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Introduction

Fixed point theory becomes, in the last decades, not only a field with a huge devel-
opment, but also a strong tool for solving various problems arising in different fields of pure
and applied mathematics. A central element of the metric fixed point theory is the Banach-
Caccioppoli Contraction Principle. Today we have many generalizations of this result, which
were given in all kind of generalized metric spaces. If we carefully examine their proofs, one
can see that the metric properties, in particular part of the axioms of the metric, are not all
the time essential. Therefore the following problem arises: In which general spaces contractive
type fixed point theorems hold ?

This problem has been studied since 1975 by a distinguished mathematician Shouro
Kasahara, professor at the Kobe University. By following the work of Maurice Fréchet [42]
which has introduced the structure of L-space, Kasahara has endowed this structure with
a functional d which is not necessarily a metric. Therefore he has defined a more general
space: the d-complete L-space. By using this notion, Kasahara has extended Maia’s theorem,
published in 1968 in [84], a well-known fixed point result given in a set endowed with two
metrics. We mention here some other authors which have given fixed point theorems in a
set with two metrics: V. Berinde [10], S. Iyer [57], A. Petruşel and I.A. Rus [102], R. Precup
[105], I.A. Rus [118], I.A. Rus, A.S. Mureşan and V. Mureşan [122], B. Rzepecki [129], L.M.
Saliga [130].

In a number of papers [66]-[70] Kasahara constructed a fixed point theory in d-
complete L-spaces. T.L. Hicks [47] and T.L. Hicks - B.E. Rhoades [49] gave some fixed
point theorems in a d-complete topological space. Other results in these directions were given
by V.G. Angelov [3], J. Danes̆ [22], K. Iséki [55], L. Guran [45], P.Q. Khanh [75].

However, the notion of d-complete L-space was, in some sense, difficult to be used.
Hence, by following the work of Kasahara and the results given by the mathematicians which
have been already mentioned above, Ioan A. Rus has defined in 2010 the notions of Kasahara
space, generalized Kasahara space and large Kasahara space. His work [121] contains also
fixed point theorems and research problems concerning Kasahara spaces. Some solutions
regarding the formulated research problems can be found in our thesis.

This thesis is divided into three chapters, each chapter containing several sections.
Chapter 1: Preliminaries.
In this chapter we present the basic notions and results regarding L-spaces, generalized

metric spaces, partial metric spaces, w-distance and τ -distance on a metric space (X, d),
Kasahara spaces and operators on Kasahara spaces, which are further considered in the next
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iv INTRODUCTION

chapters of this work, allowing us to present the results of this thesis. Our contributions in
this chapter are some solutions to the Problems 1.6.1, 1.6.2 and 1.6.3, posed by I.A. Rus in
[121].

Chapter 2: Generalized contractions in Kasahara spaces.
� In the first section of this chapter we develop the theory of some well-known fixed

point results as the Banach-Caccioppoli’s Contraction Principle, the Graphic Contraction
Principle, the Caristi-Browder and Matkowski type theorems. Our results are given for single-
valued generalized contractions in the context of a Kasahara space (X,→, d), where d : X ×
X → R+ is a functional. We present also some extensions of our results in generalized and large
Kasahara spaces. Our contributions in this section are: Theorem 2.1.1 which is a fixed point
theory in Kasahara space extending and complementing the Banach-Caccioppoli’s Contraction
Principle; Theorem 2.1.2 which is a local fixed point result for Zamfirescu operators given
in Kasahara spaces, extending and generalizing Krasnoselskii’s local fixed point theorem;
Theorem 2.1.3 which is a fixed point results in generalized Kasahara spaces (d(x, y) ∈ R+ ∪
{+∞}) for α-contractions; Theorem 2.1.5 which is a fixed point theory for the local variant
of Banach-Caccioppoli’s Contraction Principle, given in large Kasahara spaces (d is a w-
distance); Theorem 2.1.6 which is given in large Kasahara spaces (d is perturbed by an
increasing, subadditive and continuous function ϕ), extending and complementing Banach-
Caccioppoli’s Contraction Principle, the Graphic Contraction Principle, the Caristi-Browder
and Matkowski type theorems; Theorem 2.1.2, extending Theorem 1 given by T. Zamfirescu
in [150]; Lemma 2.1.2; Definitions 2.1.7, 2.1.8; Remark 2.1.2 and Examples 2.1.2, 2.1.3. Most
of the results presented in the first section are included in the following papers: A.-D. Filip
[35], [36]; A.-D. Filip and A. Petruşel [40].

� In the second section, the connexion between the Maia type theorems and the fixed
point theorems in Kasahara spaces is presented. Some fixed point theorems of Maia type for
single-valued operators in a set endowed with two metrics are also given. Our contributions
in this section are: Theorem 2.2.2 which is a fixed point result given for almost contractions
defined on a set endowed with two vector-valued metrics, extending and generalizing Maia’s
fixed point theorem; Remark 2.2.4 which express the connection between the fixed point
result given in Kasahara spaces and the fixed point result of Maia type. Our Theorem 2.2.2
is included in the paper A.-D. Filip and A. Petruşel [39].

� In the third section, we introduce a new notion: Kasahara space with respect to an
operator and we give in this setting several applications regarding the existence and uniqueness
of solutions for integral and differential equations. Our contributions in this section are:
Theorem 2.3.1 which is a fixed point theory in Kasahara spaces with respect to an operator,
extending and complementing Banach-Caccioppoli’s Contraction Principle; Theorem 2.3.2
which is a fixed point theory in Kasahara spaces with respect to an operator, extending and
complementing the Graphic Contraction Principle; Theorem 2.3.3 which is an application
of Theorem 2.3.1 regarding the existence and uniqueness of solution for integral equations;
Theorems 2.3.4 which is also an application of Theorem 2.3.1 regarding the existence and
uniqueness of solution for boundary value problems; Definition 2.3.1; Remarks 2.3.1, 2.3.2
and 2.3.3; Examples 2.3.1 and 2.3.2. All of the contributions are included in the paper A.-D.
Filip [34].
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Chapter 3: Multivalued generalized contractions in Kasahara spaces.
� In the first section of this chapter, we present some fixed point theorems for mul-

tivalued generalized contractions in Kasahara spaces, generalized Kasahara spaces and large
Kasahara spaces. Our contributions in this section are: Theorem 3.1.2 which extends Nadler’s
fixed point theorem (Nadler [94]) from complete metric spaces to Kasahara spaces; Theorem
3.1.3 given as a fixed point theory for Theorem 3.1.2; Theorem 3.1.4 which is a strict fixed
point result, similar to Theorem 3.1.3; Theorem 3.1.5 which is a similar local fixed point re-
sult to Theorem 2.1.2, but for multivalued Zamfirescu operators; Theorem 3.1.6 which extends
Theorem 3.1.5 to generalized Kasahara spaces (d(x, y) ∈ Rm+ ); Theorem 3.1.7 given as an ap-
plication for multivalued Zamfirescu operators in generalized Kasahara spaces, concerning the
existence of solutions for semi-linear inclusion systems; Theorem 3.1.8 which is a fixed point
result for multivalued Zamfirescu operators in large Kasahara spaces; Theorem 3.1.9 which
is a data dependence result for multivalued Zamfirescu operators in large Kasahara spaces;
Corollaries 3.1.1, 3.1.2; Lemmas 3.1.2, 3.1.3; Definition 3.1.2 and Remarks 3.1.4, 3.1.5. Most
of the results presented in the first section of this chapter are included in the following papers:
A.-D. Filip [32], [33], [37].

� In the second section of this chapter, we give some fixed point results of Maia type,
in close connexion with the results given for multivalued generalized contractions in Kasahara
spaces, presented in the first section of the third chapter. Our contributions in this section are:
Theorem 3.2.2 which is a local fixed point result of Maia type in metric spaces; Theorem 3.2.3
which is a local fixed point result of Maia type in generalized metric spaces (d(x, y) ∈ Rm+ );
Corollaries 3.2.1 and 3.2.2; Remarks 3.2.1, 3.2.2. The results presented in this section are
included in the following papers: A.-D. Filip [31], [32], [33]; A.-D. Filip and A. Petruşel [39].

� In the third section of this chapter, we give the notion of Kasahara space with
respect to a multivalued operator and we prove two fixed point theorems for multivalued α-
contractions in the context of Kasahara spaces with respect to a multivalued operator. Our
contributions in this section are: Theorems 3.3.1 and 3.3.2; Definition 3.3.1 and Example
3.3.1.

The author’s contributions included in this thesis are also part of the following scien-
tific papers:

• A.-D. Filip, On the existence of fixed points for multivalued weak contractions, Proceedings
of the International Conference on Theory and Applications of Mathematics and Informat-
ics, ICTAMI 2009, Alba Iulia, pp. 149-158.

• A.-D. Filip, Fixed point theorems for multivalued contractions in Kasahara spaces, Carpa-
thian J. Math., submitted.

• A.-D. Filip, Perov’s fixed point theorem for multivalued mappings in generalized Kasahara
spaces, Studia Univ. Babeş-Bolyai Math., 56(2011), no. 3, 19-28.

• A.-D. Filip, Fixed point theorems in Kasahara spaces with respect to an operator and appli-
cations, Fixed Point Theory, 12(2011), no. 2, 329-340.

• A.-D. Filip, Fixed point theory in large Kasahara spaces, Anal. Univ. de Vest, Timişoara,
submitted.
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• A.-D. Filip, A note on Zamfirescu’s operators in Kasahara spaces, General Mathematics,
submitted.

• A.-D. Filip, Several fixed point results for multivalued Zamfirescu operators in Kasahara
spaces, JP Journal of Fixed Point Theory and Applications, submitted.

• A.-D. Filip and P.T. Petra, Fixed point theorems for multivalued weak contractions, Studia
Univ. Babeş-Bolyai Math., 54(2009), no. 3, 33-40.

• A.-D. Filip and A. Petruşel, Fixed point theorems on spaces endowed with vector-valued
metrics, Fixed Point Theory and Applications, 2010, Art. ID 281381, 15 pp.

• A.-D. Filip and A. Petruşel, Fixed point theorems for operators in generalized Kasahara
spaces, Sci. Math. Jpn., submitted.

A significant part of the original results proved in this thesis were also presented at
the following scientific conferences:

- International Conference on Theory and Applications in Mathematics and Informatics (IC-
TAMI), September 3rd-6th, 2009, Alba Iulia, Romania;

- The 7th International Conference on Applied Mathematics (ICAM7), September 1st-4th,
2010, North University of Baia Mare, Romania;

- International Conference on Nonlinear Operators, Differential Equations and Applications
(ICNODEA), July 5th-8th, 2011, Babes-Bolyai University of Cluj-Napoca, Romania;

- The 13th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), September 26th-29th, 2011, West University of Timişoara, Romania.

Keywords: fixed point, Kasahara space, generalized Kasahara space, large Kaahara space,
Kasahara space with respect to an operator, L-space, w-distance, τ -distance, premetric, quasi-
metric, dislocated metric, partial metric, matrix convergent to zero, sequence of successive
approximations, Picard operator, weakly Picard operator.



Chapter 1

Preliminaries

The purpose of this chapter is to present the basic notions and results which are further
considered in the next chapters of this work, allowing us to present the results of this thesis.
In this sense, we recall the notion of L-space, generalized metric, partial metric, w-distance,
τ -distance, Kasahara space, generalized Kasahara space and large Kasahara space, giving also
their properties and some illustrative examples. The second aim of this chapter is to give some
solutions for the Problems 1.6.1, 1.6.2 and 1.6.3, posed by I.A. Rus in [121].

In order to develop the Preliminaries, we mention here the references which were taken in
view: M. Fréchet [42]; L.M. Blumenthal [12]; M.M. Bonsangue, F. van Breugel and J.J.M.M.
Rutten [13]; O. Kada, T. Suzuki and W. Takahashi [60]; S. Kasahara [62], [66]; I.A. Rus [117],
[119], [121]; I.A. Rus, A. Petruşel and G. Petruşel [124]; T. Suzuki [139], [140].

1.1 L-spaces

In this section we recall the notion of L-space, an abstract space in which works one of
the basic tools in the theory of operatorial equations, especially in the fixed point theory: the
sequence of successive approximations method. On the other hand, the L-space plays a major
role in the definition of Kasahara spaces. Some examples of L-spaces are also presented.

The notion of L-space was introduced in 1906 by M. Fréchet (see [42]) as follows:

Definition 1.1.1 (M. Fréchet [42], I.A. Rus [117]). Let X be a nonempty set. Let

s(X) :=
{

(xn)n∈N | xn ∈ X, n ∈ N
}
.

Let c(X) ⊂ s(X) be a subset of s(X) and Lim : c(X)→ X be an operator. By definition, the
triple (X, c(X), Lim) is called an L-space if the following conditions are satisfied:

(i) If xn = x, for all n ∈ N, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.

(ii) If (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences (xni)i∈N of (xn)n∈N
we have that (xni)i∈N ∈ c(X) and Lim(xni)i∈N = x.

1



2 Chapter 1. Preliminaries

By definition, an element (xn)n∈N of c(X) is a convergent sequence and x = Lim(xn)n∈N
is the limit of this sequence and we shall write

xn → x as n→∞.

We denote an L-space by (X,→).

Example 1.1.1. In general, an L-space is any set endowed with a structure implying a
notion of convergence for sequences. For example, Hausdorff topological spaces, metric spaces,
generalized metric spaces in Perov’ sense (i.e. d(x, y) ∈ Rm+ ), generalized metric spaces in
Luxemburg’ sense (i.e. d(x, y) ∈ R+ ∪{+∞}), K-metric spaces (i.e. d(x, y) ∈ K, where K is
a cone in an ordered Banach space), gauge spaces, 2-metric spaces, D-R-spaces, probabilistic
metric spaces, syntopogenous spaces, are such L-spaces. For more details in this sense, we
have the paper of I.A. Rus [117] and the references therein.

1.2 Generalized metric spaces

In this section we deal with the notions of distance functional and G-metric defined on a
nonempty set X, both notions being used in the definition of generalized metric space. The
connexion between L-spaces and generalized metric spaces is also discussed.

By a generalized metric on a given nonempty set X, we mean:

1◦. A functional d : X × X → R+ (also called distance functional) which satisfies some
axioms.

2◦. A functional d : X ×X → (G,+,≤, G→) (also called G-metric) satisfying the following
axioms:

(i) d(x, y) ≥ 0, for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x), for all x, y ∈ X;

(iii) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X,

where the structure (G,+,≤, G→) is an ordered L-group 1.

In this section we analyze the following problem.

Problem 1.2.1. Which of the distance functionals d : X × X → R+ induces an L-space
structure on X?

1Let (G,+) be a group, ≤ be a partial order relation on G and
G→ be an L-space structure on G. By

definition, (G,+,≤, G→) is an ordered L-group if the following axioms are satisfied:

(1) xn → x and yn → y as n→∞ imply xn + yn → x + y as n→∞;

(2) xn → x, yn → y as n→∞ and xn ≤ yn for all n ∈ N imply x ≤ y;

(3) x ≤ y and u ≤ v imply x + u ≤ y + v.

More consideration on ordered L-groups can be found in the work of I.A. Rus, A. Petruşel and G. Petruşel
[124], p.79 .
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1.3 Partial metric spaces

In this section we recall the notion of partial metric as a particular case of generalized metric.
Several examples of partial metric spaces are also presented. We give also the notions regarding
the convergence induced by the quasimetric qp and the metric dp, both these functionals being
obtained from a partial metric p.

Definition 1.3.1 (S.G. Matthews in [87]). Let X be a nonempty set. A functional p : X×X →
R+ is a partial metric on X if p satisfies the following conditions:

(p1) p(x, x) = p(y, y) = p(x, y) if and only if x = y;

(p2) p(x, x) ≤ p(x, y), for all x, y ∈ X;

(p3) p(x, y) = p(y, x), for all x, y ∈ X;

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z), for all x, y, z ∈ X.

The couple (X, p), where X is a nonempty set and p is a partial metric on X, is called a
partial metric space.

Example 1.3.1 (I.A. Rus [119]). Let (X, d) be a metric space. Then (X, d) is a partial metric
space.

Example 1.3.2 (S.G. Matthews [87]). Let X := {[a, b] | a, b ∈ R+, a ≤ b} and p : X ×X →
R+ be the functional defined by

p([a, b], [c, d]) := max{b, d} −min{a, c}, for all [a, b], [c, d] ∈ X, with [c, d] ⊆ [a, b]..

Then (X, p) is a partial metric space.

Remark 1.3.1. For more considerations on partial metric spaces and applications, see S.G.
Matthews [87], [88], H.-P. A. Künzi and V. Vajner [81], M. Fitting [41], R. Kopperman, S.
Matthews and H. Pajoohesh [79], S.J. O’Neill [97], S. Romaguera and M. Schellekens [109],
A.K. Seda [134], S. Oltra and O. Valero [96], I.A. Rus [119].

1.4 w-distance on a metric space (X, d)

Another generalized metric is the so called w-distance. We present in this section its definition,
properties and some examples.

Definition 1.4.1 (O. Kada, T. Suzuki and W. Takahashi [60]). Let (X, d) be a metric space.
Then a function p : X ×X → R+ is called a w-distance on X if the following conditions are
satisfied:

(w1) p(x, z) ≤ p(x, y) + p(y, z), for all x, y, z ∈ X;
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(w2) for any x ∈ X, p(x, ·) : X → R+ is lower semicontinuous

(w3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.

Example 1.4.1 (L. Guran [45]). Let (X, d) be a metric space. Then the metric d is a w-
distance on (X, d).

Example 1.4.2 (L. Guran [45]). Let X be a normed linear space with norm ‖·‖. Then the
functional p : X ×X → R+, defined by p(x, y) = ‖x‖+ ‖y‖, for all x, y ∈ X, is a w-distance
on X.

Remark 1.4.1. More considerations on w-distances can be found in the papers of O. Kada,
T. Suzuki and W. Takahashi [60], T. Suzuki [138], L. Guran [45] and the references therein.

1.5 τ-distance on a metric space (X, d)

In [139], T. Suzuki introduces the concept of τ -distance on a metric space, which is a gener-
alized concept of both w-distance and Tataru’s distance (see D. Tataru [144]). He also give
generalizations for Banach’s contraction principle, Caristi’s fixed point theorem, Ekeland’s
variational principle and the nonconvex minimization theorem of Takahashi.

Definition 1.5.1 (T. Suzuki [139]). Let (X, d) be a metric space. A functional p : X ×X →
R+ is called a τ -distance on X if there exists an operator η : X ×R+ → R+ and the following
are satisfied:

(τ1) p(x, z) ≤ p(x, y) + p(y, z), for all x, y, z ∈ X;

(τ2) η(x, 0) = 0 and η(x, t) ≥ t for all x ∈ X and t ∈ R+, and η is concave and continuous
in its second variable;

(τ3) lim
n→∞

xn = x and lim
n→∞

sup
m≥n

η(zn, p(zn, xm)) = 0 imply p(w, x) ≤ lim inf
n→∞

p(w, xn), for all

w ∈ X;

(τ4) lim
n→∞

sup
m≥n

p(xn, ym) = 0 and lim
n→∞

η(xn, tn) = 0 imply lim
n→∞

η(yn, tn) = 0;

(τ5) lim
n→∞

η(zn, p(zn, xn)) = 0 and lim
n→∞

η(zn, p(zn, yn)) = 0 imply lim
n→∞

d(xn, yn) = 0.

Example 1.5.1 (T. Suzuki [139]). Let p be a w-distance on a metric space (X, d). Then p is
a τ -distance on (X, d).

Example 1.5.2 (T. Suzuki [139]). Let p be a τ -distance on a metric space X and let c be a
positive real number. Then a functional q : X ×X → R+, defined by q(x, y) = c · p(x, y), for
all x, y ∈ X, is also a τ -distance on X.

Remark 1.5.1. More considerations on τ -distances and fixed point results, can be found in
the work of T. Suzuki [139], [140] and L. Guran [45].



1.6. Kasahara spaces 5

1.6 Kasahara spaces

Let X be a nonempty set and d : X × X → R+ be a functional. Let → be a convergence
structure on X. By following S. Kasahara [66], the L-space (X,→) is called d-complete if any
sequence (xn)n∈N in X, with

∑
n∈N

d(xn, xn+1) <∞, converges in (X,→).

In a number of papers [66]-[70] S. Kasahara constructs a fixed point theory in such spaces.
T.L. Hicks [47] and T.L. Hicks - B.E. Rhoades [49] give some fixed point theorems in a d-
complete topological space. Other results in these directions were given by V.G. Angelov [3],
J. Danes̆ [22], K. Iséki [55], L. Guran [45], P.Q. Khanh [75]. On the other hand, some authors
give some fixed point theorems in a set with two metrics: M.G. Maia [84], V. Berinde [10], R.
Precup [105], A. Petruşel and I.A. Rus [102], I.A. Rus [118], B. Rzepecki [129], L.M. Saliga
[130], S. Iyer [57], I.A. Rus, A. Petruşel and G. Petruşel ([124], pp. 39-40).

We recall the notions of Kasahara space, generalized Kasahara space and large Kasahara
space which were introduced by I.A. Rus in [121]:

Definition 1.6.1 (Kasahara space, I.A. Rus [121]). Let (X,→) be an L-space and d : X×X →
R+ be a functional. The triple (X,→, d) is a Kasahara space if and only if we have the
following compatibility condition between → and d:

xn ∈ X,
∑
n∈N

d(xn, xn+1) < +∞ ⇒ (xn)n∈N converges in (X,→). (1.6.1)

Definition 1.6.2 (Generalized Kasahara space, I.A. Rus [121]). Let (X,→) be an L-space,

(G,+,≤, G→) be an L-space ordered semigroup with unity, 0 be the least element in (G,≤) and
dG : X×X → G be an operator. The triple (X,→, dG) is a generalized Kasahara space if and
only if we have the following compatibility condition between → and dG:

xn ∈ X,
∑
n∈N

dG(xn, xn+1) < +∞ ⇒ (xn)n∈N converges in (X,→). (1.6.2)

Notice that by the inequality with the symbol +∞ in the compatibility condition (1.6.2),

we mean that the series
∑
n∈N

dG(xn, xn+1) is bounded in (G,≤).

Definition 1.6.3 (Large Kasahara space, I.A. Rus [121]). Let (X,→) be an L-space, (G,+,≤
,
G→) be an L-space ordered semigroup with unity, 0 be the least element in (G,≤) and dG :
X ×X → G be an operator. The triple (X,→, dG) is a large Kasahara space if and only if we
have the following compatibility condition between → and dG:

xn ∈ X, (xn)n∈N a Cauchy sequence (in a certain sense) with respect to dG

implies that (xn)n∈N converges in (X,→). (1.6.3)

Some examples of Kasahara spaces are presented in the sequel.

Example 1.6.1 (The trivial Kasahara space). Let (X, d) be a complete metric space. Let
d→

be the convergence structure induced by the metric d on X. Then (X,
d→, d) is a Kasahara

space.
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Example 1.6.2 (I.A. Rus [121]). Let (X, ρ) be a complete semimetric space, where ρ : X ×
X → R+ is continuous. Let d : X ×X → R+ be a functional such that there exists c > 0 with

ρ(x, y) ≤ c · d(x, y), for all x, y ∈ X. Then (X,
ρ→, d) is a Kasahara space.

Example 1.6.3 (I.A. Rus [121]). Let (X, ρ) be a complete quasimetric space where ρ : X ×
X → R+. Let d : X × X → R+ be a functional such that there exists c > 0 with ρ(x, y) ≤
c · d(x, y), for all x, y ∈ X. Then (X,

ρ→, d) is a Kasahara space.

Example 1.6.4 (I.A. Rus [121]). Let ρ : X ×X → Rm+ be a generalized complete metric on
a set X. Let x0 ∈ X and λ ∈ Rm+ with λ 6= 0. Let dλ : X ×X → Rm+ be defined by

dλ(x, y) :=

{
ρ(x, y), if x 6= x0 and y 6= x0

λ, if x = x0 or y = x0.

Then (X,
ρ→, dλ) is a generalized Kasahara space.

Example 1.6.5 (I.A. Rus [121]). Let (X, ρ) be a complete partial metric space. Then (X,
ρ→

, dρ) is a large Kasahara space, where dρ : X ×X → R+ is defined by

dρ(x, y) := ρ(x, y) + ρ(y, x)− ρ(x, x)− ρ(y, y), for all x, y ∈ X.

We present in our thesis some solutions for the following problems, formulated by I.A. Rus
in [121]:

Problem 1.6.1. Give relevant examples of Kasahara spaces.

Problem 1.6.2. Let p be a w-distance on a complete metric space (X, d). In which conditions

(X,
d→, p) is a large Kasahara space?

Problem 1.6.3. Let p be a τ -distance on the complete metric space (X, d). In which condi-

tions (X,
d→, p) is a large Kasahara space?

1.7 Operators on Kasahara spaces

In this section we consider the Kasahara space (X,→, d), where d : X × X → R+ is a
functional. We define the continuity and the closeness properties for self-mappings f : X → X
with respect to → and we give metric conditions for f with respect to d, by presenting some
generalized contractions in this sense. Finally, we define the well-posed fixed point problem
and the limit shadowing property for f with respect to d. By a similar way, the case of
multivalued operators defined on Kasahara spaces is also presented.



Chapter 2

Generalized contractions in
Kasahara spaces

In this chapter we develop the theory of some important fixed point results as the Banach-
Caccioppoli’s Contraction Principle, the Graphic Contraction Principle, Caristi-Browder and
Matkowski type theorems. Our results are given for single-valued generalized contractions in
the context of a Kasahara space (X,→, d), where d : X×X → R+ is a functional. We present
also some extensions of our results in generalized and large Kasahara spaces.

In the sequel, we present the connexion between the Maia type theorems and the fixed
point theorems in Kasahara spaces, we introduce a new notion: Kasahara space with respect
to an operator and we give in this setting several applications regarding the existence and
uniqueness of solutions for integral and differential equations.

The references which were used to develop this chapter are: A.-D. Filip [34], [35], [36];
A.-D. Filip and A. Petruşel [39], [40]; S. Kasahara [66]; M.G. Maia [84]; I.A. Rus [110], [115],
[117], [119], [121]; I.A. Rus, A.S. Mureşan and V. Mureşan [122]; I.A. Rus, A. Petruşel and
G. Petruşel [124]; M.-A. Şerban [142]; T. Zamfirescu [150].

2.1 Fixed point theorems in Kasahara spaces

The aim of this section is to present the theory of some well-known fixed point results in
the context of Kasahara spaces. Some of these results are also given in generalized and large
Kasahara spaces as follows:

• fixed point theorems for generalized contractions in generalized Kasahara spaces (X,→
, d), where d : X ×X → R+ ∪ {+∞} is a functional;

• a fixed point theory for the local variant of Banach-Caccioppoli’s Contraction Principle

in large Kasahara spaces (X,
d→, p), where d : X ×X → R+ is a complete metric on X

and p : X ×X → R+ is a w-distance on X;

7
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• fixed point theorems for generalized contractions in large Kasahara spaces (X,
d→, ϕ ◦ d)

which are obtained from complete metric spaces (X, d), by perturbing the metric with
an increasing, subadditive and continuous function ϕ : R+ → R+.

We consider first the Kasahara space (X,→, d), where d : X × X → R+ is a functional.
In our results we will use the following notions and notations:

Definition 2.1.1. Let (X,→, d) be a Kasahara space, where d : X×X → R+ is a functional.
Let f : X → X be an operator. Then

(i) f is a Picard operator if and only if Ff = {x∗} and fn(x) → x∗ as n → ∞, for all
x ∈ X;

(ii) f is a weakly Picard operator if and only if the sequence (fn(x))n∈N converges for all
x ∈ X and the limit (which may depend on x) is a fixed point of f ;

(iii) if f is a weakly Picard operator, then we define the operator

f∞ : X → X by f∞(x) := Lim(fn(x))n∈N;

Remark 2.1.1. More considerations on Picard operators and weakly Picard operators can be
found in the work of I.A. Rus [117], [115], I.A. Rus, A. Petruşel and M.A. Şerban [127].

We recall also a very useful tool which will help us to prove the uniqueness of a fixed point
for a single-valued operator defined on a Kasahara space.

Lemma 2.1.1 (Kasahara’s lemma [66]). Let (X,→, d) be a Kasahara space, where d : X ×
X → R+ is a functional. Then

for all x, y ∈ X, d(x, y) = d(y, x) = 0⇒ x = y.

We present next one of our fixed point results and its theory.

Theorem 2.1.1 (The Contraction Principle). Let (X,→, d) be a Kasahara space, where
d : X ×X → R+ is a functional. Let f : X → X be an operator. We assume that

(i) f : (X,→)→ (X,→) has closed graph;

(ii) f : (X, d)→ (X, d) is an α-contraction, i.e., there exists α ∈ [0, 1[ such that

d(f(x), f(y)) ≤ αd(x, y), for all x, y ∈ X.

Then the following statements hold:

(1) Ff = Ffn = {x∗f}, for all n ∈ N∗ and d(x∗f , x
∗
f ) = 0;

(2) fn(x)→ x∗f as n→∞, for all x ∈ X, i.e., f : (X,→)→ (X,→) is a Picard operator;

(3) for all x ∈ X we have,
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(3.1) d(fn(x), x∗f )
R→ 0 as n→∞;

(3.2) d(x∗f , f
n(x))

R→ 0 as n→∞;

(4) if the functional d is a quasimetric (i.e., d(x, y) = d(y, x) = 0⇔ x = y for all x, y ∈ X
and d satisfies the triangle inequality), then

(4.1) d(x, x∗f ) ≤ 1
1−αd(x, f(x)), for all x ∈ X;

(4.2) d(x∗f , x) ≤ 1
1−αd(f(x), x), for all x ∈ X;

(4.3) d(fn(x), x∗f ) ≤ αn

1−αd(x, f(x)), for all x ∈ X;

(4.4) d(x∗f , f
n(x)) ≤ αn

1−αd(f(x), x), for all x ∈ X;

(4.5) if (zn)n∈N ⊂ X is such that d(zn, f(zn))
R→ 0 as n → ∞ then d(zn, x

∗
f )

R→ 0 as
n → ∞, i.e., the fixed point problem for the operator f is well-posed with respect
to d;

(4.6) if (zn)n∈N ⊂ X is such that d(zn+1, f(zn))
R→ 0 as n→∞ then d(zn+1, f

n+1(z))
R→

0 as n → ∞, for all z ∈ X, i.e., the operator f has the limit shadowing property
with respect to d;

(4.7) if g : X → X has the property that there exists η > 0 for which d(g(x), f(x)) ≤ η,
for all x ∈ X, then

x∗g ∈ Fg implies d(x∗g, x
∗
f ) ≤ η

1− α
.

Remark 2.1.2. Theorem 2.1.1 extends Banach-Caccioppoli’s Contraction Principle in the
sense that instead of the metric space (X, d) it can be considered the Kasahara space (X,→, d).
The functional d : X ×X → R+ need not to satisfy all of the axioms of the metric. On the
other hand, Theorem 2.1.1 complements the conclusions of Banach-Caccioppoli’s Contraction
Principle in the sense that some fixed point problems are considered: well-possedness (item
(4.5)), limit shadowing property (item (4.6)), data dependence (item (4.7)).

• We give next one of the fixed point results concerning single-valued Zamfirescu operators.

In 1972, T. Zamfirescu gives in [150] several fixed point theorems for single-valued map-
pings of contractive type in metric spaces, obtaining generalizations for Banach-Caccioppoli’s
contraction principle, Kannan’s, Edelstein’s and Singh’s theorems. We give local and global
similar results for Zamfirescu operators in Kasahara spaces. Since the domain invariance for
Zamfirescu’s operators is not always satisfied, we use in our proofs the successive approx-
imations method. Our local results extend and generalize Krasnoselskii’s local fixed point
theorem by replacing the context of metric space with a Kasahara space. On the other hand,
instead of contractions we use Zamfirescu’s operators.

Definition 2.1.2. Let (X,→, d) be a Kasahara space, where d : X×X → R+ is a functional.
The mapping f : X → X is called Zamfirescu operator if there exist α, β, γ ∈ R+ with α < 1,
β < 1

2 and γ < 1
2 such that for each x, y ∈ X at least one of the following conditions is true:
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(1z) d(f(x), f(y)) ≤ αd(x, y);

(2z) d(f(x), f(y)) ≤ β[d(x, f(x)) + d(y, f(y))];

(3z) d(f(x), f(y)) ≤ γ[d(x, f(y)) + d(y, f(x))].

Remark 2.1.3. In our fixed point results we will consider the Kasahara space (X,→, d),
where d : X ×X → R+ is a premetric, i.e.,

(1) d(x, x) = 0, for all x ∈ X;

(2) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.

We also will consider the following notion and notation.

Definition 2.1.3. Let (X,→, d) be a Kasahara space, where d : X ×X → R+ is a premetric.
Then

B̃(x0, r) :=
{
x ∈ X | d(x0, x) ≤ r

}
is the right closed ball centered in x0 ∈ X with radius r ∈ R+.

Remark 2.1.4. Let (X,→, d) be a Kasahara space, where d : X ×X → R+ is a premetric.
Let x0 ∈ X and r ∈ R+. If d is continuous on X with respect to the second argument, then
the right closed ball B̃(x0, r) is a closed set in X with respect to →, i.e., for any sequence
(zn)n∈N ⊂ B̃(x0, r), with zn → z ∈ X, as n→∞, we get that z ∈ B̃(x0, r).

Our main local fixed point result which extends and generalizes Krasnoselskii’s theorem
(see e.g. [44]) is the following:

Theorem 2.1.2 (A.-D. Filip [36]). Let (X,→, d) be a Kasahara space, where d : X×X → R+

is a premetric. Let x0 ∈ X, r ∈ R+ and f : B̃(x0, r) → X be a Zamfirescu operator. We
assume that:

(i) Graph(f) is closed in X ×X with respect to →;

(ii) d(x0, f(x0)) ≤ (1− δ)r, where δ = max
{
α, β

1−β ,
γ

1−γ
}

;

(iii) d is continuous with respect to the second argument.

Then:

(1◦) f has at least one fixed point in B̃(x0, r) and fn(x0)→ x∗ ∈ Ff , as n→∞.

(2◦) the following estimation holds:

d(xn, x
∗) ≤ δnr, for all n ∈ N, (2.1.1)

where x∗ ∈ Ff and (xn)n∈N is the sequence of successive approximations for f starting
from x0.
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Remark 2.1.5. An extension of our fixed point result to large Kasahara spaces can be made.
In order to obtain a large Kasahara space from the Kasahara space (X,→, d), where d :
X × X → R+ is a premetric, we need to define a certain notion of Cauchy sequence with
respect to the premetric d. We must take also into account the fact that d is not symmetric.

Definition 2.1.4. Let (X, d) be a premetric space with d : X ×X → R+ and let (xn)n∈N be
a sequence in X. Then (xn)n∈N is a right-Cauchy sequence with respect to d if and only if

lim
n→∞
m→∞

d(xn, xm) = 0,

i.e., for any ε > 0, there exists k ∈ N such that d(xn, xm) < ε, for every m,n ∈ N with
m ≥ n ≥ k.

The following notion of large Kasahara space arises.

Definition 2.1.5 (A.-D. Filip [36]). Let (X,→) be an L-space. Let d : X × X → R+ be a
premetric on X. The triple (X,→, d) is a large Kasahara space if and only if the following
compatibility condition between → and d holds:

if (xn)n∈N ⊂ X with lim
n→∞
m→∞

d(xn, xm) = 0 then (xn)n∈N converges in (X,→).

Remark 2.1.6 (A.-D. Filip [36]). Let (X,→, d) be a large Kasahara space in the sense of
Definition 2.1.5. Then (X,→, d) is a Kasahara space.

Remark 2.1.7. Let (X,→, d) be a large Kasahara space in the sense of Definition 2.1.5. In
this context, Theorem 2.1.2 holds.

• We present in the sequel one of the fixed point results given in generalized Kasahara
spaces (X,→, d), where d : X ×X → R+ ∪ {+∞} is a functional. An example of such
generalized Kasahara space is given bellow.

Example 2.1.1 (A.-D. Filip and A. Petruşel [40]). Let a > 0 and I := [t0 − a, t0 + a] ⊂ R.
Denote

X := C(I) :=
{
x : I → R | x is a continuous function on I

}
.

Let λ > 0 and consider dλ : C(I)× C(I)→ R+ ∪ {+∞} defined by

dλ(x, y) := max

{
1

|t− t0|λ
|x(t)− y(t)| : t ∈ I

}
, for x, y ∈ C(I). (2.1.2)

Notice that dλ is not necessarily finite for every pair of functions x, y ∈ C(I). Thus, by
following W.A.J. Luxemburg [82], we have that dλ is a generalized metric on C(I) and

lim
n→∞
m→∞

dλ(xn, xm) = 0 ⇒ there exists x ∈ C(I) such that lim
n→∞

dλ(xn, x) = 0. (2.1.3)

We also denote by ρ = max{|x(t)− y(t)| : t ∈ I} the metric of uniform convergence on C(I)

and by
ρ→ the convergence structure induced by ρ on C(I).

The triple (C(I),
ρ→, dλ) is a generalized Kasahara space.
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In our results, we will also use the following notions.

Definition 2.1.6 (A.-D. Filip and A. Petruşel [40]). Let (X,→, d) be a generalized Kasahara
space, where d : X ×X → R+ ∪ {+∞} is a functional. Let f : X → X be an operator. We
say that f is a

� Picard operator if

1) Ff = {x∗};
2) fn(x0)→ x∗ as n→∞, for each x0 ∈ X with the property d(x0, f(x0)) < +∞.

� weakly Picard operator if

1) Ff 6= ∅;
2) the sequence (fn(x0))n∈N converges for each x0 ∈ X with d(x0, f(x0)) < +∞ and

the limit is a fixed point of f .

Remark 2.1.8. Kasahara’s Lemma 2.1.1 also holds in the case when (X,→, d) is a generalized
Kasahara space, where d : X ×X → R+ ∪ {+∞} is a functional. The lemma is proved in the
work of S. Kasahara [66].

Theorem 2.1.3 (A.-D. Filip and A. Petruşel [40]). Let (X,→, d) be a generalized Kasahara
space, where d : X ×X → R+ ∪ {+∞} is a functional. Let f : X → X be an operator. We
assume that:

i) f : (X,→)→ (X,→) has closed graph;

ii) there exists α ∈ [0, 1[ such that

d(f(x), f(y)) ≤ αd(x, y), for all x, y ∈ X, with d(x, y) < +∞;

iii) there exists x0 ∈ X such that d(x0, f(x0)) < +∞.

Then we have:

1) f is a weakly Picard operator;

2) if d(x∗, y∗) < +∞, for all x∗, y∗ ∈ Ff then f is a Picard operator;

3) if d(x, x) = 0, for all x ∈ X then d(x∗, f(x∗)) < +∞, for all x∗ ∈ Ff ;

4) if x ∈ X and x∗ ∈ Ff such that d(x, x∗) < +∞, then

d(fn(x), x∗)→ 0 as n→∞;

5) if d(x0, x
∗) < +∞, for all x∗ ∈ Ff and

d(fk(x0), x∗) ≤ d(fk(x0), fk+1(x0)) + d(fk+1(x0), x∗), for all k ∈ N,

then

d(x0, x
∗) ≤ 1

1− α
d(x0, f(x0)).
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• We consider next the generalized Kasahara space (X,→, d), where d is a real vector-
valued functional, i.e., d : X×X → Rn+. In this setting, we have some fixed point results
given by I.A. Rus in [121]. One of them is the following one.

Theorem 2.1.4 (I.A. Rus [121]). Let (X,→, d) be a generalized Kasahara space, where d :
X ×X → Rn+ is a functional. Let f : X → X be an operator. We suppose that:

(i) f : (X,→)→ (X,→) has closed graph;

(ii) f : (X, d) → (X, d) is a S-contraction, i.e. d(f(x), f(y)) ≤ Sd(x, y), for all x, y ∈ X,
with S a matrix convergent to zero.

Then:

(1) Ff = {x∗}; d(x∗, x∗) = 0;

(2) fn(x)→ x∗ as n→ +∞, for all x ∈ X;

(3) � d(fn(x), x∗)
Rn

→ 0, as n→∞, for all x ∈ X;

� d(x∗, fn(x))
Rn

→ 0, as n→∞, for all x ∈ X;

(4) If d is a quasimetric (i.e., d(x, y) = d(y, x) = 0⇔ x = y for all x, y ∈ X and d satisfies
the triangle inequality), then:

(a) � d(x, x∗) ≤ (I − S)−1d(x, f(x)), for all x ∈ X;

� d(x∗, x) ≤ (I − S)−1d(f(x), x), for all x ∈ X;

(b) If g : X → X is such that

d(f(x), g(x)) ≤ η, for all x ∈ X,

then d(x∗, y∗) ≤ (I − S)−1η, for all y∗ ∈ Fg.

• We present in the sequel a theory for the local variant of Banach-Caccioppoli’s Contrac-
tion Principle in the context of large Kasahara spaces. To achieve this purpose, some
auxiliary notions need to be defined.

Definition 2.1.7. Let X be a nonempty set and p : X × X → R+ be a w-distance (see
Definition 1.4.1) on X. Let (xn)n∈N be a sequence in X. Then

(1) the convergence structure induced by p on X is denoted by
p→ and it is defined as follows

xn
p→ x as n→∞ if and only if lim

n→∞
p(xn, x) = 0.

(2) (xn)n∈N is a Cauchy sequence with respect to p if and only if there exists a sequence
(αn)n∈N in R+ such that
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(2a) lim
n→∞

αn = 0;

(2b) p(xn, xm) ≤ αn for all n,m ∈ N with m > n.

By Definition 2.1.7 the following notion of large Kasahara space arises.

Definition 2.1.8. Let (X,→) be an L-space. Let p : X×X → R+ be a w-distance on X. The
triple (X,→, p) is a large Kasahara space if and only if the following compatibility condition
between → and p holds:

if (xn)n∈N ⊂ X is a Cauchy sequence with resepct to p in the sense of Definition 2.1.7

then (xn)n∈N converges in (X,→).

Example 2.1.2. Let (X, d) be a complete metric space and p be a w-distance on X. Then

(X,
d→, p) is a large Kasahara space in the sense of Definition 2.1.8.

Lemma 2.1.2. Let (X, d) be a metric space and p : X ×X → R+ be a w-distance on X. Let
x0 ∈ X, r ∈ R+ and

B̃p(x0, r) :=
{
x ∈ X | p(x0, x) ≤ r

}
be the right closed ball centered in x0 with radius r. Then

(1) B̃p(x0, r) is a closed set in (X, d);

(2) If (X, d) is complete, then
(
B̃p(x0, r),

d→, p
)

is a large Kasahara space in the sense of
Definition 2.1.8.

Theorem 2.1.5. Let (X,
d→, p) be a large Kasahara space in the sense of Definition 2.1.8,

where
d→ is the convergence structure induced by the complete metric d : X ×X → R+ on X

and p : X ×X → R+ is a w-distance on X. Let x0 ∈ X, r ∈ R+ and f : B̃p(x0, r) → X be
an operator such that:

(i) f : (B̃p(x0, r), d)→ (X, d) has closed graph;

(ii) f : (B̃p(x0, r), p) → (X, p) is an α-contraction on B̃p(x0, r), i.e., there exists α ∈ [0, 1[
such that

p(f(x), f(y)) ≤ αp(x, y) for all x, y ∈ B̃p(x0, r);

(iii) p(x0, f(x0)) ≤ (1− α)r.

Then the following statements hold

(1) Ff = Ffn = {x∗f}, for all n ∈ N∗ and p(x∗f , x
∗
f ) = 0;

(2) fn(x0)
d→ x∗f ∈ B̃p(x0, r) as n → ∞, for all x ∈ B̃p(x0, r), i.e., f : (B̃p(x0, r),

d→) →

(X,
d→) is a Picard operator;

(3) lim
n→∞

p(fn(x), x∗f ) = 0, for all x ∈ B̃p(x0, r);
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(4) for all x ∈ B̃p(x0, r) we have:

(4.1) p(x, x∗f ) ≤ 1
1−αp(x, f(x));

(4.2) p(x∗f , x) ≤ 1
1−αp(f(x), x);

(4.3) p(fn(x), x∗f ) ≤ αn

1−αp(x, f(x));

(4.4) p(x∗f , f
n(x)) ≤ αn

1−αp(f(x), x);

(4.5) if g : B̃p(x0, r)→ X has the property that there exists µ > 0 for which

p(g(x), f(x)) ≤ µ, for all x ∈ B̃p(x0, r)

then
x∗g ∈ Fg and x∗g ∈ B̃p(x0, r) implies p(x∗g, x

∗
f ) ≤ µ

1− α
.

• We give next one of the fixed point theorems in large Kasahara spaces that are obtained
from complete metric spaces by perturbing the metric.

Several fixed point theorems were proved in metric spaces with perturbed metric. In this
sense we have the works of M.S. Khan, M. Swaleh and S. Sessa [74] ,K.P.R. Sastry and G.V.R.
Babu [131], [132], K.P.R. Sastry, G.V.R. Babu and D.N. Rao [133], M.A. Şerban [142].

Theorem 2.1.6 (A.-D. Filip [35]). Let (X,
d→, ρ) be a large Kasahara space with d : X×X →

R+ a complete metric on X and ρ : X ×X → R+ a distance functional defined by ρ = ϕ ◦ d,
where ϕ : R+ → R+ is an increasing, subadditive and continuous function. Let f : X → X be
an operator. We assume that:

(i) f : (X,
d→)→ (X,

d→) has closed graph;

(ii) f : (X, ρ)→ (X, ρ) is an α-contraction, i.e., there exists α ∈ [0, 1[ such that

ρ(f(x), f(y)) ≤ αρ(x, y), for all x, y ∈ X;

(iii) ϕ(t) = 0⇒ t = 0, for all t ∈ R+.

Then the following statements hold:

(1) Ff = Ffn = {x∗f}, for all n ∈ N∗ and ρ(x∗f , x
∗
f ) = 0;

(2) fn(x)
d→ x∗f as n→∞, for all x ∈ X, i.e., f : (X,

d→)→ (X,
d→) is a Picard operator;

(3) for all x ∈ X we have:

(3a) ρ(fn(x), x∗f )
R→ 0 as n→∞;

(3b) ρ(x, x∗f ) ≤ 1
1−αρ(x, f(x));
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(3c) ρ(fn(x), x∗f ) ≤ αn

1−αρ(x, f(x)), for all n ∈ N;

(4) (zn)n∈N ⊂ X, ρ(zn, f(zn))
R→ 0 as n → ∞ ⇒ ρ(zn, x

∗
f )

R→ 0 as n → ∞, i.e., the fixed
point problem for the operator f is well-posed with respect to ρ;

(5) (zn)n∈N ⊂ X, ρ(zn+1, f(zn))
R→ 0 as n→∞ ⇒ ρ(zn+1, f

n+1(z))
R→ 0 as n→∞, for all

z ∈ X, i.e., the operator f has the limit shadowing property with respect to ρ;

(6) if g : X → X has the property that there exists η > 0 for which

ρ(g(x), f(x)) ≤ η, for all x ∈ X,

then
x∗g ∈ Fg implies ρ(x∗g, x

∗
f ) ≤ η

1− α
.

Remark 2.1.9. Particular cases of large Kasahara spaces can be obtained for a given per-
turbing function ϕ : R+ → R+. The following example is relevant in this sense.

Example 2.1.3 (A.-D. Filip [35]). Let (X, d) be a complete metric space and ϕ : R+ → R+

be a function defined by
ϕ(t) = t+ θ(t, u(t)), for all t ∈ R+

where θ : R× R→ R+ is a symmetric function satisfying the triangle inequality and u : R→
R+ is a function.

Then (X,
d→, ϕ ◦ d) is a large Kasahara space.

2.2 Maia type fixed point theorems

The aim of this section is to recall the Maia fixed point theorem and some of its versions in
order to establish a connexion with fixed point theorems in Kasahara spaces.

Theorem 2.2.1 (M.G. Maia, [84]). Let X be a nonempty set, d and ρ be two metrics on X
and f : X → X be a mapping. Suppose that:

(i) ρ(x, y) ≤ d(x, y), for all x, y ∈ X;

(ii) (X, ρ) is a complete metric space;

(iii) f : (X, ρ)→ (X, ρ) is continuous;

(iv) f : (X, d)→ (X, d) is an α-contraction, i.e., there exists α ∈ [0, 1[ such that

d(f(x), f(y)) ≤ α · d(x, y), for all x, y ∈ X.

Then
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(1) Ff = {x∗};

(2) (fn(x0))n∈N converges in (X, ρ) to x∗, for all x0 ∈ X.

In applications we usually use the Rus variant of Maia’s Theorem 2.2.1. In this sense, a
very useful remark was made by I.A. Rus in [110] (see also [115]).

Remark 2.2.1. Theorem 2.2.1 remains true if condition (i) is replaced by

(i′) there exists c > 0 such that ρ(f(x), f(y)) ≤ c · d(x, y), for all x, y ∈ X;

Remark 2.2.2. Some other Maia type results are the fixed point theorems given on a set
endowed with two metrics. We recall one of them bellow.

Theorem 2.2.2 (A.-D. Filip and A. Petruşel [39]). Let X be a nonempty set and d, ρ :
X ×X → Rm+ be two generalized metrics on X. Let f : X → X be an operator. We assume
that

1) there exists C ∈Mm,m(R+) such that ρ(f(x), f(y)) ≤ C · d(x, y), for all x, y ∈ X;

2) (X, ρ) is a complete generalized metric space;

3) f : (X, ρ)→ (X, ρ) is continuous;

4) f : (X, d) → (X, d) is an almost contraction, i.e., there exist A,B ∈ Mm,m(R+) such
that for all x, y ∈ X one has

d(f(x), f(y)) ≤ Ad(x, y) +Bd(y, f(x)).

If the matrix A converges towards zero, then Ff 6= ∅.
In addition, if the matrix A+B converges to zero, then Ff = {x∗}.

Remark 2.2.3. Other fixed point theorems on a set endowed with two metrics can be found
in the work of M. Albu [1], V. Berinde [9], B.C. Dhage [24], A.S. Mureşan [92], [90], A.S.
Mureşan and V. Mureşan [91], V. Mureşan [93], R. Precup [105], B.K. Ray [107], I.A. Rus
[110], [111], [113], B. Rzepecki [129], I.A. Rus, A.S. Mureşan and V. Mureşan [122].

Remark 2.2.4. The fixed point theorems in Kasahara spaces are natural generalizations of
Maia type fixed point theorems.

Remark 2.2.5. In order to include Rus’ variant of Maia’s Theorem 2.2.1 in the field of fixed
point theory in Kasahara spaces, a special construction is imposed, which will be presented in
the next section.
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2.3 Fixed point theorems in Kasahara spaces with respect to
an operator

The aim of this section is to introduce a new notion: Kasahara space with respect to an
operator. In this setting, some fixed point results are given. We study also the existence and
uniqueness of solutions for integral equations and boundary value problems.

Definition 2.3.1 (A.-D. Filip [34]). Let (X,→) be an L-space, d : X×X → R+ be a functional
and f : X → X be an operator. The triple (X,→, d) is a Kasahara space with respect to the
operator f if and only if∑

n∈N
d(fn(x), fn+1(x)) < +∞, for all x ∈ X

implies that

(fn(x))n∈N is convergent in (X,→), for all x ∈ X.

Remark 2.3.1. The notion of Kasahara space with respect to an operator generalizes the
notion of orbital-completeness and the notion of completeness with respect to an operator.

Remark 2.3.2. The applications concerning w-distances and τ -distances are also generalized
in the context of Kasahara spaces with respect to an operator.

Remark 2.3.3 (A.-D. Filip [34]). Notice that, in a Kasahara space with respect to an operator,
Kasahara’s Lemma 2.1.1 need not to be satisfied. Notice also that a Kasahara space is a
Kasahara space with respect to an operator, but the reverse implication is false.

Example 2.3.1 (A.-D. Filip [34]). Let X be a nonempty set, f : X → X be an operator and
d, ρ : X ×X → R+ be two functionals. We suppose that:

(i) (X, ρ) is a complete metric space;
(ii) there exists c > 0 such that ρ(f(x), f(y)) ≤ cd(x, y), for all x, y ∈ X.

Then (X,
ρ→, d) is a Kasahara space with respect to f .

Example 2.3.2 (A.-D. Filip [34]). Let

X := C(Ω) := {x : Ω→ R | x is a continuous function on Ω},

where Ω ⊆ Rm is a bounded domain.
Let

ρ−→ be the convergence structure induced by ρ : C(Ω)× C(Ω)→ R+, where

ρ(x, y) := ‖x− y‖∞ := sup
t∈Ω

|x(t)− y(t)|, for all x, y ∈ C(Ω).

Let d : C(Ω)× C(Ω)→ R+ be the functional defined by

d(x, y) := ‖x− y‖L2(Ω) :=

(∫
Ω
|x(t)− y(t)|2dt

) 1
2

, for all x, y ∈ C(Ω).
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We consider the operator f : C(Ω)→ C(Ω), defined by

f(x)(t) :=

∫
Ω
K(t, s, x(s))ds

where K ∈ C(Ω× Ω× R).
We assume that there exists L ∈ C(Ω× Ω) such that

|K(t, s, u)−K(t, s, v)| ≤ L(t, s)|u− v|,

for all t, s ∈ Ω and u, v ∈ R.

Then the triple (X,
ρ→, d), i.e.,

(
C(Ω),

‖·‖∞−→, ‖·‖L2(Ω)

)
is a Kasahara space with respect to

the operator f .

Theorem 2.3.1 (A.-D. Filip [34]). Let X be a nonempty set and f : X → X be an operator.
Suppose that (X,→, d) is a Kasahara space with respect to f . We assume that:

(i) f : (X,→)→ (X,→) has closed graph;

(ii) f : (X, d)→ (X, d) is an α-contraction;

(iii) d(x, y) = d(y, x) = 0 ⇒ x = y.

Then

(1) Ff = Ffn = {x∗} for all n ∈ N∗ and d(x∗, x∗) = 0.

(2) fn(x)→ x∗ as n→∞, for all x ∈ X, i.e., f is a Picard operator.

(3) We have:

(3a) d(fn(x), x∗)
R→ 0 as n→∞, for all x ∈ X;

(3b) d(x∗, fn(x))
R→ 0, as n→∞, for all x ∈ X.

(4) If d is a quasimetric (i.e., d(x, y) = d(y, x) = 0⇔ x = y for all x, y ∈ X and d satisfies
the triangle inequality), then:

(4a) d(x, x∗) ≤ 1
1−αd(x, f(x)), for all x ∈ X;

(4b) d(x∗, x) ≤ 1
1−αd(f(x), x), for all x ∈ X;

(4c) d(fn(x), x∗) ≤ αn

1−αd(x, f(x)), for all x ∈ X and all n ∈ N;

(4d) d(x∗, fn(x)) ≤ αn

1−αd(f(x), x), for all x ∈ X and all n ∈ N;

(4e) if (zn)n∈N ⊂ X is such that d(zn, f(zn))
R→ 0 as n → ∞ then d(zn, x

∗)
R→ 0 as

n → ∞, i.e., the fixed point problem for the operator f is well-posed with respect
to d;
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(4f ) if (zn)n∈N ⊂ X is such that d(zn+1, f(zn))
R→ 0 as n→∞ then d(zn+1, f

n+1(z))
R→

0 as n → ∞, for all z ∈ X, i.e., the operator f has the limit shadowing property
with respect to d;

(4g) If g : X → X is an operator such that

d(f(x), g(x)) ≤ η, for all x ∈ X,

then
d(x∗, y∗) ≤ η

1− α
, for all y∗ ∈ Fg.

Theorem 2.3.2 (A.-D. Filip [34]). Let X be a nonempty set and f : X → X be an operator.
Suppose that (X,→, d) is a Kasahara space with respect to f . We assume that:

(i) f : (X,→)→ (X,→) has closed graph;

(ii) f : (X, d) → (X, d) is an α-graphic contraction, i.e., there exists α ∈ [0, 1[ such that
d(f(x), f2(x)) ≤ αd(x, f(x)), for all x ∈ X.

Then the following statements hold:

(1) Ff 6= ∅.

(2) fn(x) → f∞(x) ∈ Ff as n → ∞, for all x ∈ X, i.e., f : (X,→) → (X,→) is a weakly
Picard operator.

(3) d(x∗, x∗) = 0, for all x∗ ∈ Ff .

(4) if d satisfies the triangle inequality and d is continuous with respect to →, then

(4a) d(x, f∞(x)) ≤ 1
1−αd(x, f(x)), for all x ∈ X,

(4b) Let g : X → X be an operator. If there exists c > 0 such that

d(x, g∞(x)) ≤ c · d(x, g(x)), for all x ∈ X (2.3.1)

and for each x ∈ X, there exists η > 0 such that

max{d(g(x), f(x)), d(f(x), g(x))} ≤ η, (2.3.2)

then

Hd(Ff , Fg) ≤ max

{
1

1− α
, c

}
η,

where Hd stands for the Pompeiu-Hausdorff functional generated by d (see [51]).

In what follows, we study the existence and uniqueness for integral equations and boundary
value problems.

Theorem 2.3.3 (A.-D. Filip [34]). Let Ω ⊂ Rn be a bounded domain, K ∈ C(Ω×Ω×R) and
g ∈ C(Ω). We suppose that:
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(i) K(t, s, ·) : R→ R is increasing, for all t, s ∈ Ω.

(ii) there exists L ∈ C(Ω× Ω) such that

|K(t, s, u)−K(t, s, v)| ≤ L(t, s)|u− v|,

for all t, s ∈ Ω and u, v ∈ R.

(iii)

∫
Ω×Ω

L(t, s)2dsdt < 1.

Then the integral equation

x(t) =

∫
Ω
K(t, s, x(s))ds+ g(t), t ∈ Ω (2.3.3)

has a unique solution x∗ ∈ C(Ω).

We consider next the following boundary value problem
y′′(t) = f(t, y(t)), for all t ∈ [a, b]

a1y(a) + a2y(b) + a3y
′(a) + a4y

′(b) = 0

b1y(a) + b2y(b) + b3y
′(a) + b4y

′(b) = 0

(2.3.4)

where ai, bi ∈ R, i = 1, 4 and f : [a, b]× R→ R is a continuous function.
We consider also the following linear mappings:

(1) L : C2([a, b])→ C([a, b]), L(y) = y′′(t);

(2) l1 : C2([a, b])→ R, l1(y) = a1y(a) + a2y(b) + a3y
′(a) + a4y

′(b)

(3) l2 : C2([a, b])→ R, l2(y) = b1y(a) + b2y(b) + b3y
′(a) + b4y

′(b)

Then the boundary value problem (2.3.4) can be written as follows:

L(y) = f(·, y), l1(y) = 0, l2(y) = 0. (2.3.5)

We recall that the Green’s function associated to the boundary value problem (2.3.5) is
the mapping

G : [a, b]× [a, b]→ R; (t, s) 7→ G(t, s)

which satisfies the following conditions:

(i) G ∈ C([a, b]× [a, b]);

(ii) For any s ∈ [a, b], G(·, s) ∈ C2([a, s[∪]s, b]) and

∂

∂t
G(s+ 0, s)− ∂

∂t
G(s− 0, s) = − 1

p(s)
,

where p ∈ C([a, b]) and p(s) 6= 0 for any s ∈ [a, b];
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(iii) G(·, s) is a solution for L(y) = 0 on [a, b] \ {s} and satisfies the boundary conditions
l1(y) = l2(y) = 0.

We have the following result:

Theorem 2.3.4 (A.-D. Filip [34]). Let f : [a, b] × R → R be a continuous function and
consider the boundary value problem (2.3.5). We assume that:

(i) there exists Lf > 0 such that

|f(s, u)− f(s, v)| ≤ Lf |u− v|,

for all s ∈ [a, b] and u, v ∈ R;

(ii)

∫ b

a

∫ b

a
G(t, s)2dsdt < 1, where G is the Green’s function associated to the boundary

value problem (2.3.5).

If the homogeneous boundary value problem{
L(y) = 0

l1(y) = l2(y) = 0
(2.3.6)

admits only the trivial solution y ≡ 0, then the boundary value problem (2.3.5) has a unique
solution in C([a, b]).



Chapter 3

Multivalued generalized
contractions in Kasahara spaces

The aim of this chapter is to present some fixed point results for multivalued generalized
contractions in Kasahara spaces, generalized Kasahara spaces and large Kasahara spaces. We
give also several Maia type theorems in close connexion with the results given in the first
section of this chapter. The case of Kasahara spaces with respect to a multivalued operator
is also studied.

The references which were followed in order to obtain the fixed point results presented
in this chapter are: M. Berinde and V. Berinde [8]; A.-D. Filip [39], [31], [32], [33], [37];
S. Kasahara [65]; A. Petruşel and I.A. Rus, [102], [103]; I.A. Rus [112], [115]; I.A. Rus, A.
Petruşel and G. Petruşel [123].

3.1 Fixed point theorems in Kasahara spaces

In this section we give corresponding results to Nadler’s fixed point theorem, multivalued ϕ-
contractions, multivalued Caristi operators, multivalued (θ, L)-weak contractions, multivalued
Kannan and Reich operators which were given in complete metric spaces. We shall adapt these
results in order to hold in Kasahara spaces (X,→, d), where d : X ×X → R+ is a functional,
satisfying some properties.

We also present some fixed point theorems in generalized Kasahara spaces and large Kasa-
hara spaces, more precisely:

• fixed point theorems for multivalued generalized contractions in generalized Kasahara
spaces (X,→, d), where d : X ×X → Rm+ is a functional, satisfying some properties.

• fixed point theorems for multivalued Zamfirescu operators in large Kasahara spaces

(X,
d→, p), where d : X ×X → R+ is a complete metric on X and p : X ×X → R+ is a

w-distance on X.

Definition 3.1.1 (S. Kasahara [65]). Let (X,→, d) be a Kasahara space, where d : X ×X →

23
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R+ is a functional. Let x ∈ X. Then a set A ∈ P (X) is said to be d-closed if and only if

D(x,A) = 0⇒ x ∈ A

We define the set
Pd(X) := {A ∈ P (X) | A is d-closed }.

Concerning d-closed sets in Kasahara spaces, we have the following result.

Lemma 3.1.1 (Kasahara, [65]). Let (X,→, d) be a Kasahara space, where d : X ×X → R+

is a functional, satisfying the property d(x, x) = 0 for every x ∈ X. If A,B ∈ Pd(X) then
Hd(A,B) = 0 if and only if A = B.

In the following fixed point results, we consider the Kasahara space (X,→, d), where
d : X ×X → R+ is a functional satisfying the properties:

� d(x, x) = 0, for all x ∈ X;

� d(x, y) = 0⇒ x = y, for all x, y ∈ X.

The study of fixed point theorems for multivalued mappings has been initiated by Markin
[85] and Nadler [94]. The following result, usually referred as Nadler’s fixed point theorem,
extends Banach-Caccioppoli’s Contraction Principle from single-valued maps to set-valued
contractive maps.

Theorem 3.1.1 (S.B. Nadler Jr. [94]). Let (X, d) be a complete metric space and T : X →
Pb,cl(X) be a set-valued α-contraction, i.e., a mapping for which there exists a constant α ∈
]0, 1[ such that H(Tx, Ty) ≤ α · d(x, y), for all x, y ∈ X. Then T has at least one fixed point.

In the above result, Pb,cl(X) stands for the set of all bounded and closed subsets of X. In
addition, H is the Pompeiu-Hausdorff functional (see [8], [15]).

We remark also that the Nadler’s fixed point theorem is given in the context of metric
spaces. We adapt this result into the context of Kasahara spaces.

Lemma 3.1.2 (A.-D. Filip [32]). Let (X,→, d) be a Kasahara space, where d : X ×X → R+

is a functional satisfying d(x, x) = 0 and d(x, y) = 0 ⇒ x = y, for all x, y ∈ X. Let
A,B ∈ Pd(X) and a real number q > 1. Then for every a ∈ A, there exists b ∈ B such that

d(a, b) ≤ q ·Hd(A,B).

Theorem 3.1.2 (A.-D. Filip [32]). Let (X,→, d) be a Kasahara space, where d : X×X → R+

is a functional satisfying d(x, x) = 0 and d(x, y) = 0 ⇒ x = y, for all x, y ∈ X. Let
T : X → Pd(X) be a multivalued operator. We assume that:

i) Graph(T ) is closed in (X,→);

ii) T is a multivalued α-contraction, i.e.,

there exists α ∈ [0, 1[ such that Hd(Tx, Ty) ≤ α · d(x, y), for all x, y ∈ X.
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Then T has at least one fixed point in X.

Remark 3.1.1. Theorem 3.1.2 extends Nadler’s fixed point Theorem 3.1.1 in the sense that
the context of the complete metric space is replaced by the context of a Kasahara space, where
the functional d : X ×X → R+ is not necessarily a metric.

A. Petruşel and I.A. Rus introduced in [103] the concept of theory of a metric fixed point
theorem and used this theory for the case of multivalued contractions. By following [103], we
present next a fixed point theory for Theorem 3.1.2.

Theorem 3.1.3. Let (X,→, d) be a Kasahara space, where d : X ×X → R+ is a functional
satisfying d(x, x) = 0 and d(x, y) = 0 ⇒ x = y, for all x, y ∈ X. Let T : X → Pd(X) be a
multivalued operator. We assume that:

(i) Graph(T ) is closed in (X,→);

(ii) T is a multivalued α-contraction, i.e.,

there exists α ∈ [0, 1[ such that Hd(Tx, Ty) ≤ α · d(x, y), for all x, y ∈ X;

(iii) d satisfies the triangle inequality and it is continuous with respect to the second argument.

Then

(1) T is a multivalued weakly Picard operator and for every x∗ ∈ FT , x0 ∈ X and x1 ∈ Tx0

we have

d(x0, x
∗) ≤ 1

1− α
d(x0, x1) (3.1.1)

(2) Let S : X → Pd(X) be a multivalued α-contraction and η > 0 such that for each x ∈ X,
Hd(Sx, Tx) ≤ η. Then Hd(FS , FT ) ≤ η

1−α .

(3) Let Tn : X → Pd(X), n ∈ N be a sequence of multivalued α-contractions such that

Tnx
Hd−→ Tx as n→∞, uniformly with respect to x ∈ X. Then FTn

Hd−→ FT as n→∞.

(4) If in addition, Tx is a compact set in X for each x ∈ X, then we have

� (Ulam-Hyers stability of the inclusion x ∈ Tx)
Let ε > 0 and x ∈ X be such that D(x, Tx) ≤ ε. Then there exists x∗ ∈ FT such
that d(x, x∗) ≤ ε

1−α .

In addition, we have the following result:

Theorem 3.1.4. Let (X,→, d) be a Kasahara space, where d : X ×X → R+ is a functional
satisfying d(x, x) = 0 and d(x, y) = 0 ⇒ x = y, for all x, y ∈ X. Let T : X → Pd(X) be a
multivalued operator. We assume that

(i) Graph(T ) is closed in (X,→);
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(ii) T is a multivalued α-contraction, i.e.,

there exists α ∈ [0, 1[ such that Hd(Tx, Ty) ≤ α · d(x, y), for all x, y ∈ X;

(iii) (SF )T 6= ∅.

Then, the following assertions hold:

(1) FT = (SF )T = {x∗};

(2) FTn = (SF )Tn = {x∗} for each n ∈ N∗;

(3) Hd(T
nx, x∗)

R→ 0 as n→∞, for each x ∈ X;

(4) If d satisfies the triangle inequality, then

(4a) Let S : X → Pd(X) be a multivalued operator and η > 0 such that FS 6= ∅ and
Hd(Sx, Tx) ≤ η, for each x ∈ X. Then Hd(FS , FT ) ≤ η

1−α ;

(4b) Let Tn : X → Pd(X), n ∈ N be a sequence of multivalued operators such that
FTn 6= ∅ for each n ∈ N and Hd(Tnx, Tx) → 0 as n → ∞, uniformly with respect
to x ∈ X. Then Hd(FTn , FT )→ 0 as n→∞;

(5) If (xn)n∈N is a sequence in X such that D(xn, Txn)→ 0 as n→∞, then d(xn, x
∗)→ 0

as n→∞;

(6) If (xn)n∈N is a sequence in X such that Hd(xn, Txn)→ 0 as n→∞, then d(xn, x
∗)→ 0

as n→∞;

(7) Assuming that d satisfies the triangle inequality, the limit shadowing property for T
holds, i.e. if (yn)n∈N is a sequence in X such that D(Tyn, yn+1) → 0 as n → ∞,
then there exists a sequence (xn)n∈N ⊂ X of successive approximations for T , such that
d(xn, yn+1)→ 0 as n→∞.

Remark 3.1.2. Theorems 3.1.3 and 3.1.4 extend Theorems 3.1 and 3.2 given by A. Petruşel
and I.A. Rus in [103] in the sense that Kasahara spaces are considered instead of complete
metric spaces.

• We present next a local fixed point results for multivalued Zamfirescu operators in
Kasahara spaces, by extending the results given for single-valued Zamfirescu operators
in A.-D. Filip [36].

Let us recall first the notion of multivalued Zamfirescu operator.

Definition 3.1.2 (A.-D. Filip, [37]). Let (X,→, d) be a Kasahara space. The mapping T :
X → P (X) is called multivalued Zamfirescu operator if there exist α, β, γ ∈ R+ with α < 1,
β < 1

2 and γ < 1
2 such that for each x, y ∈ X and u ∈ Tx, there exists v ∈ Ty such that at

least one of the following conditions is true:
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(1m) d(u, v) ≤ αd(x, y);

(2m) d(u, v) ≤ β[d(x, u) + d(y, v)];

(3m) d(u, v) ≤ γ[d(x, v) + d(y, u)].

In our following results, we consider the Kasahara space (X,→, d) and assume that d :
X ×X → R+ is a premetric, i.e. the functional d satisfies the following conditions:

(d1) d(x, x) = 0, for all x ∈ X;

(d2) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.

We assume in addition that

(d3) d is continuous with respect to the second argument.

Remark 3.1.3. Under the above assumptions on (X,→, d), the right closed ball

B̃d(x0, r) :=
{
x ∈ X | d(x0, x) ≤ r

}
where x0 ∈ X and r ∈ R+, is a closed set with respect to →, in the sense that for any sequence
(zn)n∈N ⊂ B̃d(x0, r), with zn → z ∈ X as n→∞, we get that z ∈ B̃d(x0, r).

We give next our local fixed point results in Kasahara spaces.

Theorem 3.1.5 (A.-D. Filip, [37]). Let (X,→, d) be a Kasahara space and T : B̃d(x0, r) →
P (X) be a multivalued Zamfirescu operator. We assume that:

(i) T has closed graph with respect to →;

(ii)
d(x0, z) ≤ (1− δ)r; (3.1.2)

where z ∈ Tx0 and δ := max
{
α, β

1−β ,
γ

1−γ
}

;

(iii) d : X×X → R+ is a premetric, which is continuous with respect to the second argument.

Then the following statements hold:

(1) T has at least one fixed point in B̃d(x0, r).

(2) there exists a sequence (xn)n∈N ⊂ B̃d(x0, r) such that

(2.a) xn+1 ∈ Txn, for all n ∈ N;

(2.b) xn → x∗ ∈ FT as n→ +∞;

(2.c) we have
d(xn, x

∗) ≤ δnr, for all n ∈ N, (3.1.3)

where x∗ ∈ FT and (xn)n∈N is the sequence of successive approximations for T
starting from (x0, x1) ∈ Graph(T ).
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• The following fixed point results are given for multivalued operators in the context of
generalized Kasahara spaces (X,→, d), where d : X ×X → Rm+ is a functional.

We consider the following set

M∆
m,m(R+) :=

{
Q =


q11 q12 . . . q1m

0 q22 . . . q2m
...

...
...

0 0 . . . qmm

 ∈Mm,m(R+)

∣∣∣∣ max
i=1,m

qii <
1

2

}
.

Then the following lemma holds.

Lemma 3.1.3 (A.-D. Filip, [37]). If Q ∈M∆
m,m(R+) then

(1) the matrix Q is convergent to zero;

(2) the matrix (Im −Q)−1Q is convergent to zero.

We give next our local and global fixed point results for multivalued operators in general-
ized Kasahara spaces.

Theorem 3.1.6 (A.-D. Filip, [37]). Let (X,→, d) be a generalized Kasahara space and T :
B̃d(x0, r)→ P (X) be a multivalued operator. We assume that:

(i) T has closed graph with respect to →;

(ii) one of the following conditions holds:

(ii1) there exists a matrix A ∈Mm,m(R+) convergent to zero such that for all x, y ∈ X
and u ∈ Tx there exists v ∈ Ty such that

d(u, v) ≤ Ad(x, y);

(ii2) there exists a matrix B ∈ M∆
m,m(R+) such that for all x, y ∈ X and u ∈ Tx there

exists v ∈ Ty such that

d(u, v) ≤ B[d(x, u) + d(y, v)];

(ii3) there exists a matrix C ∈ M∆
m,m(R+) such that for all x, y ∈ X and u ∈ Tx there

exists v ∈ Ty such that

d(u, v) ≤ C[d(x, v) + d(y, u)];

(iii) if u ∈ Rm+ is such that u(Im−M)−1 ≤ (Im−M)−1r then u ≤ r, for all M ∈Mm,m(R+);

(iv)
d(x0, z)(Im −W )−1 ≤ r (3.1.4)

where z ∈ Tx0 and W := max
{
A, (Im −B)−1B, (Im − C)−1C

}
∈Mm,m(R+);
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(v) d : X×X → Rm+ is a premetric, which is continuous with respect to the second argument
on X.

Then the following statements hold:

(1) T has at least one fixed point in B̃d(x0, r).

(2) there exists a sequence (xn)n∈N ⊂ B̃d(x0, r) such that

(2.a) xn+1 ∈ Txn, for all n ∈ N;

(2.b) xn → x∗ ∈ FT as n→ +∞;

(2.c) we have
d(xn, x

∗) ≤Wn(Im −W )−1d(x0, x1), for all n ∈ N, (3.1.5)

where x∗ ∈ FT and (xn)n∈N is the sequence of successive approximations for T
starting from (x0, x1) ∈ Graph(T ).

Remark 3.1.4. Any matrix M =

(
a 0
0 b

)
, with a, b ∈ R+ and max{a, b} < 1, is convergent

towards zero and satisfies the assumption (iii) of Theorem 3.1.6.

Remark 3.1.5. Theorem 3.1.6 holds even if the assumption (ii1) is replaced by the following
one:

(ii′1) there exists a matrix A ∈ Mm,m(R+) convergent to zero and a matrix B ∈ Mm,m(R+)
such that for all x, y ∈ X and u ∈ Tx there exists v ∈ Ty such that

d(u, v) ≤ Ad(x, y) +Bd(y, u).

The corresponding global result for Theorem 3.1.6 is the following:

Corollary 3.1.1 (A.-D. Filip, [37]). Let (X,→, d) be a generalized Kasahara space and T :
X → P (X) be a multivalued operator. We assume that:

(i) T has closed graph with respect to →;

(ii) one of the conditions (ii1), (ii2), (ii3) of Theorem 3.1.6 holds;

(iii) d : X×X → Rm+ is a premetric, which is continuous with respect to the second argument.

Then the following statements hold:

(1) T has at least one fixed point in X.

(2) there exists a sequence (xn)n∈N ⊂ X such that (2.a), (2.b) and (2.c) of Theorem 3.1.6
hold.

As an application of the previous results, we present a fixed point theorem concerning the
existence of solutions for semi-linear inclusion systems.
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Theorem 3.1.7 (A.-D. Filip, [37]). Let ϕ,ψ : [0, 1]2 →]0, 1
2 ] be two functions and T1, T2 :

[0, 1]2 → P ([0, 1]) be two multivalued operators defined as follows:

T1(x1, x2) = [ϕ(x1, x2), 1
2 + ϕ(x1, x2)] and

T2(x1, x2) = [ψ(x1, x2), 1
2 + ψ(x1, x2)].

We assume that for each (x1, x2), (y1, y2) ∈ [0, 1]2 and each u1 ∈ T1(x1, x2) and u2 ∈
T2(x1, x2), there exist v1 ∈ T1(y1, y2) and v2 ∈ T2(y1, y2) such that one of the following
couples of conditions holds:

(I) for all a, b, c, d ∈ R+ with |a+ d±
√

(a− d)2 + 4bc| < 2,

|u1 − v1| ≤ a|x1 − y1|+ b|x2 − y2|,
|u2 − v2| ≤ c|x1 − y1|+ d|x2 − y2|,

(II) for all a, b, c ∈ R+ with a, c < 1
2 ,

|u1 − v1| ≤ a
(
|x1 − u1|+ |y1 − v1|

)
+ b
(
|x2 − u2|+ |y2 − v2|

)
,

|u2 − v2| ≤ c
(
|x2 − u2|+ |y2 − v2|

)
,

(III) for all a, b, c ∈ R+ with a, c < 1
2 ,

|u1 − v1| ≤ a
(
|x1 − v1|+ |y1 − u1|

)
+ b
(
|x2 − v2|+ |y2 − u2|

)
,

|u2 − v2| ≤ c
(
|x2 − v2|+ |y2 − u2|

)
.

Then the system {
x1 ∈ T1(x1, x2)

x2 ∈ T2(x1, x2),

has at least one solution in [0, 1]2.

• We give next some fixed point results for multivalued Zamfirescu operators in large
Kasahara spaces in the sense of Definition 2.1.8.

Theorem 3.1.8 (A.-D. Filip, [37]). Let (X,
d→, p) be a large Kasahara space in the sense of

Definition 2.1.8, where d : X ×X → R+ is a complete metric on X and p : X ×X → R+ is a
w-distance on X. Let x0 ∈ X, r > 0 and T : B̃p(x0, r) → P (X) be a multivalued Zamfirescu
operator w.r.t. p. We assume that:

(i) T has closed graph with respect to
d→;

(ii) p(x0, z) < (1− δ)r, where z ∈ Tx0 and δ := max
{
α, β

1−β ,
γ

1−γ
}

;

(iii) p(x, x) = 0, for all x ∈ X.

Then the following statements hold:
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(1) T has at least one fixed point in B̃p(x0, r).

(2) there exists a sequence (xn)n∈N ⊂ B̃p(x0, r) such that

(2.a) xn+1 ∈ Txn, for all n ∈ N;

(2.b) xn → x∗ ∈ FT as n→ +∞;

(2.c) the following estimation holds

p(xn, x
∗) ≤ δnr, for all n ∈ N, (3.1.6)

where x∗ ∈ FT and (xn)n∈N is the sequence of successive approximations for T
starting from (x0, x1) ∈ Graph(T ).

The global version of Theorem 3.1.8 is the following

Corollary 3.1.2 (A.-D. Filip, [37]). Let (X,
d→, p) be a large Kasahara space in the sense of

Definition 2.1.8, where d : X ×X → R+ is a complete metric on X and p : X ×X → R+ is
a w-distance on X. Let T : X → P (X) be a multivalued Zamfirescu operator w.r.t. p. We

assume that T has closed graph with respect to
d→ and p(x, x) = 0, for all x ∈ X. Then the

following statements hold:

(1) T has at least one fixed point in X;

(2) the sequence (xn)n∈N ⊂ X of successive approximations for T starting from (x0, x1) ∈
Graph(T ) converges to an element x∗ ∈ FT as n→∞;

(3) the following estimation holds

p(xn, x
∗) ≤ δn

1− δ
p(x0, x1), for all n ∈ N,

where δ := max
{
α, β

1−β ,
γ

1−γ
}

, x∗ ∈ FT and (xn)n∈N is the sequence of successive ap-
proximations for T starting from (x0, x1) ∈ Graph(T ).

We give next a data dependence result for multivalued Zamfirescu operators.

Theorem 3.1.9 (A.-D. Filip, [37]). Let (X,
d→, p) be a large Kasahara space in the sense of

Definition 2.1.8, where d : X ×X → R+ is a complete metric on X and p : X ×X → R+ is a
w-distance on X with p(x, x) = 0, for all x ∈ X. Let T1, T2 : X → P (X) be two multivalued

Zamfirescu operators w.r.t. p, having closed graph w.r.t
d→. Then

(i) T1 and T2 have at least one fixed point in X;

(ii) If we assume that there exists η > 0 such that for all x ∈ X and u ∈ T1x, there exists
v ∈ T2x such that p(u, v) ≤ η, then for all u∗ ∈ FT1, there exists v∗ ∈ FT2 such that

p(u∗, v∗) ≤ η

1− δ2
, where δ2 = max

{
α2,

β2

1− β2
,

γ2

1− γ2

}
(3.1.7)
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respectively, if we assume that there exists η > 0 such that for all x ∈ X and v ∈ T2x,
there exists u ∈ T1x such that p(v, u) ≤ η, then for all v∗ ∈ FT2, there exists u∗ ∈ FT1
such that

p(v∗, u∗) ≤ η

1− δ1
, where δ1 = max

{
α1,

β1

1− β1
,

γ1

1− γ1

}
. (3.1.8)

3.2 Maia type fixed point theorems

The aim of this section is to present several Maia type theorems for multivalued generalized
contractions in close connexion with the results given in Kasahara spaces.

First, we recall the multivalued version of Maia’s fixed point theorem 2.2.1.

Theorem 3.2.1 (A. Petruşel and I.A. Rus, [102]). Let X be a nonempty set, d and ρ be two
metrics on X and T : X → P (X) be a multivalued operator. We suppose that:

(i) (X, ρ) is a complete metric space;

(ii) there exists c > 0 such that ρ(x, y) ≤ c · d(x, y), for each x, y ∈ X;

(iii) T : (X, ρ) → (P (X), Hρ) has closed graph (here Hρ stands for the Pompeiu-Hausdorff
functional generated by ρ (see [51]));

(iv) there exists α ∈ [0, 1[ such that Hd(Tx, Ty) ≤ αd(x, y), for each x, y ∈ X.

Then we have:

(a) FT 6= ∅;

(b) for each x ∈ X and each y ∈ Tx there exists a sequence (xn)n∈N such that:

(1) x0 = x, x1 = y;

(2) xn+1 ∈ Txn, for each n ∈ N;

(3) xn
ρ→ x∗ ∈ Tx∗, as n→∞.

We mention here another two local fixed point results of Maia type.

Theorem 3.2.2 (A.-D. Filip, [31]). Let X be a nonempty set, ρ and d be two metrics on X,
x0 ∈ X, r > 0 and T : B̃d(x0, r)→ P (X) be a multivalued operator. We suppose that:

(i) (X, ρ) is a complete metric space;

(ii) there exists c > 0 such that ρ(x, y) ≤ c · d(x, y), for each x, y ∈ B̃d(x0, r);

(iii) T : (B̃d(x0, r), ρ) → (P (X), Hρ) has closed graph (here Hρ stands for the Pompeiu-
Hausdorff functional generated by ρ (see [51]));
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(iv) there exists L ≥ 0 such that for all x ∈ B̃d(x0, r), there exists y ∈ Ixb,d such that

Hd(Tx, Ty) ≤ Λ(d(x, y)) · d(x, y) + L ·Dd(y, Tx)

where

� Ixb,d :=
{
y ∈ Tx | b · d(x, y) ≤ Dd(x, Tx)

}
, where b ∈]0, 1[ and Dd(x, Tx) =

inf
z∈Tx

d(x, z).

� Λ : R+ → [0, 1[ is a function defined by Λ(t) = b·α(t), for all t ∈ R+, where b ∈]0, 1[
is the same number used in the definition of the set Ixb,d and α : R+ → [0, 1[ is a
function with the property lim sup

s→t+
α(s) < 1, for all t ∈ R+.

(v) Dd(x0, Tx0) < b(1− θ)r, where θ ∈ [0, 1[ satisfies Λ(t) < bθ, for all t ∈ R+.

Then we have:

(a) FT 6= ∅;

(b) there exists a sequence (xn)n∈N in B̃d(x0, r) such that:

(b1) xn+1 ∈ Txn, for all n ∈ N;

(b2) xn
ρ→ x∗ ∈ FT , as n→∞;

(b3) ρ(xn, x
∗) ≤ c · θn · r, for each n ∈ N.

Remark 3.2.1. In Theorem 3.2.2, by taking n = 0 in the conclusion (b3), it follows that
x∗ ∈ B̃ρ(x0, cr).

We consider now the case of generalized metric spaces (X, d), where d : X × X → Rm+ .
The following Maia type theorem holds.

Theorem 3.2.3 (A.-D. Filip and A. Petruşel [39]). Let X be a nonempty set and d, ρ :
X ×X → Rm+ be two generalized metrics on X. Let x0 ∈ X, r := (r1, r2, . . . , rm) ∈ Rm+ and

let T : B̃d(x0, r)→ P (X) be a multivalued operator. Suppose that:

(i) (X, ρ) is a complete generalized metric space;

(ii) there exists C ∈Mm,m(R+) such that ρ(x, y) ≤ C · d(x, y), for all x, y ∈ X;

(iii) T : (B̃d(x0, r), ρ) → (P (X), Hρ) has closed graph (here Hρ stands for the Pompeiu-
Hausdorff functional generated by ρ (see [51]));

(iv) there exist A,B ∈Mm,m(R+) such that A is a matrix that converges to zero and for all
x, y ∈ B̃d(x0, r) and u ∈ Tx there exists v ∈ Ty such that

d(u, v) ≤ Ad(x, y) +Bd(y, u);

(v) if u ∈ Rm+ is such that u(Im −A)−1 ≤ (Im −A)−1r, then u ≤ r;
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(vi) d(x0, x1)(Im −A)−1 ≤ r.

Then FT 6= ∅.

Remark 3.2.2. Notice that in Theorem 3.2.3, the fixed point x∗ ∈ B̃ρ(x0, Cr).
Indeed, we have proved that the sequence of successive approximations for T starting from

x0 ∈ X is (xn)n∈N with xn ∈ B̃d(x0, r), for all n ∈ N and there exists x∗ ∈ X such that

xn
ρ→ x∗ as n→∞.
By (ii), there exists C ∈Mm,m(R+) such that

ρ(x0, xn) ≤ C · d(x0, xn) ≤ Cr, for all n ∈ N. (3.2.1)

Hence xn ∈ B̃ρ(x0, Cr), for all n ∈ N.
By letting n→∞ in (3.2.1), we get that x∗ ∈ B̃ρ(x0, Cr).

Remark 3.2.3. Some other Maia type fixed point results can be obtained in the case when d
is not necessarily a metric.

Let X be a nonempty set and ρ : X ×X → R+ be a complete metric on X. Let (xn)n∈N
be a sequence in X and let x ∈ X. We consider the convergence structure

ρ→ induced by ρ on
X and defined by

xn
ρ→ x ⇔ ρ(xn, x)→ 0, as n→∞.

We have the following Maia type results:

Corollary 3.2.1 (A.-D. Filip [32]). Let X be a nonempty set and ρ : X × X → R+ be a
complete metric on X. Let d : X × X → R+ be a functional with the property that for all
x, y ∈ X, d(x, y) = 0 ⇒ x = y. Let T : X → Pd(X) be a multivalued operator. We assume
that:

i) there exists α ∈ [0, 1[ such that Hd(Tx, Ty) ≤ α · d(x, y), for all x, y ∈ X;

ii) Graph(T ) is closed in (X,
ρ→);

iii) there exists c > 0 such that ρ(x, y) ≤ c · d(x, y).

Then the following statements hold:

1) FT 6= ∅;

2) there exists θ ∈ [0, 1[ such that

ρ(xn, x
∗) ≤ c θn

1− θ
d(x0, x1), for all n ∈ N,

where x∗ ∈ FT and (xn)n∈N is the sequence of successive approximations for T starting
from (x0, x1) ∈ Graph(T ).

Corollary 3.2.2 (A.-D. Filip, [33]). Let X be a nonempty set and ρ : X × X → Rm+ be a
complete generalized metric on X. Let d : X ×X → Rm+ be a functional and T : X → P (X)
be a multivalued operator. We assume that:
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i) there exists A ∈ Mm,m(R+) and for all x, y ∈ X and u ∈ Tx, there exists v ∈ Ty such
that

d(u, v) ≤ Ad(x, y);

ii) Graph(T ) is closed in X ×X;

iii) there exists c > 0 such that ρ(x, y) ≤ c · d(x, y).

Then the following statements hold:

1) if A converges to zero, then FT 6= ∅. If, in addition, (Im − A) is non-singular, (Im −
A)−1 ∈Mm×m(R+) and

max{d(u, v) | u ∈ Tx, v ∈ Ty} ≤ Ad(x, y), for all x, y ∈ X

then T has a unique fixed point in X.

2) ρ(xn, x
∗) ≤ c ·An(Im −A)−1d(x0, x1), for all n ∈ N, where x∗ ∈ FT and (xn)n∈N is the

sequence of successive approximations for T starting from (x0, x1) ∈ Graph(T ).

3.3 Fixed point theorems in Kasahara spaces with respect to
an operator

We introduce in this section a new notion: Kasahara space with respect to a multivalued
operator. Two fixed point results for multivalued α-contractions defined on Kasahara spaces
with respect to a multivalued operator are presented.

Definition 3.3.1. Let (X,→) be an L-space, d : X ×X → R+ be a functional and T : X →
P (X) be a multivalued operator. The triple (X,→, d) is called Kasahara space with respect to
the operator T if and only if for any sequence (xn)n∈N ⊂ X satisfying:

(i) xn+1 ∈ Txn, for all n ∈ N;

(ii)
∑
n∈N

Hd(Txn, Txn+1) <∞

we have that (xn)n∈N is convergent in (X,→).

Example 3.3.1. Let X be a nonempty set, T : X → Pd(X) be a multivalued operator and
d, ρ : X ×X → R+ be two functionals. We suppose that:

(i) (X, ρ) is a complete metric space;

(ii) for all x ∈ X and y ∈ Tx, there exist z ∈ Ty and c > 0 such that Hρ(Tx, Ty) ≤ c·d(y, z);

(iii) d(x, x) = 0, for all x ∈ X;
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(iv) d(x, y) = 0⇒ x = y, for all x, y ∈ X.

Then (X,→, d) is a Kasahara space with respect to the operator T .

Theorem 3.3.1. Let (X,→, d) be a Kasahara space with respect to a multivalued operator
T : X → Pd(X), where d : X ×X → R+ is a functional satisfying d(x, x) = 0 and d(x, y) =
0⇒ x = y, for all x, y ∈ X. We assume that:

(i) Graph(T ) is closed with respect to →;

(ii) T is a multivalued α-contraction with respect to d.

Then we have:

(1) FT 6= ∅;

(2) for each x ∈ X and each y ∈ Tx, there exists a sequence (xn)n∈N ⊂ X such that

(2a) x0 = x, x1 = y;

(2b) xn+1 ∈ Txn, for each n ∈ N;

(2c) xn → x∗ ∈ FT as n→∞.

Theorem 3.3.2. Let (X,→, d) be a Kasahara space with respect to a multivalued operator
T : X → Pd(X), where d : X ×X → R+ is a functional satisfying d(x, x) = 0, for all x ∈ X.
We assume that:

(i) Graph(T ) is closed with respect to →;

(ii) T is a multivalued α-contraction with respect to d;

(iii) (SF )T 6= ∅;

(iv) d(x, y) = 0⇒ x = y, for all x, y ∈ X.

Then we have:

(1) FT = (SF )T = {x∗};

(2) FTn = (SF )Tn = {x∗};

(3) Hd(T
nx, x∗) ≤ αnd(x, x∗), for each n ∈ N and each x ∈ X;

(4) if d satisfies the triangle inequality, then

(4a) d(x, x∗) ≤ 1
1−αHd(x, Tx) for each x ∈ X;

(4b) the fixed point problem for T is well-posed with respect to D.
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23(1978), 76-79.

[2] G. Allaire, Numerical Linear Algebra, Springer, New York, 2008.

[3] V.G. Angelov, On the nonlinear contractions in Fréchet L-spaces, Mathematica,
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[90] A.S. Mureşan, Some fixed point theorems of Maia type, Sem. on Fixed Point Theory,
Preprint 3(1988), Babeş-Bolyai Univ. Cluj-Napoca, 35-42.
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[92] A.S. Mureşan, Fixed point theorems of Maia type for expansion mappings, Studia Univ.
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