int R2
+.

Hence, ā is a weak R2
+-saddle point for f , but is not a solution of the weak vector equilibrium

problem (WVEP ). �

Theorem 5.2.4 (A. Capătă and G. Kassay [38]) Let X and Y be compact sets, and let the
bifunction f : X × Y → Z satisfy the following conditions:

(i) f is C-upper semicontinuous with respect to its first variable on X and C-lower semicontin-
uous with respect to its second variable on Y ;

(ii) f is C-subconcavelike – subconvexlike.

Then f admits a weak C-saddle point.
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5.3 Existence results for strong cone saddle points

Let S be a nonempty subset of a real topological linear space Z, which is ordered by a convex cone
C. In what follows we shall denote by MinS, the set of minima of S with respect to the cone C,
i.e. z0 ∈ MinS means that

z0 ∈ S and (S − z0) ∩ (−C) = {0}.

Similarly, MaxS denotes the set of maxima of S with respect to the cone C, i.e. z0 ∈ MaxS means
that

z0 ∈ S and (S − z0) ∩ C = {0}.

Further, denote by IMinS the set of ideal minima of S with respect to the cone C, i.e. z0 ∈ IMinS
means that

z0 ∈ S and z ≥C z0 for all z ∈ S.

Similarly, IMaxS denotes the set of ideal maxima of S with respect to the cone C, i.e. z0 ∈ IMaxS
means that

z0 ∈ S and z0 ≥C z for all z ∈ S.

Definition 5.3.1 Let X and Y be nonempty subsets of topological spaces, and let the bifunction
f : X × Y → Z. A point (x0, y0) ∈ X × Y is said to be:

(i) a strong C-saddle point of f if

f(x0, y0) ∈ Max f(X, y0) ∩Min f(x0, Y ).

(ii) an ideal strong C-saddle point of f if

f(x0, y0) ∈ IMax f(X, y0) ∩ IMin f(x0, Y ).

X. H. Gong [63] gave existence results for ideal strong C-saddle points for vector-valued bifunc-
tions. It is well-known (see D. T. Luc [95], Proposition 2.2, page 41), that the set of ideal minima
of a set (if it is nonempty) is equal to the set of Pareto minima, and if the cone is pointed, then the
set of ideal minima is a singleton. Hence, X. H. Gong stated existence and uniqueness for strong
C-saddle points.

Obviously, whenever intC 6= ∅, each strong C-saddle point is a weak C-saddle point, but the
viceversa is not true. To show this, we give the following example.

Example 5.3.2 Let f : [−1, 1] × [−1, 1] → R2 be defined by f(x) := x, Z := R2, and the cone
C := R2

+. It is easy to see that (0, 0) is a weak C-saddle point of f , but it is not a strong C-saddle
point of f . �

Strong C-saddle points can be obtained as particular cases of the solutions of strong vector
equilibrium problems, as the next proposition shows. Indeed, let us consider A := X×Y , B := A,
and define ϕ : A× A→ R by

ϕ(a, b) := f(x, v)− f(u, y),

where a := (x, y) ∈ A and b := (u, v) ∈ A.

Proposition 5.3.3 If ā ∈ A is a solution of (V EP ), then ā is a strong C-saddle point of the
bifunction f .
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The converse of Proposition 5.3.3 does not hold, as the next example shows.

Example 5.3.4 (G. Bigi, A. Capătă and G. Kassay [18]) Let X := [−1, 0], Y := X, A :=
[−1, 0]× [−1, 0], Z := R2, C := R2

+. Define f : [−1, 0]× [−1, 0] → R2 by

f(x, y) :=



(0, 0) if x = 0, y = −1

(−1

2
,
1

2
) if x = 0 and y 6= −1

(−1

4
, 1) if x 6= 0 and y = −1

(x, y + 1) otherwise.

Then, (0,−1) is a strong C-saddle point of the bifunction f . Taking ā := (0,−1) ∈ A and
b := (u, v) ∈ A with u 6= 0 and v := −1, we get

ϕ(a, b) = f(0, v)− f(u,−1) = (−1

2
,
1

2
)− (−1

4
, 1) = (−1

4
,−1

2
).

Hence
ϕ(a, b) ∈ −R2

+ \ {0},

which implies that (0,−1) is not a solution of (V EP ). �

Theorem 5.2.4 assures the existence of weak C-saddle points. Next we show that under a
further assumption, not very demanding, namely, that C] 6= ∅, we are able to obtain a better
result: the existence of strong C-saddle points.

Theorem 5.3.5 (G. Bigi, A. Capătă and G. Kassay [18]) Suppose that intC 6= ∅, let C] 6= ∅,
let X and Y are compact subsets of two metrizable topological linear spaces, and f : X × Y → Z
satisfies the following conditions:

(i) f is C-upper semicontinuous with respect to its first variable on X and C-lower semicontin-
uous with respect to its second variable on Y;

(ii) f is C-subconcavelike – subconvexlike.

Then f admits a strong C-saddle point.

Note that our result is not related to the existence result of strong C-saddle points given by X.
H. Gong [63]. Our continuity assumptions are weaker, but the convexity assumptions are stronger
than those in Theorem 2.1 of X. H. Gong [63].
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Chapter 6

Minty and Stampacchia type variational
inequalities

The domain of vector variational inequalities received a great interest in the academic and profes-
sional communities since the paper by F. Giannessi [56] appeared and the first existence results for
vector variational inequalities were published in G.-Y. Chen and Q. M. Cheng [41]. G.-Y. Chen
and S. H. Hou [42] presented some of the most fundamental existence results for vector variational
inequalities. Most of the research results in this area deal with a weak version of vector variational
inequalities and their generalizations. Thus, the authors of [42] proposed a study of the existence
of solutions for strong vector variational inequalities. Recently, Y. P. Fang and N. J. Huang [51]
and B. S. Lee, M. F. Khan and Salahuddin [89] obtained some results of this kind.

6.1 Minty and Stampacchia type weak vector variational inequalities

The weak vector variational inequality problems are particular cases of the weak vector equilibrium
problem (WVEP ) considered in Chapter 2. Let E and Z be real topological linear spaces, A ⊆ E
be a nonempty subset, and let F : A → L(E,Z) be an operator, where L(E,Z) denotes the set
of all continuous linear mappings from E to Z. Further, let C ⊆ Z be a solid convex cone. Using
these notations, in this section we will study the following variational inequalities:

(WMV I) find ā ∈ A such that 〈F (b), b− ā〉 /∈ −intC for all b ∈ A;

and

(WSV I) find ā ∈ A such that 〈F (ā), b− ā〉 /∈ −intC for all b ∈ A.

Here, 〈F (b), b−a〉 denotes the value of the function F (b) at the point b−a for all a, b ∈ A. Problem
(WMV I) is called the weak Minty vector variational inequality, while (WSV I) is called the weak
Stampacchia vector variational inequality.

By Theorem 2.1.1 we have the following existence result for the weak Minty vector variational
inequality.

Theorem 6.1.1 (A. Capătă [34]) Let A be a compact set, and let the following conditions be
satisfied:
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(i) for all a1, . . . , am ∈ A, all λ1, . . . , λm ≥ 0 with λ1 + · · · + λm = 1, and all b1, . . . , bn ∈ A,
there exists c∗ ∈ C∗ \ {0} such that

min
1≤j≤n

c∗
(
〈F (bj), bj −

m∑
i=1

λiai
〉
) ≤ sup

a∈A
min

1≤j≤n
c∗

(
〈F (bj), bj − a〉

)
;

(ii) for all b1, . . . , bn ∈ A, and all c∗1, . . . , c
∗
n ∈ C∗ not all zero, one has

(6.1) sup
a∈A

n∑
j=1

c∗j
(
〈F (bj), bj − a〉

)
≥ 0.

Then problem (WMV I) admits a solution.

The first assumption of Theorem 6.1.1, which is a generalized concavity condition, is satisfied
if we assume that the set A is convex.

Corollary 6.1.2 (A. Capătă [34]) Let A be a compact and convex set, let C∗ 6= {0}, and suppose
that, for all b1, . . . , bn ∈ A and all c∗1, . . . , c

∗
n ∈ C∗ not all zero, one has (6.1). Then problem

(WMV I) admits a solution.

In order to establish existence results for the weak Stampacchia vector variational inequality,
we need the following continuity notion.

Definition 6.1.3 (X. H. Gong [58]) Let A be a convex set. We say that the operator F is
v-hemicontinuous if, for all a, b ∈ A, the function

∀λ ∈ [0, 1] 7→ 〈F (λb+ (1− λ)a), b− a〉 ∈ Z

is continuous at 0.

Proposition 6.1.4 If A is a convex set, and F is v-hemicontinuous, then each solution of
(WMV I) is a solution of (WSV I).

Theorem 6.1.5 (A. Capătă [34]) Let A be a compact and convex set, let C∗ 6= {0}, let F
be v-hemicontinuous, and let the following condition be satisfied: for all b1, . . . , bn ∈ A and all
c∗1, . . . , c

∗
n ∈ C∗ not all zero, one has (6.1). Then problem (WSV I) admits a solution.

6.2 Minty and Stampacchia type strong vector variational inequali-
ties

The strong vector variational inequalities are particular cases of the strong vector equilibrium
problem (V EP ) investigated in Chapter 3. Let A be a nonempty convex subset of a real topological
linear space E, and let F : A → L(E,Z) be an operator, where L(E,Z) denotes the set of all
continuous linear functions from E to a real Hausdorff topological linear space Z. Further, let
C ⊆ Z be a nontrivial pointed convex cone. Using these notations, in this section we will study
the following variational inequalities:

(MV I) find ā ∈ A such that 〈F (b), b− ā〉 /∈ −C \ {0} for all b ∈ A;
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(SV I) find ā ∈ A such that 〈F (ā), b− ā〉 /∈ −C \ {0} for all b ∈ A.

Problem (MV I) is called the strong Minty vector variational inequality, while (SV I) is called the
strong Stampacchia vector variational inequality.

Using the generalized duality theory presented in Section 3.2 we deduce that the strong Stam-
pacchia vector variational inequality (SV I) admits as a generalized dual the strong Minty vector
variational inequality (MV I). We notice that the vice-versa also holds, i.e. the generalized dual
problem of (MV I) is (SV I).

In Y. P. Fang and N. J. Huang [51] there is presented an existence result for (SV I) under
the following monotonicity property. The operator F : A → L(E,Z) is said to be strongly
pseudomonotone if, for all a, b ∈ A, the following property holds:

〈F (a), b− a〉 /∈ −C \ {0} implies 〈F (b), b− a〉 ∈ C.

In what follows we work with the notion of pseudomonotonicity, which is weaker than the above
one. To see this, we will give an example.

Definition 6.2.1 (Y. P. Fang and N. J. Huang [51]) The operator F : A→ L(E,Z) is said to be
pseudomonotone if, for all a, b ∈ A, the following property holds:

〈F (a), b− a〉 /∈ −C \ {0} implies 〈F (b), b− a〉 /∈ −C \ {0}.

Example 6.2.2 (A. Capătă [35]) Let E := R2, A := [0, 1]× [0, 1], Z := R2, C := R2
+, and define

F : A→ L(R2,R2) by

〈F (a), x〉 := (x1 + x2)(a1 − 2, a2 + 2) for all a := (a1, a2) ∈ A and all x := (x1, x2) ∈ R2.

Let a := (a1, a2) and b := (b1, b2) be points from A. Since a1 − 2 < 0 and a2 + 2 > 0, it follows
from

〈F (a), b− a〉 = (b1 + b2 − a1 − a2)(a1 − 2, a2 + 2)

that 〈F (a), b−a〉 /∈ −R2
+ \{0}. Similarly, taking into consideration that b1− 2 < 0 and b2 +2 > 0,

we obtain from

(6.2) 〈F (b), b− a〉 = (b1 + b2 − a1 − a2)(b1 − 2, b2 + 2)

that 〈F (b), b − a〉 /∈ −R2
+ \ {0}. Consequently, F is pseudomonotone. On the other hand, when

b1 + b2 − a1 − a2 6= 0, then (6.2) implies that

〈F (b), b− a〉 /∈ R2
+.

Thus F is not strongly pseudomonotone. �

The following notion, is a particular case of Definition 3.2.2.

Definition 6.2.3 The operator F : A→ L(E,Z) is said to be maximally pseudomonotone if the
following conditions are satisfied:

(i) F is pseudomonotone;

(ii) for all a, b ∈ A the following implication holds: if 〈F (x), a − x〉 /∈ C \ {0} for all x ∈ ]a, b],
then 〈F (a), a− b〉 /∈ C \ {0}.
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The next statement follows by Proposition 3.2.8.

Proposition 6.2.4 (A. Capătă [35]) If F is maximally pseudomonotone, then the solution sets of
problems (SV I) and (MV I) coincide.

Using Corollary 3.2.9, we obtain the following existence result for (SV I).

Theorem 6.2.5 (A. Capătă [35]) Suppose that the following conditions are satisfied:

(i) F is maximally pseudomonotone;

(ii) the set S(b) := {a ∈ A | 〈F (b), b− a〉 /∈ −C \ {0}} is closed for all b ∈ A;

(iii) there exist a nonempty, compact and convex set D ⊆ A as well as an element b̃ ∈ D such
that

〈F (x), b̃− x〉 ∈ −C \ {0} for all x ∈ A \D.

Then problem (SV I) admits a solution.

Example 6.2.6 (A. Capătă [35]) To show that there exist operators which satisfy the assumptions
of Theorem 6.2.5, let E := R2, A := [0, 1]× [0, 1], Z := R2, C := R2

+, and define F : A→ L(R2,R2)
by

(6.3) 〈F (a), x〉 := (x1 + x2)(a1 + 1, a2 + 1)

for all a := (a1, a2) ∈ A and all x := (x1, x2) ∈ R2.
Since

(a1 + 1, a2 + 1) ∈ R2
+ \ {0} for each a := (a1, a2) ∈ A,

it results from (6.3) that

(6.4) ∀ a ∈ A : {x ∈ R2 | 〈F (a), x〉 /∈ R2
+ \ {0}} = {(x1, x2) ∈ R2 | x1+2 ≤ 0}.

This inequality implies that

(6.5) ∀ a, b ∈ A : {x ∈ R2 | 〈F (a), x〉 /∈ R2
+ \ {0}} = {x ∈ R2 | 〈F (b), x〉 /∈ R2

+ \ {0}}.

Let a := (a1, a2) and b := (b1, b2) be points from A. Suppose that

〈F (a), b− a〉 /∈ −R2
+ \ {0}.

Then we have 〈F (a), a− b〉 /∈ R2
+ \ {0}. By virtue of (6.5) we obtain

〈F (b), a− b〉 /∈ R2
+ \ {0}, whence 〈F (b), b− a〉 /∈ −R2

+ \ {0}.

Thus F is a pseudomonotone operator.
Next suppose that

〈F (x), a− x〉 /∈ R2
+ \ {0} for all x ∈ ]a, b].

In particular, we have
〈F (b), a− b〉 /∈ R2

+ \ {0}.
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By virtue of (6.5) we get 〈F (a), a−b〉 /∈ R2
+\{0}. Hence the operator F is maximally pseudomono-

tone. In other words, condition (i) in Theorem 6.2.5 is satisfied.
From (6.4) it follows that

S(b) = {a ∈ A | 〈F (b), a− b〉 /∈ R2
+ \ {0}} = {(a1, a2) ∈ A | a1 + a2 ≤ b1 + b2}

for each b := (b1, b2) ∈ A. Consequently, condition (ii) in Theorem 6.2.5 is also satisfied.
Finally, it is obvious that condition (iii) in Theorem 6.2.5 is satisfied for D := A. �

By Corollary 3.2.10 we obtain an existence result for the strong Stampacchia vector variational
inequality without monotonicity assumptions. This new existence result is a slight generalization
of Theorem 2.1 of Y. P. Fang and N. J. Huang [51].

Theorem 6.2.7 (A. Capătă [35]) Suppose that the following conditions are satisfied:

(i) for all b ∈ A the set S(b) := {a ∈ A | 〈F (a), b− a〉 /∈ −C \ {0}} is closed;

(ii) there exist a nonempty, compact and convex set D ⊆ A as well as an element b̃ ∈ D such
that

〈F (x), b̃− x〉 ∈ −C \ {0} for all x ∈ A \D.

Then problem (SV I) admits a solution.

6.3 Proper solutions of some generalized vector variational inequali-
ties

In this section we present existence results for proper efficient solutions of some generalized vector
variational inequalities. Let A be a nonempty subset of a metrizable topological linear space E, let
Z be a real topological linear space, let C ⊆ Z be a nontrivial pointed convex cone, let q : A→ Z
be a given function, and let F : A→ L(E,Z) be an operator.

The next existence results are devoted to the study of the following vector variational inequal-
ities:

(GMV I) find ā ∈ A such that 〈F (b), b− ā〉+ q(b)− q(ā) /∈ −C \ {0} for all b ∈ A,

and

(GSV I) find ā ∈ A such that 〈F (ā), b− ā〉+ q(b)− q(ā) /∈ −C \ {0} for all b ∈ A.

By 〈F (a), b−a〉 we understand the value of F (a) at b−a, for all a, b ∈ A. We refer to these problems
as the generalized strong Minty vector variational inequality, and the generalized strong Stampacchia
vector variational inequality, respectively. We state existence results for proper solutions of them.

First, let us recall some definitions concerning vector variational inequalities (see [58], [107]
and [117]).

Definition 6.3.1 Let c∗ ∈ C∗ \ {0}. The operator F is said to be:

(i) c∗-monotone if, for all a, b ∈ A, we have

c∗(〈F (b)− F (a), b− a〉) ≥ 0.
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(ii) c∗-upper hemicontinuous if A is a convex set and, for all a, b ∈ A, the function

∀λ ∈ [0, 1] 7→ c∗(〈F (λb+ (1− λ)a), b− a〉) ∈ R

is upper semicontinuous at 0.

(iii) C-monotone if, for all a, b ∈ A, we have

〈F (b)− F (a), b− a〉) ∈ C.

(iv) v-hemicontinuous if A is a convex set and, for all a, b ∈ A, the function

∀λ ∈ [0, 1] 7→ 〈F (λb+ (1− λ)a), b− a〉 ∈ Z

is upper semicontinuous at 0.

Remark 6.3.2 It is clear that, if F is C-monotone and v-hemicontinuous, then, for each functional
c∗ ∈ C∗ \ {0}, F is c∗-monotone and c∗-upper hemicontinuous. �

Definition 6.3.3 (X. H. Gong [61]) A point ā ∈ A is said to be:

(i) a globally efficient solution of (GMV I) if there exists a Henig dilating cone K ⊆ Z for C
such that

〈F (b), b− ā〉+ q(b)− q(ā) /∈ −K \ {0} for all b ∈ A;

(ii) a Henig weakly efficient solution of (GMV I) if Z is a real locally convex space and there
exists a convex neighbourhood U of the origin of Z satisfying U ⊆ VB (see Section 3.3) such
that

〈F (b), b− ā〉+ q(b)− q(ā) /∈ − intCU(B) for all b ∈ A;

(iii) a globally efficient solution of (GSV I) if there exists a Henig dilating cone K ⊆ Z for C such
that

〈F (a), b− ā〉+ q(b)− q(ā) /∈ −K \ {0} for all b ∈ A;

(iv) a Henig weakly efficient solution of (GSV I) if Z is a real locally convex space and there
exists a convex neighbourhood U of the origin of Z satisfying U ⊆ VB (see Section 3.3) such
that

〈F (a), b− ā〉+ q(b)− q(ā) /∈ − intCU(B) for all b ∈ A.

Theorem 6.3.4 (A. Capătă [36]) Let A be a compact and convex set, let K ⊆ Z be a Henig
dilating cone for C, let k∗ ∈ K], and let the following conditions be satisfied:

(i) k∗ ◦ q is lower semicontinuous on A;

(ii) q is K-convex;

(iii) F is k∗-monotone.

Then problem (GMV I) admits a globally efficient solution.
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The next theorem gives existence results for globally efficient solutions of (GSV I), under ad-
ditional assumptions than those of Theorem 3.1 established by X. H. Gong [58], where the author
states existence results for solution of (GSV I), namely that there exists a Henig dilating cone with
K] 6= ∅. Such an hypothesis is not very demanding, since such a cone always exists if we suppose
the cone C to be based.

Theorem 6.3.5 (A. Capătă [36]) Let A be a compact and convex set, let K ⊆ Z be a Henig
dilating cone for C, let k∗ ∈ K], and let the following conditions be satisfied:

(i) k∗ ◦ q is lower semicontinuous on A;

(ii) q is K-convex;

(iii) F is k∗-monotone;

(iv) F is k∗-upper hemicontinuous.

Then problem (GSV I) admits a globally efficient solution.

In the final part of this section, we give existence results for the generalized strong Stampacchia
vector variational inequality, under stronger assumptions than those of Theorem 6.3.5.

Corollary 6.3.6 (A. Capătă [36]) Let A be a compact and convex set, let K ⊆ Z be a Henig
dilating cone for C with K] 6= ∅, and let the following assumptions be satisfied:

(i) q is K-lower semicontinuous on A;

(ii) q is K-convex;

(iii) F is K-monotone;

(iv) F is v-hemicontinuous.

Then problem (GSV I) admits a globally efficient solution.

It is worth to notice that each globally efficient solution of (GSV I) is a solution of (GSV I),
due to the inclusion C \ {0} ⊆ intK, where K is a Henig dilating cone for C.

Assumptions (i), (ii) and (iii) of Corollary 6.3.6 are satisfied, if we consider the function q to
be C-lower semicontinuous, C-convex and the operator F to be C-monotone on A.

Corollary 6.3.7 (A. Capătă [36]) Let Z be a real locally convex topological linear space, let C be
a based cone, let A be a compact and convex set, and let the following conditions be satisfied:

(i) q is C-lower semicontinuous on A;

(ii) q is C-convex;

(iii) F is C-monotone;

(iv) F is v-hemicontinuous.

Then problem (GSV I) admits a Henig weakly efficient solution.
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Taking q := 0 in the definition of (GMV I) and (GSV I), by the above results, we obtain
existence results for solutions of (SV I).

Proposition 6.3.8 (G. Bigi, A. Capătă and G. Kassay [18]) Let A be a convex set, and let F
be v-hemicontinuous. If ā ∈ A is a globally efficient solution of (MV I), then ā is a solution of
(SV I).

By Theorem 6.3.4, Theorem 6.3.5 and Remark 6.3.2 we have the next results.

Theorem 6.3.9 (G. Bigi, A. Capătă and G. Kassay [18]) Let A be a compact and convex set, and
let K ⊆ Z be a Henig dilating cone for C with K] 6= ∅, and let F be K-monotone. Then problem
(MV I) admits a globally efficient solution.

Theorem 6.3.10 (G. Bigi, A. Capătă and G. Kassay [18]) Let A be a compact and convex set,
let K ⊆ Z be a Henig dilating cone for C with K] 6= ∅. If the operator F is K-monotone and
v-hemicontinuous, then problem (SV I) admits a solution.

6.4 Minty and Stampacchia type multifunction variational inequali-
ties

Let A be a nonempty convex subset of a reflexive Banach space E, and let F : A→ F(E∗), where
F(E∗) denotes the set of all nonempty and finite subsets of E∗. We study the following variational
inequalities, also considered by L. J. Lin, Z. T. Yu and G. Kassay [94]:

(MMV I) find ā ∈ A such that inf
v∈F (b)

〈v, b− ā〉 ≥ 0 for all b ∈ A,

and

(SMV I) find ā ∈ A such that sup
u∈F (ā)

〈u, b− ā〉 ≥ 0 for all b ∈ A.

Because F takes values in F(E∗), these multifunction variational inequalities become:

(MMV I) find ā ∈ A such that min
v∈F (b)

〈v, b− ā〉 ≥ 0 for all b ∈ A,

and

(SMV I) find ā ∈ A such that max
u∈F (ā)

〈u, b− ā〉 ≥ 0 for all b ∈ A,

respectively. These problems are called the Minty multifunction variational inequality, and the
Stampacchia multifunction variational inequality, respectively. We notice that (MMV I) is equiv-
alent to the following scalar equilibrium problem:

(EP1) find ā ∈ A such that h(ā, b) ≥ 0 for all b ∈ A,

where h : A× A→ R is defined by

h(a, b) := min
v∈F (b)

〈v, b− a〉 for all a, b ∈ A.
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Taking into consideration this remark, we deduce from Corollary 2.1.5 the following existence
theorem regarding (MMV I).

Theorem 6.4.1 (A. Capătă [35]) Let A be a compact set, and let the following condition be
satisfied: for all b1, . . . , bn ∈ A, and all µ1, . . . , µn ≥ 0 with µ1 + · · ·+ µn = 1, one has

sup
a∈A

n∑
j=1

µj min
v∈F (bj)

〈v, bj − a〉 ≥ 0.

Then problem (MMV I) admits a solution.

In order to give an existence result for (SMV I), we need the following notion.

Definition 6.4.2 (L. J. Lin, Z. T. Yu and G. Kassay [94]) Let X and Y be real topological linear
spaces, and let A be a nonempty convex subset of X. A multifunction T : A → 2Y is said to be
upper semicontinuous along lines at 0 if, for any a, b ∈ A, the multifunction

∀λ ∈ [0, 1] 7→ T (λb+ (1− λ)a) ∈ 2Y

is upper semicontinuous at 0.

Theorem 6.4.3 (A. Capătă [34]) Let A be compact, let F be upper semicontinuous along lines at
0, and let the following condition be satisfied: for all b1, . . . , bn ∈ A, and all µ1, . . . , µn ≥ 0 with
µ1 + · · ·+ µn = 1, one has

sup
a∈A

n∑
j=1

µj min
v∈F (bj)

〈v, bj − a〉 ≥ 0.

Then problem (SMV I) admits a solution.
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l’Approximation, L’Analyse Numérique et de Théorie de l’Approximation 11 (1982), 15-33.
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[106] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

[107] N. X. Tan, P. N. Tinh, On the existence of equilibrium points of vector functions, Numerical
Functional Analysis and Optimization 19 (1998), 141-156.

[108] T. Tanaka, Generalized semicontinuity and existence theorems for cone saddle points, Applied
Mathematical Optimization 36 (1997), 313-322.

[109] E. Tarafdar, A fixed point theorem equivalent to Fan-Knaster-Kuratowski-Mazurkiewicz’s
theorem, Journal of Mathematical Analysis and Applications 128 (1997), 475-479.
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