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Introduction

A history of the study of equivalences and dualities induced by pairs of adjoint

functors, as an important topic in Module Theory, has its starting point in the 1950s.

Back then, Morita [38] and Azumaya [6] proved some important results which general-

ize some classical properties of modules over rings of matrices over fields, respectively

the classical duality theorem for vector spaces. Their results characterized:

(1) an equivalence between two categories of right (or left) modules over two rings

as being represented by the covariant Hom and tensor functors, induced by a balanced

bimodule that is a progenerator on either side, and

(2) a duality between some subcategories of right and left modules over two rings as

being represented by the contravariant Hom functors induced by a balanced bimodule

that is an injective cogenerator on both sides.

The study of equivalences and dualities developed important concepts in Module

Theory, such as tilting module (introduced by Brenner and Butler [17]), star module

(introduced by Menini and Orsatti [36]), respectively cotilting module (introduced by

Colby [20] and Happel [31]) and costar module (introduced by Colby and Fuller [22]).

For complete surveys on the subjects, we refer to the books [23] and [51] and the

papers [21], [25], [52], [53] and [54]. All these mentioned notions are used by many

authors to generalize clasical results proved by Morita and Azumaya.

This kind of study is also useful for a more general setting, in order to apply these

results to other kind of categories. For instance, Castaño-Iglesias, Gómez-Torrecillas

and Wisbauer applied the study of adjoint pairs of functors between Grothendieck

categories to special categories of graded modules or comodules [19]. Marcus and

Modoi [35] also used other kind of equivalences in order to study categories of graded

modules. Colpi [24], Gregorio [30] and Rump [47] constructed a general theory of

tilting objects in various kind of categories. Recently, Bazzoni [7] considers some par-

ticular categories of fractions (which, in general, have no infinite direct sums) in order

to describe the classes involved in a tilting theorem [7, Theorem 4.5], while Breaz [8],

[10] studied functors and equivalences between similar categories of fractions in order

to apply these results to the category of abelian groups and quasi-homomorphisms

[1].
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However, starting with a pair of adjoint functors between some abelian categories,

in particular Grothendieck categories, we can construct other useful pairs of adjoint

functors. It would be also nice to know if concepts developed for module categories

work in this case. For example, Castaño-Iglesias, Gómez-Torrecillas and Wisbauer

[19] have extended the study of equivalences induced by covariant Hom and tensor

functors to Grothendieck categories and Castaño-Iglesias [18] proved that the notion

of costar module can be also extended to Grothendieck categories.

Following this line, in this thesis we will extend notions and we will generalizes

some results from module categories to general abelian categories, starting from a

pair F : A� B : G of (adjoint) functors between abelian categories. More precisely,

on one hand, if the considered functors are contravariant and right adjoint, we extend

the study of dualities induced by contravariant Hom functors and, on the other hand,

if the considered functors are covariant such that G is left adjoint for F, we extend

the study of equivalences induced by covariant Hom and tensor functors.

The paper is divided in two chapters, each chapter containing more sections, as we

will present in the following:

Chapter 1. Dualities Induced by Adjoint Functors. This chapter, dedicated

to the study of dualities, consists in five sections, as follows:

1.1 Introduction, in which we present the framework and give examples of pairs of

additive contravariant adjoint functors.

1.2 Preliminaries, which is dedicated to the presentation of the basic notions and

basic results, used throughout this chapter. For example, basic properties related

to the class add(X), for some object X, are proved and some characterizations of

reflexive terms of short exact sequences are given. Most of these results can be found

in [15], [16] and [41].

1.3 Costar Objects. Finitistic-1-F-cotilting, in which we first characterize the

situation when F is U -w-πf -exact through a duality between some full subcategories

of A and B. Secondly, we introduce a new version of the notion of costar object,

similar to the one introduced by Colby and Fuller in module categories and we also

prove a result that characterizes this notion. Finally, we present two other results, one

of them inspired by the Wisbauer’s paper [54] and the other result is a generalization
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of [12, Theorem 2.8] to abelian categories. Except for the last result, which is proved

in [16], all the other results of this section are given and proved in [15].

1.4 Dominant Resolutions, in which we introduce the notions of dominant res-

olutions and we give a general theorem for abelian categories which exhibits some

dualities induced by a pair of right adjoint contravariant functors. We will also use

this result to generalize some known dualities obtained by Wakamatsu [50] and by

Breaz [12]. All the same, it is introduced the notion of finitistic-n-F-cotilting object

and it is characterized this notion in terms of a duality. All the results from this

section are published in [41].

1.5 The U-coplex Category, in which is defined the notion of U -coplex, for a

reflexive object U , and it is also defined the category of U -coplexes. Then, starting

from the given pair of functors F : A� B : G, we define a new pair of functors (FU ,

GU) and we will show that this new pair of functors induce a duality. This duality is

a generalization of the duality given by Faticoni [27].

Chapter 2. Equivalences Induced by Adjoint Functors. This chapter,

focused on the study of equivalences induced by a pair of additive covariant adjoint

functors, is structured as follows:

2.1 Introduction, in which we present the framework and give some examples of

pairs of additive and covariant functors, which are adjoint, between some categories.

2.2 Preliminaries, in which basic notions and results are presented in order to be

used in this chapter. We refer here to [42].

2.3 Closure Properties with Respect to θ-Faithful Factors, in which we are

interested about the closure properties of some full subcategories A and B such that

the restrictions F : A � B : G are equivalences. The first important result is

Proposition 2.3.3, where we characterize the situation when B is closed with respect

to faithful factors by a closure property of A and by an exactness property of F. The

main result of the first part of this section is Theorem 2.3.4, where we characterize

the the situation when F : A � B : G is an equivalence with the class B closed

under θ-faithful factors. Then this result is applied for closure properties of some

classes, constructed starting with the class add(V ), where V = F(U), for some static

object U . Next, we continue and developed this study setting a new condition for A.
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We obtain new versions of the results presented above, the most important of them

is Theorem 2.3.14, and then we will apply these new results to the particular class

add(V ). All the results presented here can be found in [42].

Finally, I would like to mention that, for categories theory we refer to the books

[32], [37], [44], [45], for module theory we refer to the books [4], [46], [48]. We also

refer, for theory of graded modules, to [34] and [40]. Another books which are useful

are [11], [13].

I’m truly grateful for Professor Andrei Marcus’s unconditioned guidance and sup-

port regarding my work and I would also like to thank Professor Simion Breaz for all

his considerable constant help and patience, they both were crucial to my finalizing

this thesis. My consideration goes also to all the people from the Department of

Algebra, for their kindly given advice. All the same, I would like to thank Anca, my

wife, for her patience and support.
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1. Dualities Induced by Adjoint Functors

1.1. Introduction. Let A and B be abelian categories and let F : A � B : G be a

pair of additive and contravariant functors which are adjoint on the right, i.e. there

are natural isomorphisms

ηX,Y : HomA(X,G(Y ))→ HomB(Y,F(X)),

for all X ∈ A and for all Y ∈ B. The natural transformations associated to the right

adjunction ηX,Y are defined as follows:

δ : 1A → GF, δX = η−1
X,F(X)(1F(X)) and ζ : 1B → FG, ζY = η−1

G(Y ),Y (1G(Y )).

An object X is called δ-faithful (respectively, ζ-faithful) if δX (respectively, ζX) is

a monomorphism and we will denote by Faithδ (respectively, Faithζ) the class of all

δ-faithful (respectively, ζ-faithful) objects. We mention that some authors use the

term torsionless instead of faithful. An object X is called δ-reflexive (respectively,

ζ-reflexive) if δX (respectively, ζX) is an isomorphism and we will denote by Reflδ

(respectively, Reflζ) the class of all δ-reflexive (respectively, ζ-reflexive) objects.

The typical example of such functors is the following:

Example 1.1.1. Let R and S be unital associative rings and letQ be a (S,R)-bimodule.

If we denote by Mod-R (respectively, by S-Mod) the category of all right R- (respec-

tively, left S-) modules, then the contravariant Hom functors

∆ = HomR(−, Q) : Mod-R � S-Mod : HomS(−, Q) = ∆′

are right adjoint. Both natural transformations δ and ζ represent the evaluation maps

X −→ Hom(Hom(X,Q), Q)

defined by

x 7→ (f 7→ f(x)).

Moreover, if S is the endomorphism ring of Q, namely S = EndR(Q), then Q is

δ-reflexive and S is ζ-reflexive under the pair (∆,∆′). �

Another important example was exhibited by Castaño-Iglesias in [18].
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Example 1.1.2. Let G be a group. If R =
⊕

x∈GRx and S =
⊕

x∈G xS are two

G-graded unital rings, we will denote by Modgr-R (respectively, by S-Modgr) the

category of all G-graded unital right R- (respectively, left S-) modules. If M,N ∈

Modgr-R we consider the G-graded abelian group HOMR(M,N) whose homogeneous

component at x is the subgroup of HomR(M,N) consisting of all R-homomorphisms

f : M → N such that f(My) ⊆ Nxy for all y ∈ G. We note that HOMR(M,M) =

ENDR(M) has a canonical structure of G-graded unital ring. If M,N ∈ S-Modgr, we

consider the G-graded abelian group HOMS(M,N) whose homogeneous component

at x is the subgroup of HomS(M,N) consisting of all S-homomorphisms f : M → N

such that f(yM) ⊆ yxN for all y ∈ G. For more properties of the categories of

G-graded modules we refer [40].

If Q ∈ Modgr-R and S = ENDR(Q), then

Hgr
R = HOMR(−, QR) : Modgr-R � S-Modgr : HOMS(−, SQ) = SHgr

is a pair of right adjoint contravariant functors. �

Năstăsescu and Torrecillas give another example (see [39]).

Example 1.1.3. Let C be a coalgebra over a field k. We denote by MC (respectively,

CM) the (Grothendieck) category of right (respectively, left) comodules over C. The

dual space C∗ = Homk(C, k) is endowed with a canonical algebra structure. We note

that the category MC (respectively, CM) is isomorphic to a closed subcategory of the

category C∗-Mod (respectively, Mod-C∗) of all left (respectively, right) modules over

C∗. More exactly, this full subcategory is the category of rational left (respectively,

right) C∗−modules which is denoted by Rat(C∗-Mod) (respectively, Rat(Mod-C∗)).

For this reason, we can identify these categories. If we denote by Rat the rational

functors, i.e.

Rat : C∗-Mod→ MC and Rat : Mod-C∗ → CM,

then

Rat ◦ (−)∗ : MC � CM : Rat ◦ (−)∗

is a pair of right adjoint contravariant functors, where

(−)∗ = Homk(−, k) : Mod-C∗ � C∗-Mod : Homk(−, k) = (−)∗.
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�

Since our results works in general abelian categories (without infinite direct sums

or products), let us recall here another example taken from [8] and [10].

Example 1.1.4. Let R be a ring and Σ be a multiplicatively closed set of non-zero

integers. We consider the class S of all right R-modules B which are Σ-bounded as

abelian groups (i.e. there is n ∈ Σ such that nB = 0). This is a (complete) Serre

class. Hence the quotient (abelian) category Mod-R/S exists and it is equivalent to

the category Z[Σ−1]Mod-R which has as objects all the right R-modules and if M,N ∈

Mod-R, then HomZ[Σ−1]Mod-R(M,N) = Z[Σ−1] ⊗Z HomR(M,N). We refer to [14] for

basic properties of this category. We will denote by q : Mod-R → Z[Σ−1]Mod-R the

canonical functor. Note that q(M) = M for any M ∈ Mod-R and q(f) = 1 ⊗ f for

all R-homomorphisms f .

Using [29, Corollaire 3.2], we observe that if F : Mod-R → Mod-S is an additive

functor, then it induces a canonical functor qF : Z[Σ−1]Mod-R→ Z[Σ−1]Mod-S such

that qF = (qF )q (here q denotes both canonical functors Mod-R → Z[Σ−1]Mod-R

and Mod-S → Z[Σ−1]Mod-S). In [10], the author proved a version of Morita’s theo-

rem for some equivalences between these categories.

Starting with the setting presented in Example 1.1.1 we have that

q∆ : Z[Σ−1]Mod-R � Z[Σ−1]S-Mod : q∆′

is a pair of right adjoint contravariant functors. �

We note that the contravariant functors F and G are left exact. Moreover, the

natural transformations of right adjunctions, δ and ζ, associated to the considered

pair satisfy the identities

F(δX) ◦ ζF(X) = 1F(X) for all X ∈ A

and

G(ζY ) ◦ δG(Y ) = 1G(Y ) for all Y ∈ B.

Furthermore, the restrictions of F and G to the classes of reflexive objects induce a

duality F : Reflδ � Reflζ : G. Moreover, if F : A� B : G is a duality then A ⊆ Reflδ

and B ⊆ Reflζ ([51, Theorem 47.11]).
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Recall that add(X) denotes the class of all direct summands of finite direct sums of

copies of X. We denote by Proj(A) the class of all projective objects in A. Through-

out this chapter we assume that all considered subcategories are isomorphically closed.

1.2. Preliminaries. Throughout this section, we consider a pair of additive and

contravariant functors F : A� B : G which are adjoint on the right, between abelian

categories. All the same, throughout this section, let U be a δ-reflexive object with

F(U) = V .

Lemma 1.2.1. The following assertion hold:

(a) V is ζ-reflexive;

(b) add(U) ⊆ Reflδ and add(V ) ⊆ Reflζ;

(c) F(add(U)) = add(V ) and G(add(V )) = add(U);

(d) If V is a projective object in B then add(V ) ⊆ Proj(B) (here is not necessarily

for U to be δ-reflexive).

Remark 1.2.2. By Lemma 1.2.1, we have F(add(U)) = add(V ), add(U) ⊆ Reflδ and

G(add(V )) = add(U), add(V ) ⊆ Reflζ . It follows that

F : add(U) � add(V ) : G

is a duality. The natural isomorphisms corresponding to this duality are:

• δ : 1add(U) → GF, i.e. the restriction of δ : 1A → GF to the class add(U);

• ζ : 1add(V ) → FG, i.e. the restriction of ζ : 1B → FG to the class add(V ).

Lemma 1.2.3. The following statements hold:

(a) F(A) ⊆ Faithζ and G(B) ⊆ Faithδ;

(b) The classes Faithδ and Faithζ are closed with respect to subobjects.

Lemma 1.2.4. If 0 → X
f−→ Y

g−→ Z → 0 is an exact sequence in A then the

unique morphism α, for which the following diagram with exact rows

0 −−−→ X
f−−−→ Y

g−−−→ Z −−−→ 0

α

y δY

y δZ

y
0 −−−→ G(ImF(f))

G(π)−−−→ GF(Y )
GF(g)−−−→ GF(Z)
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is commutative, is given by the formula α = G(σ) ◦ δX , where F(f) = σ ◦ π is the

canonical decomposition.

Now we will display some characterizations of reflexive terms of short exact se-

quences. In the case of category of modules, these lemmas could be found in [28].

Lemma 1.2.5. Let 0 → X
f−→ Y

g−→ Z → 0 be an exact sequence with Y ∈ Reflδ

and F(f) an epimorphism. Then X ∈ Reflδ if and only if Z ∈ Faithδ.

Lemma 1.2.6. Let 0 → X
f−→ Y

g−→ Z → 0 be an exact sequence with Y ∈ Reflδ

and Z ∈ Faithδ. Then F(f) is an epimorphism if and only if ImF(f) ∈ Reflζ.

In other words, F is exact with respect to the considered sequence if and only if

ImF(f) is a ζ-reflexive object.

Lemma 1.2.7. Let 0 → X
f−→ Y

g−→ Z → 0 be an exact sequence with Y ∈ Reflδ

and Z ∈ Faithδ. Then Z ∈ Reflδ if and only if GF(g) is an epimorphism.

Lemma 1.2.8. Let 0 → X
f−→ Y

g−→ Z → 0 be an exact sequence with Y ∈ Reflδ

and Z ∈ Faithδ. Then X ∈ Reflδ if and only if GF(f) is a monomorphism.

Let A be an object in A. We say that Y is finitely-A-generated if there is an

epimorphism An → Y → 0, for some positive integer n. We denote by gen(A) the

class of all finitely-A-generated objects. We say that Y is finitely-A-presented if there

is an exact sequence Am → An → Y → 0, for some positive integers m and n. We

denote by pres(A) the class of all finitely-A-presented objects. We say that X is

finitely-A-cogenerated if there is a monomorphism 0 → X → An, for some positive

integer n. We denote by cog(A) the class of all finitely-A-cogenerated objects. We say

that X is finitely-A-copresented if there is an exact sequence 0 → X → Am → An,

for some positive integers m and n. We denote by cop(A) the class of all finitely-A-

copresented objects.

Lemma 1.2.9. An object X ∈ A is δ-faithful with F(X) ∈ gen(V ) if and only if

there exists a monomorphism f : X → Un such that F(f) is an epimorphism.

We will denote by copδ(U) the class of all objects X ∈ A such that there exists

an exact sequence 0 → X → Un → Z → 0 with Z ∈ Faithδ. We will say that F is
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U -w-πf -exact if it is exact with respect to the short exact sequences 0→ X → Un →

Z → 0 with Z ∈ Faithδ.

Lemma 1.2.10. If F is U-w-πf -exact then the following assertions hold:

(a) ζY is an epimorphism, for all Y ∈ gen(V );

(b) gen(V ) ∩ Faithζ ⊆ Reflζ.

1.3. Costar Objects. Finitistic-1-F-cotilting.

Lemma 1.3.1. If F is U -w-πf -exact then the following assertions hold:

(a) copδ(U) ⊆ Reflδ;

(b) F(copδ(U)) ⊆ gen(V ).

Now, we will characterize the situation when F is U -w-πf -exact, through a duality

induced by the considered pair F : A� B : G.

Theorem 1.3.2. The following statements are equivalent:

(a) F is U-w-πf -exact;

(b) F : copδ(U) � gen(V ) ∩ Faithζ : G is a duality.

In 2001, Colby and Fuller introduced the notion of costar module, which is the dual

notion of star module, and characterized this kind of notion. Inspired by their work,

we define the notion of costar object, which extend to abelian categories the notion

of costar module.

We say that the triple D = (U,F,G) is costar (or, U is a costar object with respect

to F and G) if

F : F−1(gen(V )) ∩ Faithδ � gen(V ) ∩ Faithζ : G

is a duality.

Now, we will give equivalent conditions for the triple D to be costar.

Theorem 1.3.3. The following statements are equivalent:

(a) D is costar;

(b) (1) F : copδ(U) � gen(V ) ∩ Faithζ : G is a duality;

(2) copδ(U) = F−1(gen(V )) ∩ Faithδ;
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(c) (1) δX is an epimorphism for all X ∈ F−1(gen(V ));

(2) ζY is an epimorphism for all Y ∈ gen(V );

(d) F preserves the exactness of an exact sequence of the form

0→ X → Un → Z → 0

if and only if Z ∈ Faithδ.

The next result describes another kind of dualities induced by a pair of right ad-

joint contravariant functors. If it is happens in the classical context of contravariant

functors induced by a module Q, Wisbauer called this module f -cotilting (see [54]).

Theorem 1.3.4. The following statements are equivalent:

(a) F : cog(U) � gen(V ) ∩ Faithζ : G is a duality;

(b) (1) cog(U) = copδ(U);

(2) F is U-w-πf -exact.

The next result is a extension to abelian categories of [12, Corrolary 2.8].

Theorem 1.3.5. The following statements are equivalent:

(a) F : cog(U) � pres(V ) ∩ Faithζ : G is a duality;

(b) (1) cog(U) = cop(U);

(2) F is exact with respect to the short exact sequences

0→ X → Un → Z → 0

with Z ∈ cog(U).

We say that the object U is finitistic-1-F-cotilting if it satisfies the both conditions

of (b) from the above Theorem. Hence, Theorem 1.3.5 characterizes finitistic-1-F-

cotilting objects in terms of a duality.

1.4. Dominant Resolutions. Throughout this section we fix a positive integer n.

Now, we will define the notions of (finitely) dominant resolutions, using the Waka-

matsu terminology (see [50]). Let C be a class in A.

An exact sequence

0→ X → A0 → A1 → . . .
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in A is called dominant-left-C-resolution of X if Ai ∈ C for all i ≥ 0 and the induced

sequence

· · · → F(A1)→ F(A0)→ F(X)→ 0

is also exact. We denote by cog?(C) the class of all objects X ∈ A such that there is

a dominant-left-C-resolution of X.

An exact sequence

0→ X → A0 → A1 → · · · → An−1 → An

in A is called n-dominant-left-C-resolution of X if Ai ∈ C for all i = 0, n and the

induced sequence

F(An)→ F(An−1)→ · · · → F(A1)→ F(A0)→ F(X)→ 0

is also exact. We denote by n-cog?(C) the class of all objects X ∈ A such that there

is a n-dominant-left-C-resolution of X.

An exact sequence

· · · → B1 → B0 → Y → 0

in A is called dominant-right-C-resolution of Y if Bi ∈ C for all i ≥ 0 and the induced

sequence

0→ F(Y )→ F(B0)→ F(B1)→ . . .

is also exact. We denote by gen?(C) the class of all objects Y ∈ A such that there is

a dominant-right-C-resolution of Y .

An exact sequence

Bn → Bn−1 → · · · → B1 → B0 → Y → 0

in A is called n-dominant-right-C-resolution of Y if Bi ∈ C for all i = 0, n and the

induced sequence

0→ F(Y )→ F(B0)→ F(B1)→ · · · → F(Bn−1)→ F(Bn)

is also exact. We denote by n-gen?(C) the class of all objects Y ∈ A such that there

is a n-dominant-right-C-resolution of Y .

The main result of this section is the following theorem:
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Theorem 1.4.1. If C ⊆ Reflδ then

F : n-cog?(C) � n-gen?(F(C)) ∩ Reflζ : G

is a duality.

Example 1.4.2. Let Q be a right R-module with S = End(QR). As we saw in Example

1.1.1, ∆ : Mod-R � S-Mod : ∆′ is a pair of right adjoint contravariant functors. Both

of natural transformations δ and ζ represent the evaluation maps.

(i) Since QR is δ-reflexive we can consider C = {QR}. Then ∆(C) = {SS}. With

these settings, the corresponding duality of Theorem 1.4.1 is

∆ : n-cog?({QR}) � n-gen?({SS}) ∩ Reflζ : ∆′

The class n-cog?({QR}) consists in all right R-modules MR of which there exist an

exact sequence

0→M
f0−→ Q

f1−→ Q
f2−→ . . .

fn−1−→ Q
fn−→ Q

in Mod-R which stays exact under ∆. If we denote ∆(fi) = HomR(fi, Q) by f ∗i , the

induced sequence is

S
f∗n−→ S

f∗n−1−→ . . .
f∗2−→ S

f∗1−→ S
f∗0−→ ∆(M)→ 0.

On the other hand, the class n-gen?({SS}) consists of all left S-modules SN for which

there exists an exact sequence

S
gn−→ S

gn−1−→ . . .
g2−→ S

g1−→ S
g0−→ N → 0

in S-Mod with the induced sequence

0→ ∆′(N)
g∗0−→ Q

g∗1−→ Q
g∗2−→ . . .

g∗n−1−→ Q
g∗n−→ Q

exact in Mod-R.

(ii) We can view S as an (S,R)-bimodule. We set C = {SS}. Then C ⊆ Reflζ and

∆′(C) = {QR}. In this case, the corresponding duality of Theorem 1.4.1 is

∆′ : n-cog?({SS}) � n-gen?({QR}) ∩ Reflδ : ∆
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The class n-cog?({SS}) consists of all left S-modules SN for which there exists an

exact sequence

0→ N
f0−→ S

f1−→ S
f2−→ . . .

fn−1−→ S
fn−→ S

in S-Mod with the induced sequence

Q
f∗n−→ Q

f∗n−1−→ . . .
f∗2−→ Q

f∗1−→ Q
f∗0−→ ∆′(N)→ 0

exact in Mod-R. The class n-gen?({QR}) consists of all right R-modules MR for

which exists an exact sequence

Q
gn−→ Q

gn−1−→ . . .
g2−→ Q

g1−→ Q
g0−→M → 0

such that the induced sequence

0→ ∆(M)
g∗0−→ S

g∗1−→ S
g∗2−→ . . .

g∗n−1−→ S
g∗n−→ S

is also exact. �

Example 1.4.3. Let G be a group and let R be a G-graded unital ring. We con-

sider Q ∈ Modgr-R with S = ENDR(Q). As we saw in Example 1.1.2, Hgr
R :

Modgr-R � S-Modgr : SHgr is a pair of right adjoint contravariant functors. The eval-

uation maps are δQR : 1Modgr-R −→ HOMS(HOMR(−, Q), Q) and ζSQ : 1S-Modgr −→

HOMR(HOMS(−, Q), Q). A graded right R-module M is called QR-gr-reflexive (re-

spectively, QR-gr-tosionless) if δQR

M is an isomorphism (respectively, a monomor-

phism). A graded left S-module N is called SQ-gr-reflexive (respectively, SQ-gr-

tosionless) if ζSQ
N is an isomorphism (respectively, a monomorphism). We denote by

Refgr(QR) (respectively, by Refgr(SQ)) the class of all QR-gr-reflexive right R-modules

(respectively, SQ-gr-reflexive left S-modules).

Let MR be a graded right R-module which is QR-gr-reflexive. If we set the class C

to be add(MR), then C ⊆ Refgr(QR). The corresponding duality of Theorem 1.4.1 is

Hgr
R : n-cog?(add(MR)) � n-gen?(add(HOMR(M,Q))) ∩ Refgr(SQ) : SHgr.

�

Next, we will apply the Theorem 1.4.1, for some particular class C, in order to

obtain generalizations of some known dualities.



DUALITIES AND EQUIVALENCES INDUCED BY ADJOINT FUNCTORS 15

The Case C = add(U). Setting C = add(U) we have, by Lemma 1.2.1, that

C ⊆ Reflδ and F(C) = add(V ). Now Theorem 1.4.1 becomes:

Corollary 1.4.4. The functors F and G induce the following duality:

F : n-cog?(add(U)) � n-gen?(add(V )) ∩ Reflζ : G.

According to Lemma 1.2.10, if F is U -w-πf -exact, we have the following equality

n-gen?(add(V )) ∩ Reflζ = n-gen?(add(V )) ∩ Faithζ .

Corollary 1.4.5. If F is U-w-πf -exact, then

F : n-cog?(add(U)) � n-gen?(add(V )) ∩ Faithζ : G

is a duality.

Theorem 1.4.6. The following statements are equivalent:

(a) F : F−1(n-gen?(add(V )))∩Faithδ � n-gen?(add(V ))∩Faithζ : G is a duality;

(b) (1) F : n-cog?(add(U)) � n-gen?(add(V )) ∩ Faithζ : G is a duality;

(2) n-cog?(add(U)) = F−1(n-gen?(add(V ))) ∩ Faithδ;

(c) (1) δX is an epimorphism, for all X ∈ F−1(n-gen?(add(V )));

(2) ζY is an epimorphism, for all Y ∈ n-gen?(add(V )) ∩ Faithζ;

Moreover, when the above statements hold then

(d) F is exact with respect to the short exact sequences

0→ X → Y → Z → 0

with Y ∈ add(U) and Z ∈ F−1(n-gen?(add(V ))) ∩ Faithδ.

We also have the following theorem which characterizes the duality from the Corol-

lary 1.4.5 in the case n = 0. We remember that copδ(U) denotes the class of all

objects X ∈ A such that there exists an exact sequence 0 → X → Um → Z → 0

with Z ∈ Faithδ.

Theorem 1.4.7. The following statements are equivalent:

(a) (1) F : 0-cog?(add(U)) � 0-gen?(add(V )) ∩ Faithζ : G is a duality;

(2) F is U-w-πf -exact.
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(b) (1) F : copδ(U) � 0-gen?(add(V )) ∩ Faithζ : G is a duality;

(2) δX is an epimorphism, for all X ∈ 0-cog?(add(U)).

For the rest of the section, we assume that B has enough projectives. Let B ∈ B.

A projective resolution

· · · → P1 → P0 → Y → 0

of Y is called finitely-add(B)-generated if Pi ∈ add(B) for all i ≥ 0. We will denote by

gen•(add(B)) the class of all objects Y ∈ B such that there exists a finitely-add(B)-

generated projective resolution of Y .

A projective resolution

· · · → Pn → Pn−1 → · · · → P1 → P0 → Y → 0

of Y is called n-finitely-add(B)-generated if Pi ∈ add(B) for all i = 0, n. We will

denote by n-gen•(add(B)) the class of all objects Y ∈ B such that there exists a

n-finitely-add(B)-generated projective resolution of Y .

We also denote by RjG the j-th right derived functor of G. We consider the following

orthogonal classes:

⊥<nB = {Y ∈ B | RjG(Y ) = 0, for all 0 < j < n}

and

⊥B = {Y ∈ B | RjG(Y ) = 0, for all j ≥ 1}.

If V is projective in B, it is easy to show that the equality

n-gen?(add(V )) = ⊥<nB ∩ n-gen•(add(V ))

holds. By Corollary 1.4.4, we obtain the following result:

Corollary 1.4.8. If V is a projective object in B, then

F : n-cog?(add(U)) � ⊥<nB ∩ n-gen•(add(V )) ∩ Reflζ : G

is a duality.
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Using the above corollary, we obtain the following dualities, which are generaliza-

tions of [50, Proposition 4.1 and Theorem 4.2] to abelian categories. Now we suppose

that both abelian categories A and B have enough projectives. We also consider the

perpendicular class ⊥A = {X ∈ A | RjF(X) = 0, for all j ≥ 1}, where RjF is the

j-th right derived functor of F.

Corollary 1.4.9. Suppose that V is a projective object in B. Let A be a δ-reflexive

and projective object in A. Then:

(a) F : cog?(add(U)) � ⊥B ∩ gen•(add(V )) ∩ Reflζ : G is a duality;

(b) G : cog?(add(F(A))) � ⊥A ∩ gen•(add(A)) ∩ Reflδ : F is a duality.

Corollary 1.4.10. Suppose that V is a projective object in B. Let A be a δ-reflexive

and projective object in A. Then

F : ⊥A ∩ gen•(add(A)) ∩ cog?(add(U)) �

� ⊥B ∩ gen•(add(V )) ∩ cog?(add(F(A))) : G

is a duality.

Finitistic-n-F-cotilting. Let A be an object in A.

We say that X is n-finitely-A-copresented if there is an exact sequence

0→ X → Am0 → Am1 → · · · → Amn−2 → Amn−1 ,

where all mk are positive integers. We denote by n-cop(A) the class of all n-finitely-

A-copresented objects. In particular, 1-cop(A) = cog(A) and 2-cop(A) = cop(A).

We say that Y is n-finitely-A-presented if there is an exact sequence

Amn−1 → Amn−2 → · · · → Am1 → Am0 → Y → 0,

where all mk are positive integers. We denote by FPn(A) the class of all n-finitely-

A-presented objects. In particular, FP1(A) = gen(A) and FP2(A) = pres(A).

An object A is called n-wf -F-exact if every short exact sequence in A of the form

0 → X → Am → Z → 0, with Z ∈ n-cop(A), stays exact under F. An object A is

called finitistic-n-F-cotilting if A is n-wf -F-exact and n-cop(A) = (n+ 1)-cop(A).

We remind that is assumed that B has enough projectives.
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Lemma 1.4.11. Assume that U is finitistic-n-F-cotilting. If X ∈ n-cop(U) then

there is a long exact sequence

0→ X −→ Um0 −→ Um1 −→ Um2 −→ . . .

with the induced sequence

. . . −→ F(Um2) −→ F(Um1) −→ F(Um0) −→ F(X)→ 0

being also exact.

Assume that V = F(U) is a projective object in B. We set C = {Uk | k ∈ N∗}. It

follows that C ⊆ Reflδ and F(C) = {V k | k ∈ N∗}.

Lemma 1.4.12. If U is finitistic-n-F-cotilting, then we have:

(a) n-cog?(C) = n-cop(U);

(b) n-gen?(F(C)) ∩ Reflζ = ⊥<nB ∩ FP(n+1)(V ) ∩ Faithζ;

(c) n-gen?(F(C)) ∩ Reflζ = ⊥B ∩ FP(n+1)(V ) ∩ Faithζ.

For the next result, it is not necessary for the abelian category B to have enough

projectives.

Proposition 1.4.13. If C ⊆ Reflδ, then the following statements hold:

(a) If X ∈ Reflδ with F(X) ∈ n-gen?(F(C)) then X ∈ n-cog?(C);

(b) If n-gen?(F(C))∩Faithζ ⊆ Reflζ then F is exact with respect to the short exact

sequences

0→ X
f−→ Y

g−→ Z → 0

with Y ∈ C and Z ∈ Reflδ ∩ F−1(n-gen?(F(C))).

According to Proposition 1.4.13 and since n-gen?(F(C)) = ⊥<nB∩FP(n+1)(V ), where

C = {Uk | k ∈ N∗}, we have the following corollary:

Corollary 1.4.14. Let X ∈ Reflδ such that F(X) ∈ ⊥<nB ∩ FP(n+1)(V ). Then

X ∈ (n+ 1)-cop(U).

The next theorem is a generalization of [12, Theorem 2.7].



DUALITIES AND EQUIVALENCES INDUCED BY ADJOINT FUNCTORS 19

Theorem 1.4.15. The following statements are equivalent for an object U ∈ Reflδ

with F(U) = V projective object in B and a positive integer n:

(a) U is finitistic-n-F-cotilting;

(b) F : n-cop(U) � ⊥<nB ∩ FP(n+1)(V ) ∩ Faithζ : G is a duality;

(c) F : n-cop(U) � ⊥B ∩ FP(n+1)(V ) ∩ Faithζ : G is a duality.

1.5. The add(U)-coplex Category. By CompA will be denoted the category of all

complexes in A. We also denote by Hn(C) the n-th homology of C, for some complex

C ∈ CompA and for some integer n. For basic properties of the category CompA

we refer to [46, Chapter 10]. Throughout this section we suppose that the abelian

category B has enough projectives. We also assume that V = F(U) is a projective

object in B.

Consider an object A ∈ A.

Definition 1.5.1. A complex

C : C0
σ1−→ C1

σ2−→ C2
σ3−→ C3

σ4−→ . . .

in A is called add(A)-coplex (or, semi-dominant-right-add(A)-resolution) if the fol-

lowing condition are satisfied:

(1) Ck ∈ add(A), for all k ≥ 0;

(2) The induced complex

F(C) : . . .
F(σ4)−→ F(C3)

F(σ3)−→ F(C2)
F(σ2)−→ F(C1)

F(σ1)−→ F(C0)

is an exact sequence in B.

Definition 1.5.2. Let C and C ′ be two add(A)-coplexes in A. A sequence of morphisms

f = (f0, f1, f2, f3, ...), where fk ∈ HomA(Ck, C
′
k), is called chain map between add(A)-

coplexes C and C ′ if the following diagram is commutative

C0

σ1 //

f0

��

C1

σ2 //

f1

��

C2

σ3 //

f2

��

C3

σ4 //

f3

��

. . .

C ′0
σ′1 // C ′1

σ′2 // C ′2
σ′3 // C ′3

σ′4 // . . .

i.e. fk ◦ σk = σ′k ◦ fk−1
, for all integers k ≥ 1.
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Definition 1.5.3. Let C and C ′ be two add(A)-coplexes.

(a) Let f = (f0, f1, f2, f3, . . . ) : C → C ′ be a chain map between add(A)-coplexes C

and C ′. We say that f is null homotopic (or, f is homotopic to zero) if there are, for

all k ≥ 1, morphisms sk : Ck → C ′k−1 in A such that:

(1) fk = sk+1 ◦ σk+1 + σ′k ◦ sk, for all integers k ≥ 1;

(2) f0 = s1 ◦ σ1.

The sequence s = (s1, s2, s3, . . . ) is called a homotopy of f (or, a homotopy between

f and 0). The morphisms are illustrated in the following diagram:

C0

σ1 //

f0

��

C1

σ2 //

f1

��

s1

~

C2

σ3 //

f2

��

s2

~

C3

σ4 //

f3

��

s3

~

. . .

s4

~

C ′0
σ′1 // C ′1

σ′2 // C ′2
σ′3 // C ′3

σ′4 // . . .

The condition for s to be a homotopy of f says that each vertical map is the sum of

the sides of the parallelogram containing it.

(b) Let f = (f0, f1, f2, f3, . . . ) : C → C ′ and g = (g0, g1, g2, g3, . . . ) : C → C ′ be two

chain maps. We say that f and g are homotopic (or, f is homotopic to g), written

f ' g, if

f − g = (f0 − g0, f1 − g1, f2 − g2, f3 − g3, . . . ) : C → C ′

is a null homotopic chain map. A homotopy between f − g and 0 is also called a

homotopy between f and g. The homotopic relation ” ' ” is a additive equivalence

relation on the set of chain maps f : C → C ′. We denote by [f ] the homotopy

(equivalence) class of f .

(c) We say that C and C ′ have the same homotopy type if there exists two chain

maps f = (f0, f1, f2, f3, . . . ) : C → C ′ and g = (g0, g1, g2, g3, . . . ) : C ′ → C such that

[g ◦ f ] = [(g0 ◦ f0, g1 ◦ f1, g2 ◦ f2, g3 ◦ f3, . . . )] ' [(1C0 , 1C1 , 1C2 , 1C3 , . . . )] = [1C]

and

[f ◦ g] = [(f0 ◦ g0, f1 ◦ g1, f2 ◦ g2, f3 ◦ g3, . . . )] ' [(1C′0 , 1C′1 , 1C′2 , 1C′3 , . . . )] = [1C′ ].

Now we define the category of add(A)-coplexes, denoted by add(A)-coplex, as fol-

lows:



DUALITIES AND EQUIVALENCES INDUCED BY ADJOINT FUNCTORS 21

• The Objects consisting in the class of all add(A)-coplexes C;

• The Morphisms, [f ] : C → C ′, consisting in the set of all homotopy classes of

chain maps f : C → C ′. More exactly,

Homadd(A)-coplex(C, C ′) = {[f ] | f : C → C ′ is a chain map}

Lemma 1.5.4. Let C : C0
σ1−→ C1

σ2−→ C2
σ3−→ C3

σ4−→ . . . be a complex in A with

Ck ∈ add(U), for all k ≥ 0. Then the following statements hold:

(a) C is an add(U)-coplex if and only if F(C) is a finitely-add(V )-generated pro-

jective resolution of H0(F(C));

(b) If f, g : C → C ′ are homotopic chain maps between complexes C and C ′, then

H0(F(f)) = H0(F(g)).

Definition 1.5.5. We define the functor FU : add(U)-coplex → gen•(add(V )) as fol-

lows:

• On Objects: FU(C) = H0(F(C)), for each C ∈ add(U)-coplex;

• On Morphisms: FU([f ]) = H0(F(f)), for each [f ] ∈ add(U)-coplex.

Theorem 1.5.6. The functor FU is a well defined contravariant functor.

Definition 1.5.7. We define the functor GU : gen•(add(V )) → add(U)-coplex as fol-

lows:

• On objects. Let Y ∈ gen•(add(V )). Then Y has a finitely-add(V )-generated

projective resolution

P(Y ) = . . .
∂3−→ P2

∂2−→ P1
∂1−→ P0

∂0−→ Y → 0.

Applying the functor G to the deleted projective resolution P(Y ), we have

the following complex in A

G(P(Y )) = G(P0)
G(∂1)−→ G(P1)

G(∂2)−→ G(P2)
G(∂3)−→ . . .

Since P(Y ) is finitely-add(V )-generated, we have Pk ∈ add(V ), for all k ≥ 0,

and, since ζ : 1add(V ) → FG is a natural isomorphism, the following diagram
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is commutative with the vertical maps being isomorphisms

P(Y ) = . . .
∂3 // P2

∂2 //

ζP2

��

P1

∂1 //

ζP1

��

P0

ζP0

��

FG(P(Y )) = . . .
FG(∂3)

// FG(P2)
FG(∂2)

// FG(P1)
FG(∂1)

// FG(P0)

Since the top row is an exact sequence, it follows that the bottom row is an ex-

act sequence. By Lemma 1.2.1, G(Pk) ∈ add(U), for all k ≥ 0. Thus G(P(Y ))

is a complex in A with all terms G(Pk) ∈ add(U) and the induced sequence

F(G(P(Y ))) being an exact sequence. Therefore G(P(Y )) is a add(U)-coplex.

We set

GU(Y ) := G(P(Y )) ∈ add(U)-coplex.

• On morphisms. Let φ ∈ Homgen•(add(V ))(Y, Y
′). Since Y ∈ gen•(add(V )), Y

has a finitely-add(V )-generated projective resolution

P(Y ) = . . .
∂4−→ P3

∂3−→ P2
∂2−→ P1

∂1−→ P0
∂0−→ Y → 0.

Since Y ′ ∈ gen•(add(V )), Y ′ has a finitely-add(V )-generated projective reso-

lution

P(Y ′) = . . .
∂′4−→ P ′3

∂′3−→ P ′2
∂′2−→ P ′1

∂′1−→ P ′0
∂′0−→ Y ′ → 0.

Since φ ∈ Homgen•(add(V ))(Y, Y
′), we have φ ∈ HomB(Y, Y ′), hence φ lifts to a

chain map

f = (. . . , f3, f2, f1, f0) : P(Y )→ P(Y ′),

as in the following diagram

. . .
∂4 // P3

∂3 //

f3

�

P2

∂2 //

f2

�

P1

∂1 //

f1

�

P0

∂0 //

f0

�

Y //

φ

��

0

. . .
∂′4 // P ′3

∂′3 // P ′2
∂′2 // P ′1

∂′1 // P ′0
∂′0 // Y ′ // 0

Applying the functor G to the chain map f , we get a chain map in A

G(f) = (G(f0),G(f1),G(f2),G(f3), . . . ) : G(P(Y ′))→ G(P(Y ))

illustrated in the diagram below
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G(P ′0)
G(∂′1)

//

G(f0)

��

G(P ′1)
G(∂′2)

//

G(f1)

��

G(P ′2)
G(∂′3)

//

G(f2)

��

G(P ′3)
G(∂′4)

//

G(f3)

��

. . .

G(P0)
G(∂1)

// G(P1)
G(∂2)

// G(P2)
G(∂3)

// G(P3)
G(∂4)

// . . .

Since G(P(Y )) and G(P(Y ′)) are add(U)-coplexes, it follows that [G(f)] is a

morphism in add(U)-coplex, i.e. [G(f)] ∈ Homadd(U)-coplex(G(P(Y ′)),G(P(Y ))).

We set

GU(φ) = [G(f)] ∈ Homadd(U)-coplex(GU(Y ′),GU(Y )).

Theorem 1.5.8. The functor GU : gen•(add(V ))→ add(U)-coplex is a well-defined

and contravariant functor.

Let H : A −→ B be an additive and contravariant functor. Then, for every pair of

objects X, Y ∈ A, H induces a map HX,Y : HomA(X, Y ) −→ HomB(H(Y ), H(X)),

defined by HX,Y (α) := H(α).

• We say that H is faithful, if the map HX,Y is injective, for every pair of objects

X, Y ∈ A.

• We say that H is full, if the map HX,Y is surjective, for every pair of objects

X, Y ∈ A.

• We say that H is dense, if it satisfies the following condition, denoted by (#):

For any object Y ∈ B, there is an object X ∈ A

and an isomorphism H(X) ∼= Y.

Theorem 1.5.9. The functor FU : add(U)-coplex → gen•(add(V )) is full, faithful

and satisfies condition (#).

Theorem 1.5.10. The functor GU : gen•(add(V )) → add(U)-coplex is full, faithful

and satisfies condition (#).

Theorem 1.5.11. The functors FU and GU induce the following duality

FU : add(U)-coplex � gen•(add(V )) : GU
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2. Equivalences Induced by Adjoint Functors

2.1. Introduction. Throughout this chapter, we consider a pair of additive and

covariant functors F : A � B : G between abelian categories such that G is a left

adjoint to F, i.e. there are natural isomorphisms

ϕX,M : HomA(G(X),M)→ HomB(X,F(M)),

for all M ∈ A and for all X ∈ B. Then, they induce two natural transformations

φ : GF→ 1A, defined by φM = ϕ−1
F(M),M(1F(M))

and

θ : 1B → FG, defined by θX = ϕX,G(X)(1G(X)).

We note that F is left exact and G is right exact. Moreover, they satisfy the identities

F(φM) ◦ θF(M) = 1F(M)

and

φG(X) ◦G(θX) = 1G(X),

for all M ∈ A and for all X ∈ B. We also assume that all considered subcategories

are isomorphically closed.

The classical example of such a pair of functors is the following:

Example 2.1.1. Let R and S be two unital associative rings and let SQR be a (S,R)-

bimodule. Then

F(−) = HomR(Q,−) : Mod-R � Mod-S : −⊗S Q = G(−)

and

F(−) = HomS(Q,−) : S-Mod � R-Mod : Q⊗R − = G(−)

are pairs of additive and covariant functors. Moreover, the tensor functor −⊗S Q (re-

spectively, Q⊗R −) is an adjoint on the left of the functor HomR(Q,−) (respectively,

HomS(Q,−)). �

The next two examples were presented by Castaño-Iglesias, Gómez-Torrecillas and

Wisbauer in [19]:
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Example 2.1.2. Let G be a group. If R =
⊕

x∈GRx is a G-graded ring, we will

denote by R-Modgr the category of all G-graded unital left R-modules. If M,N ∈

R-Modgr, we consider the G-graded abelian group HOMR(M,N) whose homogeneous

component at x is the subgroup of HomR(M,N) consisting of all R-homomorphisms

f : M → N such that f(My) ⊆ Nyx, for all y ∈ G. We note that S = HOMR(M,M) =

ENDR(M) is a G-graded ring and M has a G-graded (R, S)-bimodule structure, in

sense that Rx · My · Sz ⊆ Mxyz, for every x, y, z ∈ G. If T is a G-graded unital

left S-module, then the unital left R-module M ⊗S T has a G-graded left R-module

structure, where the homogeneous component at x is (M ⊗S T )x = {
∑

yz=xmy ⊗ tz |

my ∈My, tz ∈ Tz}. For x ∈ G, we denote by Mx the left R-module M endowed with

a new grading given by (Mx)y = Myx, for all y ∈ G.

If Q ∈ R-Modgr with ENDR(Q) = S, then

F(−) = HOMR(Q,−) : R-Modgr � S-Modgr : Q⊗S − = G(−)

is a pair of additive and covariant functors. Moreover, the functor Q ⊗S − is a left

adjoint to the functor HOMR(Q,−). �

Example 2.1.3. Let C be a coalgebra over a commutative ring R with identity. We

denote by MC the category of all right C-comodules. This category is a Grothendieck

category if and only if C is flat as R-module. A right C-comodule M is called quasi-

finite if the functor −⊗RM : Mod-R→MC has a left adjoint.

If Q is a quasi-finite right C-comodule and D = h(Q,Q) is the coendomorphism

coalgebra, then

F(−) = −�D Q : MD �MC : HC(Q,−) = G(−)

is a pair of additive and covariant functors, where −�DQ is the cotensor functor and

HC(Q,−) is the cohom functor induced by Q. Moreover, HC(Q,−) is left adjoint to

−�D Q. �

The following example is used by Breaz in [10].

Example 2.1.4. Let R be a ring and Σ be a multiplicatively closed set of non-zero

integers. We consider the category of fractions Z[Σ−1]Mod-R which has as objects all



DUALITIES AND EQUIVALENCES INDUCED BY ADJOINT FUNCTORS 26

the right R-modules and if M,N ∈ Mod-R, then HomZ[Σ−1]Mod-R(M,N) = Z[Σ−1]⊗Z

HomR(M,N). There is a canonical functor q : Mod-R → Z[Σ−1]Mod-R. By [29],

every pair of adjoint functors F : Mod-R � Mod-S : G induces a canonical pair of

adjoint functors qF : Z[Σ−1]Mod-R � Z[Σ−1]Mod-S : qG such that qF = (qF )q and

qG = (qG)q (here q denotes both the canonical functors Mod-R → Z[Σ−1]Mod-R

and Mod-S → Z[Σ−1]Mod-S).

Starting with the setting presented in Example 2.1.1, we have that

F(−) = qHomR(Q,−) : Z[Σ−1]Mod-R � Z[Σ−1]Mod-S : q(−⊗S Q) = G(−)

is a pair of adjoint covariant functors. �

An object M ∈ A (respectively, X ∈ B) is called φ-faithful (respectively, θ-faithful)

if φM (respectively, θX) is a monomorphism. We denote by Faithφ (respectively,

Faithθ) the class of all φ-faithful (respectively, θ-faithful) objects. An object M ∈ A

(respectively, X ∈ B) is called φ-generated (respectively, θ-generated) if φM (respec-

tively, θX) is an epimorphism. We denote by Genφ (respectively, Genθ) the class of

all φ-generated (respectively, θ-generated) objects. An object M ∈ A (respectively,

X ∈ B) is called F-static (respectively, F-adstatic) if φM (respectively, θX) is an iso-

morphism. We denote by StatF (respectively, by AdstatF) the class of all F-static

(respectively, F-adstatic) objects.

2.2. Preliminaries. In the following lemma, we prove some closure properties of the

classes defined in Section 2.1. This result is quite often used throughout this chapter.

Lemma 2.2.1. The following assertions hold:

(a) F(A) ⊆ Faithθ and G(B) ⊆ Genφ;

(b) F(StatF) = AdstatF and G(AdstatF) = StatF;

(c) The class Genφ is closed with respect to factors;

(d) The class Faithθ is closed with respect to subobjects;

(e) StatF and AdstatF are closed with respect to finite direct sums and direct

summands.

Moreover, if U is an F-static object with F(U) = V then:

(f) add(U) ⊆ StatF and add(V ) ⊆ AdstatF;
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(g) F(add(U)) = add(V ) and G(add(V )) = add(U).

Corollary 2.2.2. If 0 → X
f−→ Y

g−→ Z → 0 is an exact sequence in B, then

ImG(f) = KerG(g) ∈ Genφ.

Lemma 2.2.3. If 0 → K
f−→ M

g−→ N → 0 is an exact sequence in A, then the

unique morphism β, for which the following diagram with exact rows

GF(K)
GF(f)−−−→ GF(M)

G(π)−−−→ G(ImF(g)) −−−→ 0

φK

y yφM yβ
0 −−−→ K

f−−−→ M
g−−−→ N −−−→ 0

is commutative, is given by the formula β = φN ◦ G(σ), where π and σ comes from

the canonical decomposition of F(g).

Lemma 2.2.4. If 0 → X
f−→ Y

g−→ Z → 0 is an exact sequence in B, then the

unique morphism α, for which the following diagram with exact rows

0 −−−→ X
f−−−→ Y

g−−−→ Z −−−→ 0

α

y yθY yθZ
0 −−−→ F(ImG(f))

F(σ)−−−→ FG(Y )
FG(g)−−−→ FG(Z)

is commutative, is given by the formula α = F(π) ◦ θX , where π and σ comes from

the canonical decomposition of G(f).

Next, we list some lemmas which characterizes F-static (respectively, F-adstatic)

terms of short exact sequences.

Lemma 2.2.5. Let 0 → K
f−→ M

g−→ N → 0 be an exact sequence in A, with

M ∈ StatF and F(g) an epimorphism. Then K ∈ Genφ if and only if N ∈ StatF.

Lemma 2.2.6. Let 0→ K
f−→M

g−→ N → 0 be an exact sequence in A, with M ∈

StatF and K ∈ Genφ. Then F(g) is an epimorphism if and only if ImF(g) ∈ AdstatF.

Lemma 2.2.7. Let 0 → K
f−→ M

g−→ N → 0 be an exact sequence in A, with

M ∈ StatF and K ∈ Genφ. Then K ∈ StatF if and only if GF(f) is a monomorphism.

Lemma 2.2.8. Let 0 → K
f−→ M

g−→ N → 0 be an exact sequence in A, with

M ∈ StatF and K ∈ Genφ. Then N ∈ StatF if and only if GF(g) is an epimorphism.
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Lemma 2.2.9. Let 0 → X
f−→ Y

g−→ Z → 0 be an exact sequence in B such

that Y ∈ AdstatF and G(f) is a monomorphism. Then Z ∈ Faithθ if and only if

X ∈ AdstatF.

Lemma 2.2.10. Let 0 → X
f−→ Y

g−→ Z → 0 be an exact sequence in B such

that Y ∈ AdstatF and Z ∈ Faithθ. Then G(f) is a monomorphism if and only if

ImG(f) = KerG(g) ∈ StatF.

Lemma 2.2.11. Let 0→ X
f−→ Y

g−→ Z → 0 be an exact sequence in B, with Y ∈

AdstatF and Z ∈ Faithθ. Then Z ∈ AdstatF if and only if FG(g) is an epimorphism.

Lemma 2.2.12. Let 0→ X
f−→ Y

g−→ Z → 0 be an exact sequence in B, with Y ∈

AdstatF and Z ∈ Faithθ. Then X ∈ AdstatF if and only if FG(f) is a monomorphism.

If M is an object in A, then the object Im(φM) is called F-socle of M and it is

denoted by SF(M). If X is an object in B, then the object Ker(θX) is called F-radical

of X and it is denoted by RF(X).

From the identities F(φM)◦θF(M) = 1F(M) and φG(X) ◦G(θX) = 1G(X), we have that

θF(M), G(θX) are monomorphisms and F(φM), φG(X) are epimorphisms.

Lemma 2.2.13. Let M ∈ A and X ∈ B. The following assertions hold:

(a) If i : SF(M) → M is the canonical inclusion, then F(i) : F(SF(M)) → F(M)

is an isomorphism;

(b) If q : X → X/RF(X) is the canonical epimorphism, then G(q) : G(X) →

G(X/RF(X)) is an isomorphism.

Lemma 2.2.14. Let M ∈ A and Y ∈ B. The following assertions hold:

(a) If K is a subobject of M , with K ∈ Genφ, then K is a subobject of SF(M);

(b) If X is a subobject of Y , with Y/X ∈ Faithθ, then RF(Y ) is a subobject of X;

(c) If f : X → Y is a monomorphism, i.e. X is a subobject of Y , such that

G(f) = 0, then X is a subobject of RF(Y ).

Lemma 2.2.15. If M ∈ A and X ∈ B, then:

(a) (1) SF(M) ∈ Genφ;
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(2) SF(M) ∈ Faithφ if and only if M ∈ Faithφ;

(b) (1) X/RF(X) ∈ Faithθ;

(2) X/RF(X) ∈ Genθ if and only if X ∈ Genθ.

Remark 2.2.16. If M ∈ A and X ∈ B then:

(i) SF(M) is the biggest φ-generated subobject of M ;

(ii) RF(X) is the smallest subobject of X such that X/RF(X) ∈ Faithθ.

Lemma 2.2.17. Let M ∈ A and X ∈ B. Then:

(a) If M ∈ Genφ, then M/SF(M) ∈ Genφ;

(b) If X ∈ Faithθ, then RF(X) ∈ Faithθ.

2.3. Closure Properties with Respect to θ-Faithful Factors.

Proposition 2.3.1. Let Y be an F-adstatic object. The following statements are

equivalent:

(a) If Z is a θ-faithful factor of Y , then Z ∈ AdstatF;

(b) If 0 → K
f−→ G(Y )

g−→ N → 0 is an exact sequence in A with K ∈ Genφ,

then F(g) is an epimorphism.

Corollary 2.3.2. Let Y be an F-adstatic object which satisfies the equivalent condi-

tions from the previous result. If K ∈ Genφ is a subobject of G(Y ) then G(Y )/K is

F-static.

Proposition 2.3.3. Let F : A � B : G be an equivalence between the full addi-

tive subcategories A and B of A and B, respectively. The following statements are

equivalent:

(a) B is closed under θ-faithful factors;

(b) (1) A is closed with respect to factors modulo φ-generated subobjects;

(2) F is exact with respect to the short exact sequences 0 → K
f−→ M

g−→

N → 0 with M ∈ A and K ∈ Genφ.

Theorem 2.3.4. Let B0 be a full additive subcategory of B consisting in F-adstatic

objects and let A0 = G(B0). Let B be the class of all θ-faithful factors of objects in
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B0 and let A = {M/K | M ∈ A0, K ∈ Genφ}. Then the following statements are

equivalent:

(a) F : A� B : G is an equivalence and B is closed under θ-faithful factors;

(b) B ⊆ AdstatF;

(c) If 0 → K
f−→ M

g−→ N → 0 is an exact sequence in A, with M ∈ A0 and

K ∈ Genφ, then F(g) is an epimorphism.

Example 2.3.5. Let U be an F-static object with F(U) = V . Since V is F-adstatic,

hence V k is F-adstatic, for all positive integers k, we could consider B0 = {V k | k ∈

N∗}. Then A0 = {Uk | k ∈ N∗}. We observe that B = gen(V ) ∩ Faithθ and the class

A consists in all objects N ∈ A such that N = Un/K with K ∈ Genφ and n ∈ N∗.

Example 2.3.6. Let R be an unital associative ring and let Q be a right R-module.

If S = EndR(Q) is the endomorphism ring of Q, then Q has a structure of (S,R)-

bimodule and, as we seen in Example 2.1.1, we have the pair F(−) = HomR(Q,−) :

Mod-R � Mod-S : −⊗SQ = G(−) of additive and covariant functors. Moreover, the

right R-module QR is HomR(Q,−)-static and the right S-module SS is HomR(Q,−)-

adstatic.

(i) If we set B0 = {Sk | k ∈ N∗} then we have A0 = {Qk | k ∈ N∗}, B =

gen(S)∩Faithθ and A consists in the class of all right R-modules N such that

N = Qn/K, for some K ∈ Genφ and n ∈ N∗;

(ii) If we set B0 = {S} then we have A0 = {Q}, B = {Z ∈ B | Z = S/X}∩Faithθ

and A consists in the class of all right R-modules N such that N = Q/K, for

some K ∈ Genφ.

Example 2.3.7. Let G be a group and let R =
⊕

x∈GRx be a G-graded ring. Let

Q ∈ R-Modgr with S = ENDR(Q). Then S is a G-graded ring and Q is a G-

graded (R, S)-bimodule. As we saw in Example 2.1.2, we have the pair F(−) =

HOMR(Q,−) : R-Modgr � S-Modgr : Q ⊗S − = G(−) of additive and covariant

functors. If Q is gr-self-small, i.e. HOMR(Q,−) preserves coproducts of
⊕

x∈GQ
x,

then
⊕

x∈GQ
x is F-static. Moreover, HOMR(Q,

⊕
x∈GQ

x) =
⊕

x∈G S
x. Denoting⊕

x∈GQ
x by U and

⊕
x∈G S

x by V , we have:
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(i) If we set B0 = {V k | k ∈ N∗} then we have A0 = {Uk | k ∈ N∗}, B =

gen(V ) ∩ Faithθ and A consists in the class of all G-graded unital left R-

modules N such that N = Un/K, for some K ∈ Genφ and n ∈ N∗;

(ii) If we set B0 = {V } then we have A0 = {U}, B = {Z ∈ B | Z = V/X}∩Faithθ

and A consists in the class of all G-graded unital left R-modules N such that

N = U/K, for some K ∈ Genφ.

Application. The case add(U).

Let U ∈ StatF with F(U) = V . If we set B0 = add(V ) we have, by Lemma 2.2.1,

that B0 ⊆ AdstatF and A0 = add(U). It is easy to show that B = gen(V ) ∩ Faithθ.

Moreover, in this setting, we can see that A = {M/K |M ∈ add(U), K ∈ Genφ}.

Example 2.3.8. (1) With the settings presented in Example 2.3.6, we could con-

sider U to be the right R-module Q. Then V is the right S-module S. It

follows that B0 = add(S), A0 = add(Q), B = gen(S) ∩ Faithθ and A =

{M/K |M ∈ add(Q), K ∈ Genφ};

(2) Using the settings from Example 2.3.7, we have B0 = add(V ), A0 = add(U),

B = gen(V ) ∩ Faithθ and A = {M/K |M ∈ add(U), K ∈ Genφ}.

Corollary 2.3.9. Let U ∈ StatF with F(U) = V . Let B? = gen(V ) ∩ Faithθ and

let A? = {M/K | M ∈ add(U), K ∈ Genφ}. Then the following statements are

equivalent:

(a) F : A? � B? : G is an equivalence and B? is closed under θ-faithful factors;

(b) B? ⊆ AdstatF;

(c) If 0→ K
f−→M

g−→ N → 0 is an exact sequence in A with M ∈ add(U) and

K ∈ Genφ, then F(g) is an epimorphism;

(d) If 0→ K
f−→ Un g−→ N → 0 is an exact sequence in A with K ∈ Genφ, then

F(g) is an epimorphism.

Corollary 2.3.10. Let A and B be full additive subcategories of A and B, respectively.

Let U ∈ A with F(U) = V . Assume that V k ∈ B, for all positive integers k. Let B? =

gen(V ) ∩ Faithθ and let A? = {M/K | M ∈ add(U), K ∈ Genφ}. If F : A � B : G

is an equivalence with B closed under θ-faithful factors, then F : A? � B? : G is an

equivalence with B? closed under θ-faithful factors.
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For the next results, we assume that the right derived functors of F does exist.

For example, we could consider that the category A has enough injectives or is a

Grothendieck category. We denote by RjF the j-th right derived functor of F. If n is

a positive integer, we also consider the perpendicular class ⊥=nA of all objects M ∈ A

for which RnF(M) = 0.

Corollary 2.3.11. Let A and B be full additive subcategories of A and B, respectively.

Let U ∈ A. Assume that R1F(U) = 0 and Uk ∈ A, for all positive integers k. If

F : A� B : G is an equivalence with the class B closed under θ-faithful factors, then

cog(U) ∩Genφ ⊆ ⊥=1A.

Proposition 2.3.12. Let U ∈ StatF with F(U) = V . Assume that R1F(U) = 0. Let

B? = gen(V ) ∩ Faithθ and let A? = {M/K | M ∈ add(U), K ∈ Genφ}. Then the

following statements hold:

(a) B? ⊆ AdstatF if and only if cog(U) ∩Genφ ⊆ ⊥=1A;

(b) F : A? � B? : G is an equivalence and B? is closed under θ-faithful factors if

and only if cog(U) ∩Genφ ⊆ ⊥=1A.

Proposition 2.3.13. Let F : A � B : G be an equivalence between the full addi-

tive subcategories A and B of A and B, respectively. The following statements are

equivalent:

(a) (1) B is closed under θ-faithful factors;

(2) A = Genφ ∩ F−1(B);

(b) (1) A is closed with respect to φ-faithful factors modulo φ-generated subob-

jects;

(2) If 0 → K
f−→ M

g−→ N → 0 is an exact sequence in A, with M ∈ A,

then F(g) is an epimorphism if and only if K ∈ Genφ.

Theorem 2.3.14. Let B0 be a full additive subcategory of B, consisting of F-adstatic

objects and let A0 = G(B0). Assume that B0 is closed under finite direct sums. Let B

be the class of all θ-faithful factors of objects in gen(B0) and let A = Genφ ∩ F−1(B).

Let A = {M/K |M ∈ A0, K ∈ Genφ}. The following statements are equivalent:

(a) F : A� B : G is an equivalence and B is closed under θ-faithful factors;
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(b) (1) F : A� B : G is an equivalence and B is closed under θ-faithful factors;

(2) A = A;

(c) (1) φM is a monomorphism, for all M ∈ A with F(M) ∈ B;

(2) θX is an epimorphism, for all X ∈ B with X ∈ gen(B0);

(d) (1) A ⊆ A;

(2) If 0 → K
f−→ M

g−→ N → 0 is an exact sequence in A, with M ∈ A0

and K ∈ Genφ, then F(g) is an epimorphism;

(e) (1) A ⊆ A;

(2) If 0 → K
f−→ M

g−→ N → 0 is an exact sequence in A, with M ∈ A0,

then F(g) is an epimorphism if and only if K ∈ Genφ.

Applications Let U ∈ StatF with F(U) = V . Since add(V ) ⊆ AdstatF and

add(V ) is closed under finite direct sums, we could consider B0 = add(V ). Then

A0 = add(U). One can show that B = gen(V ) ∩ Faithθ. Moreover, we have that

A = Genφ ∩ F−1(B) and A = {M/K | M ∈ add(U), K ∈ Genφ}. Now, Theorem

2.3.14 becomes:

Theorem 2.3.15. Let U ∈ StatF with F(U) = V . Let B? = gen(V ) ∩ Faithθ and

let A? = {M/K | M ∈ add(U), K ∈ Genφ}. Let A = Genφ ∩ F−1(B?). Then the

following statements are equivalent:

(a) F : A� B? : G is an equivalence and B? is closed under θ-faithful factors;

(b) (1) F : A? � B? : G is an equivalence and B? is closed under θ-faithful

factors;

(2) A = A?;

(c) (1) φM is a monomorphism, for all M ∈ A with F(M) ∈ gen(V );

(2) θX is an epimorphism, for all X ∈ B with X ∈ gen(V );

(d) (1) A ⊆ A?;

(2) If 0→ K
f−→ Un g−→ N → 0 is an exact sequence in A with K ∈ Genφ,

then F(g) is an epimorphism;

(e) (1) A ⊆ A?;

(2) If 0 → K
f−→ Un g−→ N → 0 is an exact sequence in A then K ∈ Genφ

if and only if F(g) is an epimorphism.
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Corollary 2.3.16. Let A and B be full additive subcategories of A and B, respectively.

Let U ∈ A with F(U) = V . Assume that Uk ∈ A, for all positive integers k and

assume that R1F(U) = 0. If F : A � B : G is an equivalence such that A = Genφ ∩

F−1(B) and B is closed under θ-faithful factors, then cog(U)∩Genφ = cog(U)∩⊥=1A.

We denote by LjG the j-th left derived functor of G. We also consider the perpen-

dicular class =n⊥B = {X ∈ B | LnG(X) = 0}, where n is an integer.

Corollary 2.3.17. Let A and B be full additive subcategories of A and B, respectively.

Let U ∈ A with F(U) = V . Assume that L1G(V ) = 0 and V k ∈ B, for all positive

integers k. Suppose that F : A � B : G is an equivalence with A = Genφ ∩ F−1(B)

and B is closed under θ-faithful factors. Let X ∈ pres(V ). Then X ∈ Faithθ if and

only if X ∈ =1⊥B.
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[46] Rotman J.J., Advanced Modern Algebra, Pearson Education, Inc., New Jersey, 2002.

[47] Rump W., ∗-modules, tilting, and almost abelian categories, Comm. Algebra, 2001, 29(8),

3293-3325.

[48] Stenstrom B., Rings of Quotients, Springer-Verlag LNM, vol. 76, New York, Heidelberg, Berlin,

1970.

[49] Tonolo A., On a finitistic cotilting type duality, Comm. Algebra, 2002, 30(10), 5091-5106.

[50] Wakamatsu T., Tilting modules and Auslander’s Gorenstein property, J. Algebra, 2004, 275(1),

3-39.

[51] Wisbauer R., Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3,

Gordon and Breach, Philadelphia, 1991.

[52] Wisbauer R., Tilting in module categories, Abelian groups, module theory, and topology

(Padova, 1997), Lect. Notes Pure Appl. Math., 1998, 201, Marcel Dekker, New York, 421-444.

[53] Wisbauer R., Static objects and equivalences, Interactions Between Ring Theory and Repre-

sentations of Algebras, F.van Oystaeyen and M.Saorin, Marcel Dekker, 2000, 423-449.

[54] Wisbauer R., Cotilting objects and dualities, In: Representations of Algebras, Sao Paulo, 1999,

Lecture Notes in Pure and Appl. Math., 224, Marcel Dekker, New York, 2002, 215-233.
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