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Abbreviations 
 
 
 
 
 
 
CCD    – (instrumentation) Charge Coupled Device; 
Celestial object  – a category that contains acronyms for natural objects in space; 
Cis-Neptunian object  – any astronomical body found within the orbit of Neptune; 
Cubewano   – is a Kuiper belt object (KBO) that orbits beyond Neptune; 
Detached object  – are a dynamical class of bodies in the outer Solar System beyond 

    the orbit of Neptune; 
Kuiper belt   – is a region of the Solar System beyond the planets extending from 

   the orbit of Neptune (at 30 AU) to approximately 55 AU from the Sun; 
KBO    – (celestial object) Kuiper Belt object; 
MPC    – (publication) Minor Planets and Comets; 
RTNO    – Resonant trans-Neptunian object; 
SDO    – (celestial object) scattered disc object; 
TNO    – (celestial object) Trans-Neptunian Object; 
Trans-Neptunian Object –a celestial object in the Solar System that orbits the Sun at a greater 

   distance on average than Neptune; 
Neptune trojans  – a celestial object which is in the same orbit as the planet Neptune ; 
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Chapter 1 
 
Introduction 
 

In 1987, astronomer David Jewitt, then at MIT, became increasingly puzzled by ”the 
apparent emptiness of the outer Solar System.” He encouraged then-graduate student Jane Luu to 
aid him in his endeavour to locate another object beyond Pluto’s orbit, because, as he told her, ”If 
we don’t, nobody will.” Using telescopes at the Kitt Peak National Observatory in Arizona and 
the Cerro Tololo Inter-American Observatory in Chile, Jewitt and Luu conducted their search in 
much the same way as Clyde Tombaugh and Charles Kowal had, with a blink comparator. 
Initially, examination of each pair of plates took about eight hours, but the process was speeded 
up with the arrival of electronic Charge-coupled devices or CCDs, which, though their field of 
view was narrower, were not only more efficient at collecting light (they retained 90 percent of 
the light that hit them, rather than the ten percent achieved by photographs) but allowed the 
blinking process to be done virtually, on a computer screen. Today, CCDs form the basis for all 
astronomical detectors. In 1988, Jewitt moved to the Institute of Astronomy at the University of 
Hawaii. He was later joined by Jane Luu to work at the University of Hawaiis 2.24 m telescope at 
Mauna Kea. Eventually, the field of view for CCDs had increased to 1024 by 1024 pixels, which 
allowed searches to be conducted far more rapidly. Finally, after five years of searching, on 
August 30, 1992, Jewitt and Luu announced the ”Discovery of the candidate Kuiper belt object” 
(15760) 1992 QB1;[29]. Six months later, they discovered a second object in the region, 1993 
FW. 

Astronomers sometimes use alternative name Edgeworth-Kuiper belt to credit Edgeworth, 
and KBOs are occasionally referred to as EKOs. However, Brian Marsden claims neither deserve 
true credit; ”Neither Edgeworth or Kuiper wrote about anything remotely like what we are now 
seeing, but Fred Whipple did.” Conversely, David Jewitt comments that, ”If anything . . . 
ernandez most nearly deserves the credit for predicting  the Kuiper Belt.” The term trans-
Neptunian object (TNO) is recommended for objects in the belt by several scientific groups 
because the term is less controversial than all others it is not a synonym though, as TNOs include 
all objects orbiting the Sun at the outer edge of the solar system, not just those in the Kuiper belt. 
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Chapter 2 
 
Astrophysical Aspects of  
Edgeworth-Kuiper Belt Objects 
 
 
 

Since the discovery of Pluto, many have speculated that it might not be alone. The region 
now called the Kuiper belt had been hypothesized in various forms for decades. It was only in 
1992 that the first direct evidence for its existence was found. The number and variety of prior 
speculations on the nature of the Kuiper belt have led to continued uncertainty as to who deserves 
credit for first proposing it.  

The first astronomer to suggest the existence of a Trans-Neptunian population was 
Frederick C. Leonard. In 1930, soon after Pluto’s discovery, he pondered whether it was ”not 
likely that in Pluto there has come to light the first of a series of ultra-Neptunian bodies, the 
remaining members of which still await discovery but which are destined eventually to be 
detected”. 
 
 Largest KBOs 

 
Since the year 2000, a number of KBOs with diameters of between 500 and 1200 km 

(about half that of Pluto) have been discovered. 50000 Quaoar, a classical KBO discovered in 
2002, is over 1200 km across. (136472) 2005 FY9 (nicknamed ”Easterbunny”) and (136108) 
2003 EL61 nicknamed ”Santa”), both announced on 29 July 2005, are larger still. Other objects, 
such as 28978 Ixion (discovered in 2001) and 20000 Varuna (discovered in 2000) measure 
roughly 500 km across.  
 
Dwarf planet Eris 

Eris (pronounced is the largest known dwarf planet in the Solar System and the 
ninthlargest body known to orbit the Sun directly. It is approximately 2,500 kilometres in 
diameter and 27% more massive than Pluto. 

Eris was first spotted in January 2005 by a Palomar Observatory-based team led by Mike 
Brown, and its identity verified later that year. It is a trans-Neptunian object (TNO) native to a 
region of space beyond the Kuiper belt known as the scattered disc. Eris has one moon, ysnomia; 
recent observations have found no evidence of further satellites. The current distance from the 
Sun is 96.7 AU, roughly three times that of Pluto. With the exception of some comets the pair are 
the most distant known natural objects in the Solar System. 
 
Dwarf planet Pluto 

The discovery of these large KBOs in similar orbits to Pluto led many to conclude that, 
bar its elative size, Pluto was not particularly different from other members of the Kuiper belt. 
Not only did these objects approach Pluto in size, but many also possessed satellites, and were of 
similar composition (methane and carbon monoxide have been found both on Pluto and on the 
largest KBOs. Ceres was considered a planet before the discovery of its fellow asteroids, and, 
based on this precedent, many astronomers concluded that Pluto should also be reclassified. The 
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issue was brought to a head by the discovery of Eris, an object in the scattered disc far beyond the 
Kuiper belt, that is now known to be 27 percent more massive than Pluto. In response, the 
International Astronomical Union (IAU), was forced to define a planet for the first time, and in so 
doing included in their definition that a planet must have ”cleared the neighbourhood around its 
orbit.” As Pluto shared its orbit with so many KBOs, it was deemed not to have cleared its orbit, 
and was thus reclassified from a planet to a member of the Kuiper belt. 
 
Dwarf planet Makemake 

(136472) Makemake, is the third-largest known dwarf planet in the Solar System and one 
of the two largest Kuiper belt objects (KBO) in the classical KBO population. Its diameter is 
roughly three-quarters that of Pluto. Makemake has no known satellites, which makes it unique 
among the largest KBOs. Its extremely low average temperature (about 30 K (−243.2◦C)) means 
its surface is covered with methane, ethane, and possibly nitrogen ices. 
 
Dwarf planet Haumea 

(136108) Haumea, is a dwarf planet in the Kuiper belt. Its mass is one-third the mass of 
Pluto. It was discovered in 2004 by a team headed by Mike Brown of Caltech at the Palomar 
Observatory in the United States, and in 2005 by a team headed by J. L. Ortiz at the Sierra 
Nevada Observatory in Spain, though the latter claim has been contested. On September 17, 
2008, it was accepted as a dwarf planet by the International Astronomical Union (IAU) and 
named after Haumea, the Hawaiian goddess of childbirth. 
 
Sedna 

0377 Sedna is a trans-Neptunian object and a likely dwarf planet discovered by Michael 
Brown (Caltech), Chad Trujillo (Gemini Observatory) and David Rabinowitz (Yale University) 
on November 14, 2003. It is currently 88 AU from the Sun, about three times as distant as 
Neptune. For most of its orbit Sedna is farther from the Sun than any other known dwarf planet 
candidate. 

What came to be known as Sedna was discovered during a survey conducted with the 
Samuel Oschin telescope at Palomar Observatory near San Diego, California (USA) using Yale’s 
160 megapixel Palomar Quest camera and was observed within days on telescopes from Chile, 
Spain, and the USA (Arizona, and Hawaii). NASA’s orbiting Spitzer Space Telescope was later 
pointed toward the object, putting an upper-bound on its diameter at roughly three-quarters that 
of Pluto (less than 1,600 km). 
 
Satellites of KBOs 

Of the four largest TNOs, three (Eris, Pluto, and 2003 EL61) possess satellites, and two 
have more than one. A higher percentage of the largest KBOs possess satellites than the smaller 
objects in the Kuiper belt, suggesting that a different formation mechanism was responsible. 
There are also a high number of binaries (two objects close enough in mass to be orbiting ”each 
other”) in the Kuiper belt. The most notable example is the Pluto-Charon binary, but it is 
estimated that over 1 percent of KBOs (a high percentage) exist in binaries. 

Pluto has three known moons. The largest, Charon, is proportionally larger, compared 
to its primary, than any other satellite of a known planet or dwarf planet in the solar system. The 
other two moons, Nix and Hydra, are much smaller. 
 
Characteristics 
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The Plutonian system is highly compact. The three known satellites orbit within the inner 
3% of the region where prograde orbits would be stable. 

Pluto and Charon have been called a double planet because Charon is large compared 
to Pluto (half its diameter and an eighth its mass) than any other moon is to a planet; indeed 
Charon is massive enough that, despite their proximity, Pluto orbits the system’s barycenter at a 
point outside its surface.[3] Charon and Pluto are also tidally locked, so that they always present 
the same face toward each other. 

Following Buie and Grundy’s recent re-calculations taking into account older images, the 
orbits of the moons are confirmed to be circular and coplanar, with inclinations differing less than 
0.4◦ and eccentricities less than 0.005. The inclinations are roughly 96◦ to the ecliptic (so 
technically the moons’ movements are retrograde). The diagram on the right shows the view from 
the axis of the moons’ orbits (declination 0◦, right ascension 133◦), aligned with the HST diagram 
above it. As seen from Earth, these circular orbits appear foreshortened into ellipses depending 
on Pluto’s position. 
 
Resonances and formation 

It is suspected that the Plutonian satellite system was created by a massive collision, 
similar to the ”Big Whack” believed to have created the Earth’s moon. In both cases it may be 
that the high angular momenta of the moons can only be explained by such a scenario. The nearly 
circular orbits of the smaller moons suggests that they were also formed in this collision, rather 
than being captured Kuiper Belt objects. This and their near orbital resonances with Charon 
suggest that they formed even closer to Pluto than they are at present, and that they migrated 
outward as Charon achieved its current orbit. If Hydra and Nix turn out to be tidally locked, as 
Charon is, that will settle the issue, as tidal forces are insufficient to damp their rotations in their 
present orbits. Both are a Lunar grey like Charon, which is consistent with a common origin. 
Their difference in color from Pluto, one of the reddest bodies in the Solar system due to the 
effects of sunlight on the nitrogen and methane ices of its surface, may be due to a loss of such 
volatiles during the impact or subsequent coalescence, leaving the surfaces of the moons 
dominated by water ice. Such an impact would be expected to create additional debris (more 
moons), but these must be relatively small to have avoided detection by Hubble. It is possible that 
there are also undiscovered irregular satellites, which are captured Kuiper Belt objects. 
 
Origins 

The precise origins of the Kuiper belt and its complex structure are still unclear, and 
astronomers are awaiting the completion of the Pan-STARRS survey telescope, which should 
reveal many currently unknown KBOs, to determine more about this. 

The Kuiper belt is believed to consist of planetesimals; fragments from the original 
protoplanetary disc around the Sun that failed to fully coalesce into planets and instead formed 
into smaller bodies, the largest less than 3000 km in diameter. 
Modern computer simulations show the Kuiper belt to have been strongly influenced by Jupiter 
and Neptune, and also suggest that neither Uranus nor Neptune could have formed in situ beyond 
Saturn, as too little primordial matter existed at that range to produce objects of such high mass. 
Instead, these planets are believed to have formed closer to Jupiter, but to have been flung 
outwards during the course of the Solar System’s early evolution. Work in 1984 by Fernandez 
and Ip suggests that exchange of angular momentum with the scattered objects can cause the 
planets to drift. Eventually, the orbits shifted to the point where Jupiter and Saturn existed in an 
exact 2:1 resonance; 
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Jupiter orbited the Sun twice for every one Saturn orbit. The gravitational pull from such 
a resonance ultimately disrupted the orbits of Uranus and Neptune, causing them to switch places 
and for Neptune to travel outward into the proto-Kuiper belt, sending it into temporary 
chaos.[130] 

 
Structure of KBOs 

At its fullest extent, including its outlying regions, the Kuiper belt stretches from roughly 
30 to 55 AU. However, the main body of the belt is generally accepted to extend from the 2:3 
resonance at 39.5 AU to the 1:2 resonance at roughly 48 AU. The Kuiper belt is quite thick, with 
the main concentration extending as much as ten degrees outside the ecliptic plane and a more 
diffuse distribution of objects extending several times farther.  

Overall it more resembles a torus or doughnut than a belt.[40] Its mean position is 
inclined to the ecliptic by 1.86 degrees. 

 
Resonances of KBOs 

When an object’s orbital period is an exact ratio of Neptune’s (a situation called a mean 
motion resonance), then it can become locked in a synchronised motion with Neptune and avoid 
eing perturbed away if their relative alignments are appropriate. 

If, for instance, an object is in just the right kind of orbit so that it orbits the Sun two 
times for every three Neptune orbits, then whenever it returns to its original position, Neptune 
will always be half an orbit away from it, since it will have completed 11/2 orbits in the same 
time. This is known as the 2:3 (or 3:2) resonance, and it corresponds to a characteristic semi-
major axis of � 39.4 AU. This 2:3 resonance is populated by about 200 known objects, including 
Pluto together with its moons. In recognition of this, the other members of this family are known 
as Plutinos. Many Plutinos, including Pluto, often have orbits which cross that of Neptune, 
though their resonance means they can never collide. Many others, such as 90482 Orcus and 
28978 Ixion, are over half of Pluto’s size. Plutinos have high orbital eccentricities, suggesting 
that they are not native to their current positions but were instead thrown haphazardly into their 
orbits by the migrating Neptune. The 1:2 resonance (whose objects complete half an orbit for 
each of Neptune’s) corresponds to semi-major axes of 47.7AU, and is sparsely populated. Its 
residents are sometimes referred to as twotinos. Minor resonances also exist at 3:4, 3:5, 4:7 and 
2:5. Neptune possesses a number of trojan objects, which occupy its L4 and L5 points; 
gravitationally stable regions leading and trailing it in its orbit. Neptune trojans are often 
described as being in a 1:1 resonance with Neptune. Neptune Trojans are remarkably stable in 
their orbits and are unlikely to have been captured by Neptune, but rather to have formed 
alongside it. 
 
Plutinos 

Plutinos is a trans-Neptunian object in 2:3 mean motion resonance with Neptune. Plutinos 
are named after Pluto, which follows an orbit trapped in the same resonance, with the Italian 
diminutive suffix -ino. The name refers only to the orbital resonance and does not imply common 
physical characteristics; it was invented to describe those bodies smaller than Pluto (hence the 
diminutive) following similar orbits. The class includes Pluto itself and its moons. 

Plutinos form the inner part of the Kuiper belt and represent about a quarter of the known 
Kuiper Belt objects (KBOs). Plutinos are the largest class of the resonant trans-Neptunian 
objects. Aside from Pluto itself and Charon, the first plutino, 1993 RO, was discovered on 
September 16, 1993.  
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The largest plutinos include Pluto, 90482 Orcus, 28978 Ixion, 38628 Huya, (35671) 1998 
SN165, and 38083 Rhadamanthus. 
 

The gravitational influence of Pluto is usually neglected given its small mass. However, 
the resonance width (the range of semi-axes compatible with the resonance) is very narrow and 
only a few times larger than Plutos Hill sphere (gravitational influence). 

Consequently, depending on the original eccentricity, some plutinos will be driven out of 
the resonance by interactions with Pluto. Numerical simulations suggest that plutinos with the 
eccentricity 10%-30% smaller or bigger than that of Pluto are not stable on timescales. 
 
Classical Kuiper belt objects.Cubewanos 

In astronomy a cubewano is a Kuiper belt object that orbits beyond Neptune and is not 
controlled by an orbital resonance with the giant planet. Cubewanos have semi-major axes in the 
40-50 AU range and, unlike Pluto, do not cross Neptunes orbit. They are also called classical 
Kuiper Belt objects. 

The odd name derives from the first trans-Neptunian object (TNO) found (besides Pluto 
and Charon), (15760) 1992 QB1. Later objects were called cubewanos. 

Objects identified as cubewanos include: 
 (15760) 1992 QB1 
 (136472) 2005 FY9 the largest known cubewano and one of the largest TNO 
 (136108) 2003 EL61, notable for its elongated shape, two moons and rapid 

rotation (3.9h) 
 (50000) Quaoar and (20000) Varuna, each considered the largest TNO at the time 

                     of discovery 
 2002 TX300, 2002 AW197, 2002 UX25. 

 
However, these definitions lack precision: in particular the boundary between the classical 

objects and the scattered disk remains blurred. A recent classification by J. L. Elliott et al uses 
formal criteria based on the mean orbital parameters instead. Put informally, the definition 
includes the objects that have never crossed the orbit of Neptune.  
 

According to this definition, an object qualifies as a classical KBO if: 
 it is not resonant 
 it has the average Tisserand’s parameter exceeding 3 
 its average eccentricity is less than 0.2. 
 
Introduced by the report from the Deep Ecliptic Survey, this definition appears to be 

adopted in the most recent literature. 
 
Scattered disc objects (SDOs) 

The scattered disc is a sparsely populated region beyond the Kuiper belt, extending as 
far as 100 AU and farther. Scattered disc objects (SDOs) travel in highly elliptical orbits, usually 
also highly inclined to the ecliptic. Most models of solar system formation show icy planetoids 
first forming in the Kuiper belt, while later gravitational interactions, particularly with Neptune, 
displaced some of them outwards into the scattered disc. 
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According to the Minor Planet Center, which officially catalogues all trans-Neptunian 
objects, a KBO, strictly speaking, is any object that orbits exclusively within the defined Kuiper 
belt region regardless of origin or composition. Objects found outside the belt are classed as 
scattered objects. However, in some scientific circles the term ”Kuiper belt object” has become 
synonymous with any icy planetoid native to the outer solar system believed to have been part of 
that initial class, even if its orbit during the bulk of solar system history has been beyond the 
Kuiper belt (e.g. in the scattered disk region).  

They often describe scattered disc objects as ”scattered Kuiper belt objects.” Eris, the 
recently discovered object now known to be larger than Pluto, is often referred to as a KBO, but 
is technically an SDO. A consensus among astronomers as to the precise definition of the Kuiper 
belt has yet to be reached, and this issue remains unresolved. 
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Chapter 3 
 
Perturbation Theory  
 
 

The nebular hypothesis for the formation of planetary systems is nearly 250 years old 
(Kant) and yet observational support for the model is relatively recent. In the standard scenario, 
solids in the disk surrounding the protostar begin to coagulate into macroscopic objects, which 
accrete to kilometer sizes. When the planetesimals become massive enough for gravitational 
focusing, runaway accretion begins. In the oligarchic growth phase, accretion is limited by 
excitations in the population induced by the largest few objects. In a protoplanetary disk, these 
largest planetesimals can reach a few Earth masses, sufficient to trap the nebular gas, and rapid 
growth of gas giant(s) can ensue. 

The nebular gas is cleared by the stellar wind, and the remaining planetesimals are 
scattered away by the giant planets. 
 
 

Perturbation System in case of Direct N-Body Integration 
 

The expression perturbed motion implies that there is an unperturbed motion. In Celestial 
Mechanics the unperturbed motion is the orbital motion of two spherically symmetric bodies 
represented by the equations of motion (2.1), the solution of which is known in terms of simple 
analytical functions (see section 2.1). The constant is the product of the constant of gravitation 
and the sum of the masses of the two bodies considered. The numerical value of thus depends on 
the concrete problem and on the system of units chosen. 

In Celestial Mechanics one usually makes the distinction between  
1.General Perturbation Methods, seeking the solution in terms of series of elementary 
integrable functions, and 
2. Special Perturbation Methods, seeking at some stage the solution by the methods of 
numerical integration. 

 
For general perturbation methods it is mandatory not to use the original equations of 

motion (2.1) in rectangular coordinates, but to derive differential equations for the osculating 
orbital elements (see section 4.3) or for functions thereof. This procedure promises to make the 
best possible use of the (analytically known) solution of the twobody problem (2.1), because the 
osculating elements are so-called first integrals of the two-body motion. 

Both, general and special perturbation methods, provide approximate solutions of the 
equations of motion (not regarding the few special cases which could be solved in closed form). 
In the former case the approximation is due to the fact that the series developments have to be 
terminated at some point and that sometimes the convergence of the series is not well established, 
in the latter case it is due to the accumulation of rounding and approximation errors. Special 
perturbation methods may be applied directly to the initial value problem or to the transformed 
equations for the osculating elements. 

In this Chapter the focus is on transformations of the initial value problem with the goal to 
make optimum use of the analytical solution of the two-body problem. In next section, a 
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differential equation is developed for the difference vector of a perturbed and the associated 
unperturbed motion. The analytical developments necessary for this purpose are rather moderate, 
the importance is considerable in practice. In future section, we outline the method to derive the 
differential equations for the osculating elements starting from the original equations of motion. 
The perturbation term δf may be rather arbitrary. The resulting equations usually are referred to 
as the Gaussian perturbation equations. 
 

 
 Gaussian Perturbation Equations 
The concept of osculating elements, assigns one set of osculating orbital elements to 

every epoch t via the position and velocity vectors r(t) and (t). There is a one-to-one relationship 
between the osculating elements of epoch t and the corresponding state vector. The 
transformation equations between the two sets of functions are those of the two-body problem. 
 

Perturbation System in case of Symplectic Integration 
Perturbation theory is an efficient tool for investigating the dynamics of nearly integrable 

Hamiltonian systems. The restricted three - body problem is the prototype of a nearly-integrable 
mechanical system; the integrable part is given by the two-body approximation, while the 
perturbation is due to the gravitational influence of the other primary. A typical example is 
represented by the motion of an asteroid under the gravitational attraction of the Sun and Jupiter. 
The mass of the asteroid is so small, that one can assume that the primaries move on Keplerian 
orbits. The dynamics of the small body is essentially driven by the Sun and it is perturbed by 
Jupiter, where the Jupiter-Sun mass ratio is observed to be about 10–3. The solution of the 
restricted three-body problem can be investigated through perturbation theories, which were 
developed in the 18th and 19th centuries; they are used nowadays in many contexts of Celestial 
Mechanics, from ephemeris computations to astrodynamics. 

Perturbation theory in Celestial Mechanics is based on the implementation of a canonical 
transformation, which allows us to find the solution of a nearlyintegrable system within a better 
degree of approximation. We review classical perturbation theory, as well as in the presence of a 
resonance relation. We discuss also the Birkhoff normal form around equilibrium positions and 
around closed trajectories. 
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Chapter  4 
 
Hermite scheme: 8th order 
 

Although the standard polynomial scheme has proved itself over more than 30 years, the 
rapid advance in computer technology calls for a critical appraisal and search for alternative 
formulations. The recent design of special-purpose computers, poses a particular challenge for 
software developments. The essential idea is to provide a very fast evaluation of the force and its 
first derivative by special hardware, and these quantities are then utilized by the integration 
scheme which is implemented on some front-end 
machine, such as a standard workstation. 

In present thesis I will discuss here, the sixth- and eighth-order Hermite integrators for 
astrophysical Nbody simulations, which use the derivatives of accelerations up to second order 
(snap) and third order (crackle). These schemes do not require previous values for the corrector, 
and require only one previous value to construct the predictor. Thus, they are fairly easy to 
implement. The additional cost of the calculation of the higher order derivatives is not very high. 
Even for the eighth-order scheme, the number of floating-point operations for force calculation is 
only about two times larger than that for traditional fourth-order Hermite scheme. The sixth order 
scheme is better than the traditional fourth order scheme for most cases. When the required 
accuracy is very high, the eighth-order one is the best. These high-order schemes have several 
practical advantages. For example, they allow a larger number of particles to be integrated in 
parallel than the fourth-order scheme does, resulting in higher execution efficiency in general-
purpose parallel computers. 

There are two different ways to construct higher-order generalization of the Hermite 
scheme. The first one is to use previous timesteps, in the same way as in the original Aarseth 
scheme. This method was described in [? ]. The other is to use even higher derivatives directly 
calculated, while still using only two points in time. Of course, it is possible to combine these two 
methods. 

To our knowledge, there have been no published work on the latter approach combined 
with the individual timestep algorithm. At first sight, it looks nontrivial to combine the direct 
calculation of the higher-order derivatives and individual timestep algorithm. We show that the 
combination is actually possible and that it is not much difficult compared to the original fourth-
order Hermite scheme, and also we present the result of numerical experiments, and simulation 
discussions. 

If we do not use the individual timestep algorithm, we can easily change timesteps if we 
use single-step integration schemes such as Runge - Kutta methods. However, Runge- Kutta 
schemes cannot be combined with the individual timestep algorithm, because they require the 
calculation of accelerations in intermediate points. In the case of two particles 
with different time steps, in order to integrate the particle with longer time step, we need the 
position of the other particle in the past. However, with usual implementation of the individual 
time step algorithm, such past data is not available. In principle, we could keep the past trajectory 
of particles. Such schemes are not yet widely used, though a sample implementation does exist in 
Hut & Makino(2007). 

The fourth-order Aarseth scheme had been the method of choice for the time integration 
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of gravitational N-body systems. However, the optimal value for the order of the integration 
scheme has not been known. Makino implemented the Aarseth scheme with an arbitrary order, 
and performed a systematic test of the accuracy. He found that the optimal choice of the order 
weekly depends on the required accuracy, and if the required accuracy is very high orders higher 
than 4 would give better results. However, he also found that the fourth-order scheme is close to 
optimal for practical values of required accuracy. His result, however, is for a pure individual 
time step algorithm, for which the calculation cost of the acceleration depends on the order of the 
integrator, through the calculation cost of predictors for particles other than that integrated. 
McMillan (1986) and later Makino (1991) introduced the so-called block step scheme, in which 
the time steps of particles are quantized to powers of two so that multiple particles share exactly 
the same time. With this block step scheme, the calculation cost of predictors becomes much 
smaller than that of the force calculation for any practical value of the order of the integration 
scheme, and therefore high-order schemes become more efficient than in the case of the original 
individual time step algorithm. 

Another advantage of the fourth-order Hermite scheme is that it is time-symmetric, when 
used with the correct-to-convergence mode. This feature has been used to achieve effective time-
symmetry for the integration of internal motions of binaries or nearly circular orbits of 
planetesimals. Also, a time-symmetric individual time step algorithm with Hermite scheme have 
been implemented. 

The calculation cost of the Hermite scheme per time step is somewhat higher than that of 
the Aarseth scheme, since the jerk must be calculated as well as the acceleration. However, 
roughly speaking the Hermite scheme allows the time step larger than that for the Aarseth scheme 
by almost a factor of two, while increase in the calculation cost seems to be less than a factor of 
two. Thus, by switching from the fourth-order Aarseth scheme to the fourth order-Hermite 
scheme, effective gain in calculation speed is achieved while the calculation program becomes 
simpler. This combined effect is the reason why the fourth-order Hermite scheme is now widely 
used. 
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Chapter  5 
 
Numerical integration methods of Trans-Neptunian bodies 
 
 

For several thousands of years astronomers have been asked to predict positions of the 
Sun, the Moon, and the planets on the celestial sphere. Especially during the Babylonian and 
Egyptian eras, the oldest of all sciences had been essential for producing calendars used not only 
for agricultural demands but also for religious rituals. The ancient methods were rather 
descriptive in nature, nevertheless the predictions, e.g., for Solar and Lunar eclipses were quite 
precise (for often the astronomer’s life was tied to them). Even Kepler’s laws were derived from 
observations without an understanding of the underlying true ’nature’ of the related phenomena. 
It is interesting to note that Kepler already mentioned a meanwhile familiar concept, a power 
determining the elliptic motion of the planets, a so-called ’force’. The most renowned scientific 
minds tried to grasp its nature by using various tool-sets, be it Galileo Galilei’s experiments or 
Isaac Newton’s first comprehensive theoretical description by introducing his law of gravitation. 
Of course, our understanding of the basic principles of gravity as an interplay of space time 
with massed particles, as proclaimed by Einstein, has grown enormously since Newton’s times, 
although it is far from being comprehensive, as the current problem of ’dark matter’ shows quite 
plainly. Still, the dominant influence of gravity on the motion of massed particles at least in our 
Solar System is very well modeled by Newton’s ansatz. 

In principle, one can use two different methods for treating the equations of motion: 
 

1. Perturbation theory. Perturbation theory works with series expansions of the equations 
of motion, or their related Hamiltonian equations, often including thousands of terms, 
computing analytical approximations to the solutions for a whole bundle of initial 
conditions. The results produced are mostly retained in form of series (also Fourier series) 
in a continuous parameter being identified with time, so that inserting a certain date in the 
series immediately leads to the particles positions in space and on the sky. 

2. The method of numerical integration. Even though the solution of the multibody 
gravitational problem may not be manageably representable by means of analytical 
functions, it is possible to follow the systems development, through calculating evolution 
of the system step by step, instead of trying to achieve results, that are valid for all times. 
This discretization procedure constitutes the main difference to analytical approaches. In 
contrast to perturbation theory, the solution gained is representing just a single trajectory 
in phase space for a whole system of equations of motion. 
 

Explicit Runge Kutta (RK)–type integrators are among the most popular algorithms 
concerning numerical analysis of initial value problems. This popularity may be due to a history 
dating back over a century. Also the possibility of relative ease of error control. Nevertheless, 
their need for a relatively high number of right–hand side function evaluations and unfavorable 
energy conservation properties in their classic, non–symplectic forms are downsides, that will 
have to be taken into account, if an application to the field of Celestial Mechanics is intended. 
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In the field of Computational Astronomy, is found that splitting the Hamiltonian in terms of 
kinetic and potential energy is not the only possibility. In fact, separating the Hamiltonian into a 
part representing the Keplerian motion of each planet (HKep) and a second part, containing 
perturbation terms due to mutual interactions with other planets (HInt), leads to a decrease in 
long–term integration error proportional to O(ϵτ 2) instead of O(τ 2) for a second order symplectic 
scheme, assumed that (Hint = HKep) with ϵ denoting the planetary to stellar mass ratio. 
 
Remark. This special separation of the Hamiltonian will lose its advantages when the condition Hint = 
ϵHKep is violated, which will happen, when members of the system come close to each other (close 
encounters). 
 

The main problem with symplectic integration algorithms is their inherent inability to 
adapt step-sizes during an ongoing computation. This is due to the fact, that the Hamiltonian 
actually solved by numerical integration Hnum differs from the analytic Hamiltonian Han by an 
expression proportional to all orders of the step-size τ , which means that changing the step-size 
automatically alters the integrated Hamiltonian, and will thus destroy the algorithm’s energy 
conserving properties. 

Given the need to calculate so-called close encounters 1 (CE) in celestial mechanics, this 
situation leaves users of symplectic algorithms with the utterly displeasing possibilities of 
choosing a tiny step-size right from the start, which will radically increase computational 
resource demands and round-off errors 2, stopping calculations whenever a CE occurs, or simply 
ignoring CE, admitting that from this point onward the calculation has statistical significance at 
best. An intriguing approach to circumnavigate this dilemma has been brought up by Chambers. 
He combined a second-order mixed variable symplectic integrator with fixed step-size and a 
Bulirsch-Stoer type extrapolation algorithm, using the symplectic part plus analytical advancing 
via Gauss’s f and g functions, while close encounters that require changes in step-size are 
performed by the Bulirsch-Stoer method. 

In order to get an impression of the properties of the algorithms presented, I will compare 
the methods to analytically predicted solutions. 

Since the two-body problem is the only multi-body gravitating system, that is perfectly 
integrable, it is an obvious choice in this respect. For testing, the system of the Sun and Jupiter 
has been chosen. Initial conditions for the equinox J2000 are readily available at Solar System 
Dynamics of JPL. All numeric calculations were performed using the Yoshida symplectic 
method, the Hybrid algorithm, and the author-developed Kepler package containing the Hermite 
8th order. Regarding the classic Runge-Kutta integration method, the data is used only for 
comparison from Cash-Karp-Runge-Kutta method. 

Conservational properties are not the only indicators for the quality of integrators. The 
amount of computational resources consumed during the calculation process is equally important, 
as any algorithm can be trimmed to produce highly accurate results. Yet, methods will become 
rather unappealing, when the timescales involved in gaining usable data start to surpass weeks. 
Of course, comparing algorithms contained in different package environments is rather tricky and 
cannot be 100% sure. This is the reason, why I chose the to split the results of CPU-time 
measurements according to algorithm method. As the quality of the results was set to be 
comparable with respect to total energy conservation, one just has to time the integration. The 
interference of the operating system was tracked and taken into account in the following figures. 
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These measurements have been done for two configurations. As one can see quite clearly, 
the algorithms are comparable for short integration periods. As the Hybrid algorithm 
accomplishes a linear error growth in the same time span, it is to be considered the most efficient. 
 

The main dividing lines between the algorithms presented are symplecticity on the one 
hand, and adaptive step-size control on the other. For long-time integrations, where the 
orientation of single orbits is not as important as the overall energetic behavior, symplectic 
algorithms are probably the better choice, due to their favorable energy and angular momentum 
conservation properties. If one is interested in short-term, high-accuracy calculations, non-
symplectic methods may be more effective. As every integrator mentioned in this chapter, 
contains step-size control mechanisms, close encounters during calculation runs should - in 
theory - not pose any major problems, although this is still an ongoing field of research. 

The differences between non-symplectic algorithms are basically restricted to 
performance issues, and directions of energy-drifts. Concerning performance, the inner-package 
competitions showed that the only algorithm that is too far off to be recommended is the hybrid 
one, simply because the ratio of step-size to right hand side function evaluations is rather low 
compared to its competitors. 
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Chapter  6 
 
Populations of Trans-Neptunian bodies. 
Dynamical classes 
 
 

Our observational knowledge of the trans–Neptunian population is quite recent. The first 
object, Pluto, was discovered in 1930, but unfortunately this discovery was not quickly followed 
by the detection of other trans–Neptunian objects. It was only in 1992, with the advent of CCD 
cameras and a lot of perseverance, that another trans–Neptunian object 1992 QB1 was found. 
Now, 20 years later, we know more than 1,000 trans-Neptunian objects. Of them, about 500 have 
been observed for at least 3 years. A times of 3 years of observations is required in order to 
compute their orbital elements with some confidence. In fact, the trans–Neptunian objects move 
very slowly, and most of their apparent motion is simply a parallaxes effect. Our knowledge of 
the orbital structure of the trans–Neptunian population is therefore built on these ≈ 500 objects. 

Before moving to discuss the orbital structure of the trans-Neptunian population, a brief 
overview of the basic facts of orbital dynamics is given. 

In the absence of external perturbations, the orbital motion is perfectly elliptic. Thus, the 
orbital elements a, e, i,ϖ,Ω are fixed, and λ moves linearly with time, with frequency given by 
(4.4). When a small perturbation is introduced (for instance the presence of an additional planet), 
two effects are produced. First, the motion of λ is no longer perfectly linear. Correspondingly, the 
other orbital elements have short periodic oscillations with frequencies in the order of the orbital 
frequencies. Second, the angles ϖ and Ω start to rotate slowly. This motion is called precession. 
Typical precession periods in the Solar System are of the order of 10,000 - 100,000 years. 
Correspondingly, e and i have long periodic oscillations, with periods of the order of the 
precession periods. 
 

The regularity of these short and long periodic oscillations is broken when one of the 
following two situations occur: 

1. the perturbation becomes large, for instance when there are close approaches between the 
body and the perturbing planet, or when the mass of the perturber is comparable to that of 
the Sun (as in the case of encounters of the Solar System with other stars) or 

2. the perturbation becomes resonant. In either of these cases, the orbital elements a, e, i can 
have large non-periodic, irregular variations. 

 
To categorize the observed trans-Neptunian bodies into the Scattered disk and Kuiper belt, 

one can refer to previous works on the dynamics of trans- Neptunian bodies in the framework of 
the current architecture of the planetary system. For the a  < 50AU region, one can use the results 
by Duncan & Levison (1995), who numerically mapped the regions of the (a, e, i) space with  
32 < a < 50AU, which can lead to a Neptune encountering orbit within 4 Gy. Because dynamics 
are reversible, these are also the regions that can be visited by a body after having encountered 
the planet. Therefore, according to the definition above, they constitute the Scattered disk. For the 
a > 50AU region, one can use the previous results of Levison & Duncan (1997), where the the 
evolutions of the particles that encountered Neptune have been followed for another 4 Gy time-
span. Although the initial conditions did not cover all possible configurations, one can reasonably 
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assume that these integrations cumulatively show the regions of orbital space that can be visited 
by bodies transported to a > 50AU by Neptune encounters. Again, according to my definition, 
these regions constitute the Scattered disk. 

The confirmed classical belt objects have an inclination range up to at least 32◦ and an 
eccentricity range up to 0.2, significantly higher than expected from a primordial disk, even 
accounting for mutual gravitational stirring. The observed distributions of eccentricity and 
inclination in the Kuiper belt are highly biased. High eccentricity objects have closer approaches 
to the Sun, and thus, they become brighter and are more easily detected. Consequently, the 
detection bias roughly follows curves of constant  q. At first sight, this bias might explain why, in 
the classical belt beyond a = 44AU, the eccentricity tends to increase with semi-major axis. 
However, the resulting (a, e) distribution is significantly steeper than a curve q = constant. Thus, 
the apparent relative under-density of objects at low eccentricity in the region 44 < a < 48 AU is 
likely to be a real feature of the Kuiper belt distribution. 

The co-existence of a hot and a cold population in the classical belt could be caused in 
one of two general manners. Either a subset of an initially dynamically cold population was 
excited, leading to the creation of the hot classical population, or the populations are truly distinct 
and formed separately. One manner in which one can attempt to determine which of these 
scenarios is more likely is to examine the physical properties of the two classical populations. If 
the objects in the hot and cold populations are physically different, it is less likely that they were 
initially part of the same population. 

The first suggestion of a physical difference between the hot and the cold classical objects 
came from Levison & Stern (2001), who noted that the intrinsically brightest classical belt 
objects (those with lowest absolute magnitudes) are preferentially found on high inclination 
orbits. This conclusion has been recently verified in a bias-independent manner in Tsiganis et.all 
(2005), with a survey for bright objects which covered 70% of the ecliptic and found many hot 
classical objects but few cold classical ones. 

The second possible physical difference between hot and cold classical Kuiper belt 
objects is their colors, which relate in an unknown manner to surface composition and physical 
properties. Several possible correlations between orbital parameters and color were suggested by 
Tegler & Romanishin (2000). The issue was clarified by Trujillo & Brown (2002), who 
quantitatively showed that for the classical belt, the inclination is correlated with color. In 
essence, the low-inclination classical objects tend to be redder than higher inclination objects. 
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Chapter 7 
 
Long-time dynamics study of Trans-Neptunian Bodies  
 
 

The stability of Trojan type orbits around Neptune is studied. As the first part of our 
investigation, we present in this chapter a global view of the stability of Trojans on inclined 
orbits. Using the frequency analysis method based on the FFT technique, we construct high 
resolution dynamical maps on the plane of initial semi-major axis versus inclination. These maps 
show three most stable regions, with i0 in the range of (0○,12○),(22○,36○) and (51○ ,59○) 
respectively, where the Trojans are most probably expected to be found. The similarity between 
the maps for the leading and trailing triangular Lagrange points L4 and L5 confirms the dynamical 
symmetry between these two points. By computing the power spectrum and the proper 
frequencies of the Trojan motion, we figure out the mechanisms that trigger chaos in the motion. 
The Kozai resonance found at high inclination varies the eccentricity and inclination of orbits, 
while the secular resonance around 44○ pumps up the eccentricity. Both mechanisms lead to 
eccentric orbits and encounters with Uranus that introduce strong perturbation and drive the 
objects away from the Trojan like orbits. This explains the clearance of Trojan at high inclination 
and an unstable gap around 44○ on the dynamical map. An empirical theory is derived from the 
numerical results, with which the main secular resonances are located on the initial plane. The 
fine structures in the dynamical maps can be explained by these secular resonances. 

Since the L5 point of Neptune is nowadays in the direction of the Galaxy center thus not 
suitable for asteroid observing, it is not astonishing to see all asteroids listed in the table below 
are around the L4 point.  

 

 
 
Observations show that there are more objects around Jupiter's L4 than the L5 point, and 

such an asymmetry between L4 and L5 was also reported for Neptune. The origin of this 
asymmetry is discussed too in this chapter. 

We present our investigations on the dynamics of the inclined Trojans in this part. As 
mentioned above, the value of the libration center σc changes only slightly with inclination, 
and therefore we may fix its value at 60 for L4 and -60 for L5 when we study the dependence of 
stability on the orbital inclination. 

Since the first Neptune Trojan was found in 2001 their number steadily increases and now 
we have knowledge of 11 such asteroids around the Lagrange point L4. It is interesting to 
note that two of them are on highly inclined orbits. Hence we study in this chapter the orbital 
stability of Neptune Trojans, with special interests on the inclined orbits. We first verified the 
symmetry between the L4 and L5 points. We found that orbits around these two points have 
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the same stability. The only difference between them is in the value of the osculating semi-major 
axis of orbits at the libration center in the Trojan clouds around the L4 and L5 points. This 
difference was found due to the asymmetrical selection of initial conditions. To clarify this 
symmetry is important, not only because some papers argued that the L4 and L5 are dynamically 
asymmetrical to each other, but also because a specific formation history of Trojan clouds may 
affect the symmetry property. If future observing confirms the symmetry or asymmetry, it will 
put strong constrains on the formation scenario, which is tightly related to the early dynamical 
evolution of the outer solar system. 

 We also found that the apsidal precession of Saturn are responsible for the multiple arc 
structures in the dynamical map. We also check how the stability of a Trojan’s orbit depends 
on the initial eccentricity. The preliminary results show that for most inclination values, the orbit 
needs a small initial eccentricity to be stable.  
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Chapter 8 
 
The KEPLER software package  
 
 
 

KEPLER is a software package for simulating the evolution of Trans-Neptunian Bodies 
systems and analyzing the resultant data. It is a collection of programs routines (tools) linked at 
the level of the UNIX operating system. The tools share a common data structure and can be 
combined in arbitrarily complex ways to study the dynamics of bodies or star clusters. 

Gravity is the weakest of all fundamental forces in physics, far weaker than 
electromagnetism or the so-called weak and strong interactions between subatomic particles. 
However, the other three forces lose out in the competition with gravity over long distances. 
The weak and strong interactions both have an intrinsically short range. Electromagnetism, while 
being long-range like gravity, suffers from a cancellation of attraction and repulsion in bulk 
matter, since there tend to be as almost exactly as many positive as negative charges in any 
sizable piece of matter. In contrast, gravitational interactions between particles are always 
attractive. Therefore, the more massive a piece of matter is, the more gravitational force it exerts 
on its surroundings. This dominance of gravity at long distances simplifies the job of modeling 
the Universe. To a first approximation, it is often a good idea to neglect the other forces, and to 
model the objects as if they were interacting only through gravity. In many cases, we can also 
neglect the intrinsic dimensions of the objects, treating each object as a point in space with a 
given mass. All this greatly simplifies the mathematical treatment of a system of TNO. The 
objects we will be studying are stars, planets, small bodies and dust or stellar systems, where the 
stars are so close together that they will occasionally collide and in general have frequent 
interesting and complex interactions. Some of the stars can take on rather extremely dense forms, 
like white dwarfs, and some stars may even collapse to form black holes. 

However, in first approximation we can treat all these different types of objects as point 
particles, as far as their gravitational interactions are concerned. 

Introducing individual time steps was only a first step toward the development of modern 
N-body codes. The presence of tight binaries produced much more of an obstacle, and throughout 
the seventies a variety of clever mechanisms were developed in order to deal with them 
efficiently. For one thing, there are problems with round-off. Two bodies in a tight orbit around 
each other have almost the same position vector, as seen from the center of a star cluster, where 
we normally anchor the global coordinate system. The separation between bodies that determine 
their mutual forces. When we compute the separation by subtracting two almost identical spatial 
vectors, we are asking for numerical trouble. The solution is to introduce a local coordinate 
system whenever two or more bodies undergo a close interaction. This does away with the round-
off problem, but it introduces a host of administrative complexities, in order to make sure that 
any arbitrary configuration of bodies is locally presented correctly and that the right thing 
happens when two or more of such local coordinate patches encounter each other. This may not 
happen often, but one occurrence in a long run is enough to cause an unacceptably large error if 
no precautions have been taken to deal properly with such a situation. 

I can continue the list of tricks that have been invented to allow every larger and denser 
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systems of bodies to be modeled correctly. We will encounter them later on, and explain them 
then in detail, but just to list a few, here are some of the techniques. Numerical problems with the 
singularity in the two-body system have been overcome by mapping two or more interacting stars 
from the three-dimensional Kepler problem to a four-dimensional harmonic oscillator. The total 
force on particles has been split into different contributions, the first from a near zone of 
relatively close neighbors and the second from a far zone of all other particles, with each partial 
force being governed with different integration time steps. Tree codes have been used to group 
the contributions of a number of more and more distant zones together in ever larger chunks, for 
efficiency. 
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