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Introduction

The development of wavelets is fairly recent in applied mathematics, but wavelets

have already had a remarkable impact, being used in a lot of situations. A wavelet is

a wave function carefully constructed so that it has certain mathematical properties.

An entire set of wavelets is constructed from a mother wavelet function and this set

provides building block functions that can be used to describe anything in a large

class of functions.

Wavelets analysis is a refinement of Fourier analysis. The Fourier transform ana-

lyzes a signal in terms of frequency components. If the analyzed signal reveals aspects

like trends, breakdown points, discontinuities in higher derivatives, the Fourier anal-

ysis is ineffective for capturing the details. In this case we will analyze the signal

with a flexible time-frequency window that is automatically adapted, in the sense

that narrow time-window is needed to examine high-frequency content and wide

time-window is allowed when investigating low-frequency components. This good

time-frequency localization is the most advantage that wavelets have over other

methods, especially in statistics. Standard methods in statistical function estima-

tion (kernel smoothers or orthogonal series methods) require certain assumptions

about the smoothness of the function being estimated. With wavelets, which have a

spatial adaptivity property, these requirements are considerably reduced. Wavelets

are connected to the notion of multiresolution analysis, in that, signals, functions,

data, can be examined using a wide variety of resolution levels. Wavelets have an

interdisciplinary flavor. Many of the founders of wavelets analysis concept: Yves

Meyer, Jean Morlet and Alex Grossman were a mathematician, a geophysicist and

physicist respectively.

This thesis presents the advantages of wavelets analysis in the context of statistics

in mathematics, approach being sustained by the following remarkable wavelets

properties: good time frequency localization, fast algorithms in that a big set of

data could be represented through a small amount of wavelets coefficients and their

simplicity of form. Also the thesis contains the development of some classes of linear

4



and positive operators and studies their statistical approximation properties.

The thesis is structured in 3 chapters: Statistical Concepts and Wavelets Analysis,

Nonparametric Regression and Wavelets Estimators being close to many research do-

mains such as: numerical analysis, statistics, functional analysis, mathematical mod-

eling and linear algebra. The correlation between these domains is realized through

wavelets functions as an instrument of nonparametric regression.

The first chapter presents several general aspects of the mathematical regression

model, the concept of statistical convergence and wavelets analysis and is composed

of five paragraphs.

The first paragraph of this chapter contains most of the notions and notations

that will be used throughout the entire work and the most important results that

assumed to be known.

The second paragraph presents the mathematical regression model in the context

of parametric regression. It also describes the linear model of the regression from the

statistical point of view as well the performance criteria of estimators for a linear

model. The estimators are evaluated from a statistical point of view by studying

both their quality and inferences that can be realized on them, assuming that errors

are normal, zero in average, independent and identically distributed. The estimators

are statistically by studying...

The next two paragraphs introduce the concept of linear and positive operator in

the context of functions approximation. They also include the summability matrix

concept, the statistical convergence concept and approximation theorems of type

Bohman-Korovkin in C[a, b]. space. The purpose of these concepts (topics?) is to

build different classes of linear and positive operators of integral or discrete type

and to study their statistical approximation properties.

The last paragraph of this chapter is entirely dedicated to the wavelets analysis

concept. Here, essential elements related to wavelets are described: ortonormated

wavelets basis, multiple resolution analysis, wavelet decomposition and reconstruc-

tion, direct and inverse wavelets transformation.

The second chapter studies the regression model using techniques of the non-

parametric regression based on wavelets functions. This chapter has five paragraphs,

the last four concentrating on its applicability. Nonparametric regression based on

wavelets functions is a significant area of the modern statistics being studied in well

known monographies: Härdle (1992), Green and Silverman (1993), Wand and Jones

(1994), Donoho and Johnstone (1994), Fan (1996), Bowman and Azzalini (1997),

Eubank (1999), Wasserman (2005), Antoniadis (2007).

The first paragraph describes the mathematical model of a noisy signal and
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introduces several methods to eliminate the noise through nonlinear wavelets esti-

mators. These methods are based on the thresholding technique and the Penalized

least-squares wavelets method.

The paragraph A Comparative Study of Two Noise Removing Methods presents

the comparison of the following two wavelets noise removing methods: Minimax

and VisuShrink. These methods are applied to a signal represented by the relative

humidity. The risk is evaluated for both considered cases.

In the paragraph Analysis of Reconstruction Methods with Wavelets Technique

it is estimated a discontinuous function affected by a white noise at levels SNR = 4

and SNR = 10. The reconstruction was made using the penalized least-squares

method, the cross validation method and the SureShrink method. A comparative

analysis of the committed errors is also done for each of the reconstruction case.

In the Application paragraph three signals represented by respiratory rate, heart

rate and blood antioxidant enzymes level are processed using two types of Fast

Haar Wavelets Transforms. The analyzed signals have been recorded for a group of

eight cows exposed to solar radiation. The algorithms for wavelets transforms were

implemented as VBA Macros in Microsoft Excel.

In the last paragraph of this chapter one can see the implementation of the Fast

Daubechies Wavelets Transform. VBA Macros have been used for the implementa-

tion of this algorithm also. This algorithm is then applied for the processing of a

real data of atmospheric temperature.

The third and last chapter presents in a more detail the wavelets estimators.

In order to underline the way in which wavelets estimators are used in the non-

parametric regression the following functions spaces will be used: L2(R), Hölder

Cδ, 0 < δ ≤ 1, Sobolev space, as well as the Besov and Triebel spaces. These

last two spaces model the concept of ”different smooth levels degree” in different

locations more efficiently than classes of smooth functions, having a high statisti-

cal importance. Nonlinear wavelets estimators study the nonparametric regression

from the minimax point of view having an optimal asymptotic character while the

classical linear wavelets estimators are suboptimal in the case of estimation from

the particular Besov and Triebel spaces. This chapter has five paragraphs. The first

three paragraphs contain a more general approach of the denoising term taking

into account the following aspects: smoothness and adaptability of the estimator

reconstructed with soft thresholding technique.

The fourth paragraph describes a certain type of wavelets transforms that char-

acterize the smoothness between different spaces of functions.

The last paragraph of this chapter presents a nonlinear wavelets transforms type
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based on the subdivision scheme. These transforms are tightly related to the con-

struction of wavelets functions through multiresolution analysis. In this paragraph

it is built also a new subdivision scheme that generates the set of quadratic polyno-

mials.
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Chapter 1

Statistical Concepts and Wavelets

Analysis

1.1 Preliminaries

The purpose of this section is to collect information about the functions spaces

that will be used throughout the thesis.

1.1.1 Basic Concepts and Functions Spaces

In this subsection we establish most of the notions and notations that will be

used throughout the work and list, without proof, the most important results that

are assumed to be known.

1.2 Mathematical Regression Model

Regression analysis has its origins in various practical tests that emerge when we

look to understand cause and effect in the study of phenomena. Suppose that each

element of a statistical population possesses a numerical feature X and another Y.

To determine how the values of X affects variable Y accomplishments, it is necessary

to study the possible existing correlations between the two variables.

Consider, as it happens in practice, many exogenous variables or several predic-

tors X1, X2, . . .Xp, for the variable effect Y. Mathematical regression model will be

written as

Y = f (X1, X2, . . .Xp) + ε,

where ε is a random variable that satisfies the following properties relative to the
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mean and variance: E(ε) = 0 and V ar(ε) small.

1.2.1 Linear Model. Performance Criteria

Definition 1.2.1 The linear regressional model between the variables Y and

X1, X2, . . .Xp, is defined below

Y =

p
∑

k=1

αkXk + ε. (1.2.1)

Let’s consider the standard observational regression model, yi = f(xi)+ εi, i = 1, n,

where, (xi, yi), i = 1, n, are sampling data, the sample size n is a power of two

n = 2J , for some positive integer J , xi =
i

n
are equidistant, f(xi) are the values of

the unknown function f, and ε = (ε1, ε2, . . . , εn)T is the white noise. Suppose that

the errors are N(0, 1) distributed. In the context of signal theory f(xi) will be the

original considered signal and yi will be the noisy signal. We estimate the function

f using regression techniques. The estimator of function f will be denoted by f̂ .

There are several performance criteria that optimized provide good estimators.

These include: the loss, the risk and the risk prediction.

Definition 1.2.2 The loss of an estimate f̂ from f is defined as follows

L(f̂ , f)l2(Z) = n−1
∥

∥

∥
f̂ − f

∥

∥

∥

2

l2(Z)
= n−1

n
∑

i=1

(

f̂(xi) − f(xi)
)2

. (1.2.2)

L(f̂ , f)L2(R) =
∥

∥

∥
f̂ − f

∥

∥

∥

2

L2(R)
=

∫ +∞

−∞

(

f̂(x) − f(x)
)2

dt. (1.2.3)

Definition 1.2.3 The risk is the mean value of the loss

R
(

f̂ , f
)

= E
(

L(f̂ , f)
)

. (1.2.4)

Definition 1.2.4 The risk prediction is defined as folows

P
(

f̂ , f
)

= n−1
n

∑

i=1

E (y∗i − f(xi)))
2 , (1.2.5)

where y∗ = (y∗1, . . . y
∗
n) are n new observations which we intend to do, y∗ = f + ε∗,

and ε∗ are independently distributed as N(0, σ2), uncorrelated with the errors of the

ε.
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1.2.2 Performance Criteria Estimators

Definition 1.2.5 An estimator f̂ of the function f is said to be unbiased if we have

E
(

f̂
)

= f.

Definition 1.2.6 The cross validation function of the estimator f̂ is defined below

CV (f) = n−1
n

∑

i=1

E
(

yi − f̂i(xi)
)2

, (1.2.6)

where f̂i is the sample estimator of order i, i = 1, n, obtained by eliminating point

(xi, yi) from the sample.

Definition 1.2.7 An estimator f̂ of the function f is said to be unbiased if we have

lim
n→∞

P
(
∣

∣

∣
f̂n − f

∣

∣

∣
< ε

)

= 1, ∀ε > 0, (1.2.7)

where the notation f̂n shows that the estimator depends on the sample size n.

Definition 1.2.8 An estimator f̂ ′ is called minimax if its maximal risk is minimal

among all estimators, meaning it satisfies

sup
f∈F

R(f̂ ′, f) = inf
f̂

sup
f∈F

R
(

f̂ , f
)

, ∀f ∈ F , (1.2.8)

where F represents a certain class of functions. This type of risk is denoted by

R (n,F) .

1.3 Statistical Convergence

Statistical convergence was introduced in connection with problems of series

summation. The main idea of statistical convergence of a sequence (xn)n∈N is that

the majority, in a certain sense, of its elements converge and we do not care what

happens with other elements. At the same time, it is known that sequences that come

from real life sources are not convergent in the strictly mathematical sense. This

way, the advantage of replacing the uniform convergence by statistical convergence

consists in the fact that the second convergence models and improves the technique

of signal approximation in different functions spaces.
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The idea of statistical convergence was introduced independently by Steinhaus

[111], Fast [49] and Schöenberg [98]. Over the years, statistical convergence has been

discussed in the theory of Fourier analysis [117], ergodic theory and number theory

[25]. Later on, it was further investigated from the sequence of spaces point of view

and linked with the summability theory [55]. Also, it has been studied in connection

with trigonometric series [117], measure theory [82, 83] and Banach space theory

[24].

The study of the statistical convergence for sequences of linear positive operators

was attempted in the year 2002 by A.D. Gadjiev and C. Orhan [57]. The research

field was proved to be extremely fertile, many researchers approaching this subject.

Motivated by this research direction, our interest is to construct different classes of

linear positive operators of discrete or integral type and to study their statistical

approximation properties. We know that any convergent sequence is statistically

convergent but the reverse is not true. The aim is to construct such sequences of

operators that approximate the functions in the statistical sense, but not in the

classical sense.

1.3.1 Linear Positive Operators

Given a non-empty set X, we denote by B(X) the space of all real-valued bounded

functions defined on X, endowed with the norm of the uniform convergence (or the

sup-norm) defined by

‖f‖ := sup
x∈X

|f(x)| , f ∈ B(X).

The set B(X) is a linear subspace of R
X . If X is a topological space, C(X) denotes

the space of all real-valued continuous functions on X. Furthermore, we set

CB(X) := C(X) ∩B(X).

If X is a topological space, then B(X) and CB(X) endowed with the sup-norm,

are Banach spaces.

If X is a topological compact space, then C(X) = CB(X).

Definition 1.3.1 Let X, Y be two linear spaces of real functions. The mapping L :

X → Y is called linear operator if and only if

L(αf + βg) = αL(f) + βL(g), ∀f, g ∈ X, and α, β ∈ R.

The operator L is called positive if and only if ∀f ∈ X, f ≥ 0 implies Lf ≥ 0.
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Remark 1.3.2 The set L := {L : X → Y | L is a linear operator} is a real vector

space.

Proposition 1.3.3 Let L : X → Y be a linear positive operator.

(i) If f, g ∈ X with f ≤ g, then Lf ≤ Lg;

(ii) ∀f ∈ X we have |Lf | ≤ L |f | .

The next result provides a necessary and sufficient condition for the convergence of a

sequence of linear positive operators towards the identity operator. It was indepen-

dently discovered and proved by three mathematicians in three consecutive years:

T. Popoviciu [94] in 1951, H. Bohman [18] in 1952 and P.P. Korovkin [71] ı̂n 1953.

This classical result of approximation theory is mostly known under the name of

Bohman- Korovkin Theorem, because T. Popoviciu’s contribution in [94] remained

unknown for a long time.

Theorem 1.3.4 Let Ln : C([a, b]) → C([a, b]) be a sequence of linear positive op-

erators, n ∈ N. Suppose that (Lnej)n≥1 converges uniformly to ej for j ∈ {0, 1, 2} ,
where e0 = 1, e1(x) = x, e2(x) = x2, x ∈ [a, b]. Then the sequence (Lnf)n≥1

converges uniformly to f on [a, b], for all functions f ∈ C([a, b]).

1.3.2 Matrix Summability

Definition 1.3.5 Let A = (aj,n)j,n∈N
be an infinite real matrix. A sequence (xn)n∈N

is said to be A-summable to a real number s ∈ R if

10 ∀j ∈ N, the series
∞
∑

n=1

aj,nxn converges; let sj be the limit;

20 lim
n→∞

sj = s.

Definition 1.3.6 A summability matrix A is said to be regular if any convergent

sequence is A-summable to its limit.

1.3.3 Convergence in Statistical Sense

Definition 1.3.7 A sequence of real numbers x := (xn)n∈N is said to be statistically

convergent to a real number L if for every ε > 0,

δ ({n ∈ N : |xn − L| ≥ ε}) = 0,
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where

δ(S) := lim
N→∞

1

N

N
∑

k=1

χ
S

(k) ,

is the density of S ⊆ N. Here χ
S

represents the characteristic function of S.

We denote this limit by st− limn xn = L ([57]).

Remark 1.3.8 Any convergent sequence is statistically convergent. The converse is

not true. This statement can be easily illustrated by the following example:

Example 1.3.9 Let us consider the sequence (xn)n∈N,

xn =







i, for i = n3, n = 1, 2, 3 . . .
1

i2 + 1
, otherwise.

The limit lim
n
xn does not exist, but st − lim

n
xn = 0 because δ(S) = 0, where

S = {n3, n = 1, 2, 3, . . .} .

Definition 1.3.10 Let A = (aj,n)j,n∈N
be a non-negative regular summability ma-

trix. A real sequence (xn)n∈N is said to be A-statistically convergent to the real number

L if, ∀ε > 0,

lim
j→∞

∑

n:|xn−L|≥ε

aj,n = 0.

We denote this limit by stA − limn xn = L ([45]).

1.3.4 Bohman-Korovkin Type Theorems

In this section we enunciate two Bohman-Korovkin type statistical approxima-

tion theorems. This theorems was proved by A.D. Gadjiev and C. Orhan [57].

1.4 Statistical Convergence by Positive Linear

Operators

We consider the following sequence of positive linear operators defined in [93]

(Tnf)(x) =
un

Fn(x, t)

∞
∑

v=0

f

(

v

an(v)

)

C(n)
v (t)xv, f ∈ C[0, b], (1.4.1)

13



where un ≥ 0 for any n ∈ N and

stA − lim
n
un = 1, (1.4.2)

x ∈ [0, b], t ∈ (−∞, 0] and {Fn(x, t)} is the set of generating functions for the

sequence of functions {C(n)
v (t)}v∈N0

, in the form ,

Fn(x, t) =

∞
∑

v=0

C(n)
v (t)xv, (1.4.3)

and C
(n)
v (t) ≥ 0 for t ∈ (−∞, 0].

Assume that the following conditions hold

(i)Fn+1(x, t) = p(x)Fn(x, t), p(x) < M <∞, x ∈ (0, 1), (1.4.4)

(ii)BtC
(n+1)
v−1 (t) = an(v)C

(n)
v−1(t) − vC

(n)
v (t), B ∈ [0, a], C

(n)
v (t) = 0 for v ∈ Z

− :=

{. . . ,−3,−2,−1},
(iii) max{v, n} ≤ an(v) ≤ an(v + 1).

By using (1.4.3) we observe that

(Tne0)(x) = un cu e0(y) = 1. (1.4.5)

We will study the A-statistical convergence of the sequence of positive linear

operators defined by (1.4.1). The obtained results have been published in the paper

R. Sobolu [100].

Theorem 1.4.1 (R. Sobolu, [100]) Let A = (aj,n)j,n∈N be a non-negative regular

summability matrix. Then we have

stA − lim
n→∞

‖Tne1 − e1‖C[0,b] = 0, (1.4.6)

where the operator Tn is defined by (1.4.1).

Theorem 1.4.2 (R. Sobolu, [100]) Let A = (aj,n)j,n∈N be a non-negative regular

summability matrix. Then we have

stA − lim
n→∞

‖Tne2 − e2‖C[0,b] = 0, (1.4.7)

where the operator Tn is defined by (1.4.1).
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Using Theorem 1.4.1 and Theorem 1.4.2 one obtains the following A-statistical ap-

proximation theorem for the sequence (Tn)n∈N
given by (1.4.1).

Theorem 1.4.3 (R. Sobolu, [100]) Let A = (aj,n)j,n∈N be a non-negative regular

summability matrix. Then, for all f ∈ C[0, b] we have

stA − lim
n

‖Tnf − f‖C[0,b] = 0. (1.4.8)

Next we will construct an integral type generalization of the positive linear oper-

ators defined by (1.4.1) and present an A- statistical approximation result for these

operators. These results can be found in the paper R. Sobolu [101].

We introduce the sequence of operators, (T ∗
n)n∈N

as follows

(T ∗
nf)(x) =

un

Fn(x, t)

∞
∑

v=0

C(n)
v (t)xv

∫ v+cn,v

v

f

(

ξ

an(v)

)

dξ, n ∈ N, (1.4.9)

where f is an integrable function on the interval (0, 1) and (cn,v)n,v∈N is a sequence

such that

0 < cn,v ≤ 1 (1.4.10)

for every n, v ∈ N.

For any n ∈ N we have un ≥ 0 and

stA − lim
n
un = 1. (1.4.11)

{Fn(x, t)} is the set of generating functions for the sequence of functions

{C(n)
v (t)}v∈N0

, in the form

Fn(x, t) =

∞
∑

v=0

C(n)
v (t)xv, (1.4.12)

C
(n)
v (t) ≥ 0 for t ∈ (−∞, 0].

Assume that the next conditions hold

(i)Fn+1(x, t) = p(x)Fn(x, t), p(x) < M <∞, x ∈ (0, 1), (1.4.13)

(ii)BtC
(n+1)
v−1 (t) = an(v)C

(n)
v−1(t)−vC

(n)
v (t), B ∈ [0, a], C

(n)
v (t) = 0 for v ∈ Z

− :=

{. . . ,−3,−2,−1},
(iii) max{v, n} ≤ an(v) ≤ an(v + 1).

Following, for use in our main result, we prove inequalities for the sequence of
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operators (T ∗
n)n∈N

given by (1.4.9)

Theorem 1.4.4 (R. Sobolu, [101]) Let (T ∗
n)n∈N

be the positive linear operator given

by (1.4.9). Then, for each x ∈ [0, b], t ∈ (−∞, 0] and n ∈ N we have

‖T ∗
ne1 − e1‖C[0,b] ≤

un

2n
+ abM |t|un

n
+ b|un − 1|,

where M is given as in (1.4.13).

Theorem 1.4.5 (R. Sobolu, [101]) For each x ∈ [0, b], t ∈ (−∞, 0] and n ∈ N we

have

‖T ∗
ne2 − e2‖C[0,b] ≤

un

3n2
+ abM |t|un

n2
+
un

n
b(abM |t| + aM |t| + 2) + b2|un − 1|,

where the sequence (T ∗
n)n∈N

and M are defined as in Theorem 1.4.4.

Theorem 1.4.6 (R. Sobolu, [101]) Let A = (aj,n)j,n∈N be a non-negative regular

summability matrix. Then we have

stA − lim
n→∞

‖T ∗
ne1 − e1‖C[0,b] = 0,

where the operator T ∗
n is defined by (1.4.9).

Theorem 1.4.7 (R. Sobolu, [101]) Let A = (aj,n)j,n∈N be a non-negative regular

summability matrix. Then we have

stA − lim
n

‖T ∗
ne2 − e2‖C[0,b] = 0,

where T ∗
n is defined by (1.4.9).

Now we provide a Korovkin type approximation theorem for the operators T ∗
n

via A-statistical convergence.

Theorem 1.4.8 (R. Sobolu, [101]) Let A = (aj,n)j,n∈N be a non-negative regular

summability matrix. Then, for all f ∈ C[0, b], we have

stA − lim
n

‖T ∗
nf − f‖C[0,b] = 0.
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1.5 Wavelets Analysis Concept

Wavelets analysis breaks down a signal (i.e. a sequence of numerical measure-

ments) in a small wave components type called wavelets. A wavelet is a waveform

of effectively limited duration that has an average of zero. Wavelets analysis is a

refinement of Fourier analysis. Wavelets analysis represents a windowing technique

with variable-sized regions. It allows the use of long time intervals where we want

more precise low-frequency information, and shorter regions where we want high-

frequency information.

In the mathematical sense, wavelets concept describes a category of orthonor-

mal basis of space L2(R), with remarkable approximation properties. The Fourier

orthonormal basis are sine waves .The purpose of wavelets analysis is to build or-

thonormal bases thats consist of wavelets.

1.5.1 Haar System

This subsection presents the simplest example of orthonormal wavelet function,

the Haar function.

1.5.2 Multiresolution Analysis

The concept of multiresolution analysis is related to the study of signals f of

different levels of resolution, each of them being a finer resolution of f. In the pre-

sentation of this section we used monographs [6, pages 65-76] and [29, I. Daubechies,

pages 129-156].

Wavelets analysis is based on the decomposition of a piecewise constant approx-

imation function into a coarser approximation and a detail function. The approxi-

mation can be written as a sum of the next coarser approximation, say fj−1 and a

detail function, say gj−1, this meaning fj = fj−1 + gj−1. Each detail function can

be written as a linear combination of the corresponding mother wavelet functions,

ψj,k, ψj,k(x) = 2j/2ψ(2jx − k), x ∈ R, where j ∈ Z, is the dilation index and

k ∈ Z, is the translation index. As the index j runs from small to large, the cor-

responding approximations run from coarse to fine. For each resolution j ∈ Z, we

have a space basis functions (ψj,k)k∈Z. Consequently, we work with several spaces at

different resolutions, this meaning multiresolution.

For each j ∈ Z, we define a function space Vj,

Vj =
{

f ∈ L2(R) : f is piecewise constant on [k2−j, (k + 1)2−j], j ∈ Z
}

.
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This ladder of subspaces enjoys the following properties

(P1) . . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ;

(P2)
⋂

j∈Z

Vj = 0,
⋃

j∈Z

Vj = L2(R);

(P3) f ∈ Vj if and only if f(2 ·) ∈ Vj+1, where j ∈ Z;

(P4) f ∈ V0 implies f(· − k) ∈ V0, for all k ∈ Z;

(P5) There exists a function ϕ ∈ V0 such that the set ϕ0,k = {ϕ(· − k) : k ∈ Z}
forms an orthonormal basis for V0.

If the central space V0 is generated by a single function ϕ ∈ V0, V0 =

sp {ϕ0,k : k ∈ Z}, then each subspace Vj is generated by the same function ϕ, Vj =

sp {ϕj,k : k ∈ Z}, j ∈ Z. Here

ϕj,k(x) = 2j/2ϕ(2jx− k), x ∈ R, (j, k) ∈ Z × Z. (1.5.1)

The function ϕ ∈ V0, which verifies (P5) is called scaling function or father wavelet.

Definition 1.5.1 A multiresolution analysis generated by the scaling function ϕ

consists of a sequence Vj , j ∈ Z, of closed subspaces of L2(R) that satisfy the prop-

erties (P1), (P2), (P3), (P4), (P5).

1.5.3 On the Mother Wavelet

Let (Vj)j∈Z be a multiresolution analysis of L2(R). Since Vj ⊂ Vj+1, we define

Wj the orthogonal complement of Vj in Vj+1, for every integer j.

Hence Vj+1 = Vj ⊕Wj , j ∈ Z. We define the mother wavelet function as follows

ψj,k = 2j/2ψ(2jx− k), x ∈ R, (j, k) ∈ Z × Z. (1.5.2)

As the father wavelet generates orthonormal bases in Vj, j ∈ Z the mother wavelet

generates orthonormal bases in Wj, j ∈ Z.

1.5.4 Wavelet Decomposition and Reconstruction

Every signal f ∈ L2(R) can be uniquely decomposed as

f(x) =
∑

j∈Z

∑

k∈Z

(f, ψj,k)ψj,k(x), x ∈ R, (1.5.3)

where (f, ψj,k) =

∫

R

f(x)ψj,k(x)dx.
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1.5.5 The Discrete Wavelet Transform

Let (Vj)j∈Z be a multiresolution analysis of L2(R). Since (ϕJ,k)k∈Z forms an

orthonormal basis for VJ , we have fJ(x) =
∑

k∈Z

αJ,kϕJ,k(x), x ∈ R, where

αJ,k = (f, ϕJ,k). Starting at the finest scale J and repeating the decomposition

until a certain level j′ we can write

fJ(x) =
∑

k∈Z

αj′,kϕj′,k(x) +

J−1
∑

j=j′

∑

k∈Z

wj,kψj,k(x), x ∈ R. (1.5.4)

The coefficients (αj′,k)k∈Z are called approximations coefficients and the coefficients

(wj,k)(j,k)∈Z×Z are called wavelets coefficients.
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Chapter 2

Nonparametric Regression

The nonparametric regression will approximate a regression function without

forcing a particular analytical form over it. We will suppose that function f belongs

to a certain class of functions and that it has certain properties such as smoothness.

2.1 Denoising by Wavelet Thresholding

The noisy signal model can be written so that noisy signal = original signal +

noise. We consider the regression model

Y = f(X) + ε. (2.1.1)

Suppose we have noisy sampled data

yi = f(xi) + σεi, i = 1, n, (2.1.2)

where ε = (ε1, ε2, . . . εn)T , εi are independent random variables, distributed as

N(0, 1) and σ is the noise level that can be known or unknown. We suppose, without

losing generality, that xi are equidistant within the unit interval [0, 1], of type
i

n
, and

n, the sample size, is a power of two, n = 2J , for some positive integer J . The goal

is to recover the underlying function f from the noisy data, y = (y1, y2, · · · , yn)
T ,

without assuming any particular parametric structure for f.

The nonparametric regression algorithm based on wavelets transforms consists

of the following steps:

1. Calculate the wavelet transform of the noisy signal.

2. Modify the noisy wavelet coefficients according to some rule.
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3. Compute the inverse transform using the modified coefficients.

For the second step of the above approach there are two kinds of denoising

methods: linear and nonlinear techniques. A wavelet based linear approach, simply

extends the spline smoothing estimation methods. This method is appropriate for

estimating relatively regular functions, but is not designed to handle spatially inho-

mogeneous functions with low regularity. For such functions one usually relies upon

nonlinear thresholding or shrinkage methods. The first mathematical treatment of

wavelet shrinkage and wavelet thresholding was done by Donoho [35], [36], [37]. He

analyzed wavelet thresholding and shrinkage methods in the context of minimax

estimation and showed that wavelet shrinkage generates asymptotically optimal es-

timates for noisy data that outperform any linear estimator.

Mathematically, wavelet coefficients are estimated using thresholding methods.

These methods modify wavelets coefficients values w at the value ŵ, by removing the

coefficients with small absolute value considered to represent the noise, respectively

by keeping the coefficients with high absolute value that are used for reconstruction.

The choice of threshold value is a fundamental issue. Donoho and Johnstone [36],

[37], [38], Nason and Silverman [85], [86] established a variety of threshold meth-

ods. These are split in two main categories: global threshold methods and threshold

methods that depend on resolution level. The first category applies to all empirical

wavelets coefficients.

2.1.1 Thresholding Procedure

Let w be the wavelets coefficients corresponding to threshold value λ. The func-

tion hard thresholding is defined as follows

ηhard(w;λ) = wI(|w| > λ), (2.1.3)

and the function soft thresholding can be expressed as

ηsoft(w;λ) = sign(w)(|w| − λ)I(|w| > λ) (2.1.4)

=











w + λ , w < −λ,
0 , |w| ≤ λ,

w − λ, w > λ .
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The technique firm thresholding is based on a continuous function of the form

ηF (w;λ1, λ2) =















0 , |w| < λ1,

sign(w)
λ2(|w| − λ1)

λ2 − λ1
, λ1 < w ≤ λ2,

w, |w| > λ2.

The technique SCAD thresholding is based on piecewise linear function.

ηSCAD(w;λ) =















sign(w) max(0, |w| − λ) , |w| < 2λ,
(a− 1)w − aλsign(w)

a− 2
, 2λ < w ≤ aλ,

w, |w| > aλ.

2.1.2 Thresholding Selecting Rules

Donoho and Johnstone established in [36] the universal threshold. Its value is

given by λ = σ̂
√

2 logn, where n is selection size and σ̂ is an estimate of the noise

level σ. The particular case λ =
√

2 logn corresponds to the VisuShrink procedure.

The minimax threshold is another global method developed by Donoho and

Johnstone in [36]. Suppose that we are given observations

wi = θi + εzi, i = 1, . . . n, (2.1.5)

where zi ∼ N(0, 1), ε > 0, and w = (wi), i = 1, . . . n.

We wish to estimate the risk

R(θ̂, θ) = E
∥

∥

∥
θ̂ − θ

∥

∥

∥

2

l2(Z)
. (2.1.6)

Let ηS(w, λ) be the soft thresholding function defined in (2.1.4). Suppose we have

a single obeservation y ∼ N(0, 1), ε > 0. Define the function

ρS(λ, µ) = E {ηS(y, µ)− µ}2 (2.1.7)

and the minimax quantities

Λ∗
n ≡ inf

λ
sup

µ

ρS(λ, µ)

n−1 +min(µ2, 1)
, (2.1.8)

where λ∗n the largest λ attaining Λ∗
n above.

Theorem 2.1.1 Assume the models (2.1.5) and (2.1.6). The minimax threshold λ∗n
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defined by (2.1.8) yields an estimator

θ̂∗ = ηS(wi, λ
∗
nε), i = 1, . . . . . . , n,

which satisfies

E
∥

∥

∥
θ̂∗ − θ

∥

∥

∥

2

l2
≤ Λ∗

n

{

ε2 +
n

∑

i−1

min
(

θ2
i , ε

2
)

}

,

for all θ ∈ R
n, where

Λ∗
n ≤ 2 logn+ 1 şi lim

n→∞
Λ∗

n = 2 logn,

λ∗n ≤
√

2 logn şi lim
n→∞

λ∗n =
√

2 logn.

Compared with universal threshold, the minimax thresholding is more conserva-

tive and is more proper when small details of function f lie in the noise range.

The SureShrink method chooses a threshold λj by minimizing the Stein Unbiased

Risk Estimate [36], [38], for each wavelet level j.

2.1.3 Penalized Least-Squares Wavelet Estimators

When estimate a signal that is corrupted by additive noise by wavelets based

methods, the traditional smoothing problem can be formulated in the wavelet do-

main by finding the minimum in θ of the penalized least-squares functional l(θ)

defined by

l(θ) = ‖Wy − θ‖2
n + 2λ

∑

i>i0

p(|θi|), (2.1.9)

where θ is the vector of the wavelet coefficients of the unknown regression function

f and p is a given penalty function. The value i0 is a given integer corresponding to

penalizing wavelet coefficients above certain resolution level j0.

The performance of the resulting wavelet estimator depends on the penalty and

the smoothing parameter λ.

2.2 A Comparative Study of Two Noise Remov-

ing Methods

In this section we will present wavelet thresholding estimators in nonparametric

regression for denoising data modeled as observations of a signal contaminated with
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added Gaussian noise. A case study, referring to the daily averages of RH recorded

in Cluj-Napoca (Romania) area is presented in order to compare performance of two

nonparametric regression techniques: the Minimax thresholding rule and VisuShrink

thresholding rule in the context of the mean-squared error. RH is an array of size

256. The data processing were carried out by using the Wavelab software library

of Matlab routines for wavelets analysis. The 1-d signal, humidity, is stored as a

single column of ASCII text, in the directory /Wavelab850/Datasets. This study

was published in the paper Sobolu R. [108].

The denoising algorithm based on nonparametric regression in the case of Min-

imax thresholding rule respectively VisuShrink thresholding rule consists of three

steps:

1. Process first the data by using the Most Nearly Symmetric Daubechies wavelet,

N = 8.

2. Apply a soft thresholding nonlinearity with threshold set to λ∗n respectively

λV =
√

2 logn.

3. Apply an inverse wavelet transform to the wavelets coefficients obtained in

the second step and reconstruct the original signal.

In order to compare the efficiency of applied techniques we calculated in both

cases the risk looking that it is the minimal risk possible.

Figure 2.1: The original signal

The threshold The risk

λ∗n 0.0119

λV =
√

2 logn 0.0040

The threshold λV provides a better visual quality of reconstruction than the

procedure based on the Minimax procedure (see Figure 2.3 and Figure 2.4).
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Figure 2.2: The noisy signal

Figure 2.3: The Minimax thresholding case

Figure 2.4: The VisuShrink thresholding case
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2.3 Analysis of Reconstruction Methods with

Wavelets Techniques

This paragraph reveals the performance of some reconstruction methods: the

penalized least-squares method, the cross-validation (hard and soft) method and

SureShrink method, by using a simulated data sets composed by the test function

f : [0, 1] → R, f(x) = x+ exp(−39(x− 0.5)2) − I(x ≥ 0.5).

This function presents a discontinuous jump at x = 0.5. For the signal simulation

we have used two noise levels corresponding to signal-to-noise ratios SNR = 4 and

SNR = 10. For each simulation we have used an equidistant design of size 512

within the interval [0, 1] and a Gaussian noise was added to obtain the observed

data. The noisy sampling data is

yi = f(ti) + εi, i = 1, 2, 3, . . . , 512,

where ti =
i

512
, and εi are independent random errors, distributed as N(0, 1).

The processings were made by means of some functions implemented in Matlab.

The Figure 2.5 shows the applied techniques performance. The following table

displays the mean square error evaluated in each considered case and for every SNR

setting.

The method SNR = 4 SNR = 10

The penalized least-squares method 0.9512 0.9049

The cross-validation method (hard thresholding) 0.9200 0.8900

The cross-validation method (soft thresholding) 0.9306 0.8955

The SureShrink method (soft thresholding) 0.9562 0.8855

2.4 Application

This paragraph includes practical results published in the papers Sobolu R. [104],

Sobolu R. [105], Sobolu R. [110].

The aim of this study is to determine the changes of the respiratory rate, the

heart rates and the antioxidant enzymes level in the blood for a group of cows

exposed to solar radiation compared to a group of the same number of cows kept

in stable during the hot summer days. The determinations were carried out during

the period May - October 2006.
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a) b)

c) d)

e) f)
Figure 2.5: Thresholding methods applied to the signal f(x) = x + exp(−39(x −
0.5)2) − I(x ≥ 0.5) disturbed by white Gaussian noise
a) The original function
b) The function contaminated by white Gaussian noise , SNR = 4
c) Reconstruction with the penalized least-squares method
d) Reconstruction with the cross-validation method (hard thresholding)
e) Reconstruction with the cross-validation method (soft thresholding)
f) Reconstruction with the SureShrink method.
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The recorded individual data (the signals) were processed using two types of

wavelets transforms: The Ordered Fast Haar Wavelet Transform - OFHWT and

The In Place Fast Haar Wavelet Transform - PFHWT [89]. These transforms allow

us to calculate the wavelets coefficients in order to assess the obtained results. The

transforms algorithms have been implemented in VBA in Microsoft Excel.

The signal representing the respiratory rate measurements of the cows exposed

to solar radiation respectively of the cows kept in stable over the period May -

October (May, July, August, October) was analyzed by using The In-Place Fast

Haar Wavelet Transform. The signal contains 32 = 25 observed data. The sequence

s(5-0) includes the initial data and the sequence s(5-5) contains the result, i.e. the

wavelets coefficients (see Figure 2.6) .

The Figure 2.6 a) displays the wavelets coefficients in the case of exposure to solar

radiation. The first coefficient, 49.776 represents the average respiratory rate for the

whole four-month period. The second coefficient, −5.969 means that the respiratory

rate changed by (−5.969) ∗ (−2) = 11.938 ≈ 12, an increase of 12 resp/min from

May to October, so there were significant changes of the respiratory rate from May

to October. The next two coefficients −11.021 and 10.416 represent similar changes

of the respiratory rate over the first half and the second half of the period. The

coefficient −11.021 corresponds to a change of (−11.021) · (−2) = 22.0142 ≈ 22, an

increase of 22 resp/min from May to July. The coefficient 10.416 corresponds to a

change of 10.416 · (−2) = −20.832 ≈ 21, a decrease of 21 resp/min from August to

October.

Similarly, we analyzed the wavelets coefficients obtained by applying The In-

Place Fast Haar Wavelet Transform to the signal represented by the respiratory

rate in a group of dairy cows maintained in the stable. The processing reveals not

significant changes in this case (see Figure 2.6 b)).

Using similar methods we performed comparative studies of the signals repre-

sented by the heart rates and by the antioxidant enzymes level in blood (the SOD,

the catalase activity and the peroxidase activity) for both cases: exposure to solar

radiation and maintenance in stable. There were also recorded the main meteoro-

logical indexes in the days when the specified signals was performed: temperature,

humidity, solar radiation intensity and so on. When the determinations were made

the following maximum THI values were calculated: 64 in May, 77 in July, 87 in

August and 60 in October. In the stable the maximum THI was varying between 60

and 70.

The studies, previously made by us, show an increase of the main physiological

indexes (such as respiratory rate, heart rate, internal and cutaneous temperature,
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a) b)

Figure 2.6:

a) The wavelets coefficients obtained by using The In-Place Fast Haar Wavelet
Transform to process respiratory rate (in the group exposed to solar radiation)
b) The wavelets coefficients obtained by using The In-Place Fast Haar Wavelet
Transform to process respiratory rate (in the group maintained in the stable)
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variation of the blood indexes) that determined us to study the reaction of the

cows’ organism at the cell level, regarding the thermal stress. The increase of the

antioxidant enzymes level proved that, during the hot summer day, when the values

of the THI index are higher then 72, which is the limit value for the thermal comfort

the cows were submitted to the heat stress. We can also certainly say that between

the increasing of the blood level of the antioxidants enzymes and the THI values

exists a direct correlated relation that means that when the values of THI exceed

72, the production of the antioxidant enzymes at the blood level starts to increase.

These changes reflect both the decrease in milk production as well as its qualitative

change (protein and lactose decrease).

The study’s conclusions establish practical measures to be taken to prevent harm-

ful effects of solar radiation in order to ensure the comfort of dairy cows .

2.5 The Fast Daubechies Wavelet Transform Al-

gorithm Implementation

This section presents the practical significance of Daubechies wavelets coeffi-

cients with real data. The algorithm of Daubechies Wavelet Transform has been

implemented in VBA in Microsoft Excel. The results for this application are in-

cluded in the paper Sobolu R. [106].

We analyzed a signal represented by the semiweekly measurements of temper-

ature, in Celsius degrees, for February 2008 and March 2008 at a fixed location in

Cluj-Napoca. The sequence s contains the initial data and the sequences a− Step0

respectively c− Step0, c− Step1, c− Step2, c− Step3, c− Step4 display the result

(the Daubechies wavelets coefficients), see Figure 2.7. Further on it was explained

the practical significance of wavelets coefficients considering the Fast Daubechies

Wavelet Transform applied on real data.

The coefficient a−Step0 = a
(n−5)
0 = 7.9930C represents the average temperature

for the whole two months period. The coefficient c− Step0 = c
(n−5)
0 = 1.105 means

that the temperature changed by 1.105 · 2 = 2.2100C, an increase of ≈ 20C from

March to February. The coefficient c − Step1 = c
(n−4)
0 = 1.214 corresponds to a

change of 1.214 · 2 = 2.4280C, an increase of 2.4280C from the first two weeks to the

last two weeks in February. The coefficient c
(n−4)
1 = −1.045 corresponds to a change

of (−1.045) · 2 = −2.090C, a decrease of 2.0903oC from the first two weeks to the

last two weeks in March.

Each of the next four coefficients 0.538,−0.057,−3.546,−2.874 represent the
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temperature change over two weeks. The coefficient −0.057 means that the temper-

ature decreased by (−0.057) · 2 = −0.1140C from the third week to the fourth week

of February.

The next eight coefficients −1.201,−1.598,−1.455,−2.400,−2.043,

0.751, 1.359, 3.205 represent a temperature change over one week. The coeffi-

cient 0.751 means that the temperature changed by 0.751 · 2 = 1.5020C during the

second week of March.

Figure 2.7: The wavelets coefficients of Daubechies Wavelet Transform
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Chapter 3

Wavelets Estimators

3.1 Preliminary Results

Nonlinear wavelet estimators study nonparametric regression from minimax

point of view by using classes of functions not found in the case of linear estima-

tors such as Hölder or Sobolev spaces. These estimators focus on the inhomogeneous

functions spaces or functions of bounded variation. These classes of functions can be

summarized in Besov or Triebel spaces. Meyer [80] develops the idea of multiresolu-

tion analysis and its use in the study of function spaces and integral operators. The

research articles of I. Daubechies [30], Mallat [78] and the monograph of Frazier,

Jawerth and Weiss [50], [51] provide a connection between the orthonormal wavelets

bases and the minimax estimation in Besov spaces.

3.2 An abstract Denoising Model

Denoising concept intends to optimize the mean-squared error

n−1E
∥

∥

∥
f̂ − f

∥

∥

∥

2

l2
= n−1

n−1
∑

i=0

E

(

f̂

(

i

n

)

− f

(

i

n

))2

(3.2.1)

by fulfilling the condition that with high probability f̂ is at least as smooth as

f. This demands a tradeoff between bias and variance which keeps the two terms

at about the same order of magnitude. The estimators which are optimal from

a mean-square-error point of view exhibit considerable, undesirable, noise-induced

structures-”ripples”, ”blips”, and oscillations. Reconstruction methods are designed

to avoid spurious oscillations demanding that the reconstruction do not oscillate
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essentially more than the true underlying function.

Donoho and Johnstone [36] proposed a kind of thresholding procedure for recov-

ering a function f from noisy data taking into account the following aspects:

1.[[Smooth] With high probability, the estmator f̂ ∗
n is at least as smooth as f ,

with smoothness measured by any of a wide range of smoothness measures.

2.[Adapt] The estimator f̂ ∗
n achieves almost the minimax mean-square error over

every one of a wide range of smoothness classes, including many classes where tra-

ditional linear estimators do not achieve the minimax rate.

The statistical theory focuses on the following abstract denoising model

yI = θI + ε · zI , I ∈ In, (3.2.2)

where zi ∼ N(0, 1) is a Gaussian white noise and ε is the noise level. In is an index

set, |In| = n.

3.2.1 Thresholding Method and Optimal Recovery

We consider an abstract model, in which noise is deterministic

yI = θI + δ · uI , I ∈ I, and I is an index set. (3.2.3)

In this case δ > 0 is a known noise level and (uI) is a noisy term that satisfy

|uI | ≤ 1, ∀I ∈ I. We suppose that the noise is minimal. We will evaluate the

performance

Eδ(θ̂, θ) = sup
|uI |≤1

∥

∥

∥
θ̂(y) − θ

∥

∥

∥

2

l2
. (3.2.4)

We want that the error in the formula (3.2.4) to be as small as possible and, at the

same time, we aim to ensure the uniform shrinkage condition

∣

∣

∣
θ̂I

∣

∣

∣
≤ |θI | , I ∈ I. (3.2.5)

Consider a reconstruction formula based on the soft thresholding nonlinearity

ηλ(y) = sgn(y)(|y| − t)+. (3.2.6)

Setting the threshold level λ = δ we define the estimator

θ̂(δ) = ηλ(yI), I ∈ I. (3.2.7)
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Theorem 3.2.1 ([35, Theorem 3.1]) The soft thresholding estimator satisfies the

uniform-shrinkage condition (3.2.5).

3.3 Thresholding Method and Statistical Estima-

tion

Let (zI) be white noise, i.i.d., coresponding to abstract model (3.2.2). Then

πn ≡ P
{

‖(zI)‖l∞ ≤
√

2 logn
}

→ 1, n→ ∞. (3.3.1)

The above relation, motivates us to act as if (3.2.2) were an instance of the deter-

ministic model (3.2.3), with noise level δn =
√

2 logn · ε.

3.3.1 Near Optimal Mean Squared Error

The following lower bound says that statistical estimation at noise level ε is at

least as hard as optimal recovery at that same noise level δn.

Theorem 3.3.1 ([35, Theorem 4.2]) Let Θ be solid and orthosymmetric. Then, the

estimator θ̂(n) is nearly minimax and satisfies

Mn

(

θ̂(n), θ
)

≤ n(2 log(n) + 1)(ε2 + 2.22M∗
n(Θ)), θ ∈ Θ, (3.3.2)

i.e. θ̂(n) is uniformly within the same factor 4.44 log(n) of minimax for every solid

orthosymmetric set.

3.3.2 Near Minimal Shrinkage

Let Y be a random variable with normal distribution N(µ, 1). Consider the class

Uα of all monotone odd nonlinearities u(y) which satisfy the probabilistic shrinkage

property with probability at least 1 − α..

P {|u(Y )| ≤ |µ| ≥ 1 − α} , ∀µ ∈ R.

The soft thresholding ηλ(α) is a member of this class with the threshold λ(α) =

Φ−1
(

1 − α

2

)

, where Φ(y) is the standard normal distribution. The resulting vector
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estimate θ̂ = (u(yI))I , u ∈ Uα, satisfies

P
{

∣

∣

∣
θ̂I

∣

∣

∣
≤ |θI | , ∀I ∈ In

}

≥ 1 − (1 − α)n.

3.4 Interpolating Wavelet Transforms

In this section we will describe a kind of wavelets transforms that characterize

smooth spaces and for which the coefficients are obtained by sampling rather than

integration. Then, we use these transforms in order to reinterpret the empirical

wavelet transform, i.e. we will apply pyramid filters to samples of a function.

The interpolating wavelets transforms represent the objects in terms of dilations

and translations of a basic function, but for which the coefficients are obtained

from linear combinations of samples rather than from integrals. The interpolating

transform is optimal from the point of view of computing individual coeffcients:

computational cost and coeffcient decay.

3.4.1 Empirical Wavelets Transforms

The empirical wavelet coefficients, which derive only from finite filtering calcula-

tions, are actually the first n theoretical coefficients for a nicely behaved transform of

continuous functions. This interpretation shows us that empirical wavelet coefficients

of a smooth function automatically obey the same type of decay estimates as theo-

retical orthogonal wavelet coefficients. It also shows that shrinking empirical wavelet

coefficients towards zero (linear or nonlinear procedure) always acts as a smoothing

operator in any of a wide range of smoothness measures. It also shows that sampling

followed by appropriate interpolation of the sampled values is a smoothing operator

in any of a wide range of smoothness classes. Finally it shows that the theoretical

wavelet coefficients are close to the empirical wavelet coefficients in an exact sense.

These facts are significant for the study of certain nonlinear methods for smoothing

and denoising noisy, sampled data.

3.5 Subdivision Schemes

In a broader sense, the subdivision is a method of processing data available at a

coarse scale by recursive generation of these data, more smooth, at a finer resolution.

This method is useful in generating curves and surfaces, but is also closely linked

with the construction of wavelets functions via multiresolution analysis.
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3.5.1 Sampling, Interpolation and Smoothing

Suppose that we take samples (2−j1f(k/2j1))k∈Z. Using just those samples, obtain

the interpolating wavelet coefficients of f at all levels up to and including j1 − 1.

If the interpolating wavelet was a fundamental spline, this is a spline interpo-

lation. If the interpolating wavelet was a Deslauriers-Dubuc fundamental function,

this is a Deslauriers-Dubuc interpolation.

3.5.2 Nonlinear Wavelets Transforms based on Subdivision

Schemes

The uniform subdivision schemes are defined as operators considered on a multi-

variate integer grid. Under certain conditions, a uniform subdivision scheme defines

a refinable function, i.e. a function that can be expressed as a finite sum of dilates

and translates of it. The integer translates of this function span over a space of func-

tions that can be calculated through iterative application of the subdivision scheme.

A subdivision scheme consists in applying repeatedly a refinement operator S to a

given set of control points, P 0 = {P0, P1, P3 . . . }. The control points determine the

shape of the limit curve. Typically, each point of the curve is computed by taking a

weighted sum of a number of control points. The weight of each point varies accord-

ing to a subdivision rule. The set of weights is called the mask of the subdivision

scheme. The control points at the kth level are generated by a subdivision rule,

P k
i = (SP k−1)i = (SkP 0)i =

∑

j∈Z

a
(k)
i−2jP

k−1
j , i ∈ Z, k = 1, 2, 3, . . .

The set of coefficients, a(k) = {a(k)
i | i ∈ Z} is called the mask of the subdivision

scheme at level k. The mask is always assumed to be of finite support so that the

set {i ∈ Z : a
(k)
i 6= 0}, called the support of the subdivision scheme, is finite for

every k = 1, 2, . . .. The control points at different refinement levels converge to a

curve called the limit curve. If the refinement rule is the same for all levels (thus

independent of k), such a scheme is called stationary. A subdivision scheme is named

local if the computation of a new control point at level k+1 only involves old control

points of level k which lie in the topological neighbourhood of the new point.
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3.5.3 A New Scheme in Study

We will construct a new non-uniform subdivision scheme combining the ternary

3-point interpolating scheme in the case b =
2

9
[63] with Chaikin’s scheme [68], [69].

This new subdivision scheme is presented in the paper Sobolu R. [109].

Our purpose is to define the operator S : l(Z) → l(Z) that generates all quadratic

polynomials, π2(R).

According to the results established by Levin in [74], it is sufficient to show

that for some Q : π2(R) → l(Z), we have SQ = Qσ and then to determine the

corresponding S

We define Q : π2(R) → l(Z), ∀ f ∈ π2(R), ∀ i ∈ Z, such that,

Qf(i) =







f(i), i ≤ 0,

f

(

i− 1

2

)

− 1

8
f ′′

(

i− 1

2

)

, i > 0,
(3.5.1)

and then we solve the equation SQ = Qσ.

For a given P ∈ l(Z) let SP (i) be defined by the Chaikin’s scheme

(SP )2i =
Pi + 3Pi−1

4
and (SP )2i+1 =

3Pi + Pi−1

4
, for i = 2, 3, 4, . . . , (3.5.2)

and by the ternary 3-point interpolating scheme

(Sp)i+1
j =

∑

k

a3k−jp
i
k , for i = 0,−2,−3,−4, . . . , (3.5.3)

where a = (aj) is the mask scheme and P i = (pi
j) is the set of control points after

ith subdivision step.

We can see that SQf(i) = Qσf(i), ∀f ∈ π2(R), i ∈ Z r {−1, 1}. We need to

define SP (−1), SP (1), for arbitrary P such that S satisfies SQ = Qσ for f ∈ π2(R).

Therefore, we will look for S satisfying

SP (−1) = a0P (−2) + a1P (−1) + a2P (0),

SP (1) = b0P (−1) + b1P (0) + b2P (1).
(3.5.4)

The parameters a0, a1, a2 are calculated from condition SQf(−1) = Qσf(−1),

∀ f ∈ π2(R). We take for f the monomials up to degree 2, f(x) = xk, k ∈ {0, 1, 2}.
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Then we obtain

SQ1 = Q1 =⇒ a0 + a1 + a2 = 1,

SQx =
1

2
Qx =⇒ −2a0 − a1 =

1

2
,

SQx2 =
1

4
Qx2 =⇒ 4a0 + a1 =

1

4
.

Similarly, from condition SQf(1) = Qσf(1) for all f ∈ π2(R), we get

SQ1 = Q1 =⇒ b0 + b1 + b2 = 1,

SQx =
1

2
Qx =⇒ −b0 +

1

2
b2 =

1

4
,

SQx2 =
1

4
Qx2 =⇒ b0 + b2 = 0.

The above systems have a unique solution given by,

a =

(

3

8
,−5

4
,
15

8

)

and b =

(

−1

6
, 1,

1

6

)

.

The rules (3.5.1) and (3.5.4) generate the new schemeS.

Subdivision operator Q defined above can be extended to an operator from C(R)

to l(Zs) which is bounded and local.

We propose the following extension,

Q : C(R) → l(Z), ∀ f ∈ C(R), ∀ i ∈ Z,

Qf(i) =







f(i), i ≤ 0,

f(i) − f(i+ 1) − f(i)

2
, i > 0.

(3.5.5)

Numerical examples

We have tested this scheme for the functions f1, f2 : R → R, f1(x) =

cosx, f2(x) = x
x2+1

, by measuring the error ‖σ−nS∞Qσnf(x) − f(x)‖∞.
The following maximal errors were obtained:

n maximal error for f1 maximal error for f2

0 0.47 0.05

1 0.38 0.19996 · 10−7

2 0.09 0.799679 · 10−8
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