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Introduction

Let K : 1 2
β
oo
αoo

be the Kronecker quiver and κ an arbitrary field. The path algebra κK

over the Kronecker quiver is the Kronecker algebra. We will consider the category of finite
dimensional right modules over this algebra, the category of Kronecker modules, denoted
by mod-κK. The category mod-κK can be identified with the category rep-κK of the fi-
nite dimensional κ-representations of the Kronecker quiver. Partial results were given by
Weierstrass1 for the classification problem of indecomposable modules in mod-κK. The clas-
sification was completed by Kronecker2 in 1890, hence the name of the quiver, the algebra
and the corresponding module category.

The Kronecker algebra is a special case of a tame hereditary algebra. Its importance
stems from the fact that it models the behavior of all tame hereditary algebras (see [2, 18]).
Moreover it is closely related to other branches of mathematics, such as geometry, linear
algebra and applied mathematics (control theory, some problems in engineering, etc.). On
one hand the category mod-κK has a geometric interpretation since it is derived equivalent
with the category Coh(P1(κ)) of coherent sheaves on the projective line – as the Kronecker
quiver K is just the Beilinson quiver for P1 (see [4]). On the other hand, Kronecker modules
correspond to matrix pencils in linear algebra (as detailed in Section 3.5). In turn, this
correspondence allows one to deal with problems in linear algebra and control theory (related
to matrix pencils) in terms of Kronecker modules, by placing these problems in a new setting,
which allows the usage of results and techniques of higher abstract algebra. Because of
its usefulness, the category mod-κK has been extensively studied and the Auslander-Reiten
quiver revealing the indecomposable objects and the so-called irreducible morphisms is well-
known. Information about it can be found in many classic textbooks on representation theory
(see for example [1, 2, 18]).

The aim of the current thesis is twofold. On one hand it aims to enrich the information
available on the category mod-κK by answering basic and important questions, such as which
are the conditions for the existence of embeddings, projections or short exact sequences in-
volving various types of Kronecker modules. We mention here that due to the work of Cs.
Szántó, we have readily available answers for these questions in the case of indecomposable
Kronecker modules over a finite field (see [21, 22]). We generalize some of his results in two

1Karl Theodor Wilhelm Weierstrass (1815 – 1897), German mathematician, the “father of modern analysis”.
2Leopold Kronecker (1823 – 1891), German mathematician who worked on number theory and algebra.
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ways: by outgrowing the case of finite fields, while passing to an arbitrary field κ and by
giving similar numerical criteria for the existence of embeddings, projections and short exact
sequences involving decomposable Kronecker modules over the arbitrary field. Therefore, the
new results presented here are mainly based on [22] and [21], and the current thesis can be
regarded in some sense as a continuation of his work. We mention that in turn, our results
contribute back by giving information on the Ringel-Hall product of various decomposable
Kronecker modules. On the other hand, by exploring the Kronecker module – matrix pencil
correspondence, we want to show how our results can be applied immediately in the (partial)
solution of the matrix subpencil problem, an important open problem originating from control
theory and having applications in engineering and physics.

The current thesis is organized in three chapters, each of them having several sections.

Chapter 1 is dedicated to the presentation of the terminology and the well-known facts
about the category of Kronecker modules. Definitions as well as information about the struc-
ture of the category and about the indecomposable objects are to be found in Section 1.1.
As already mentioned, the main sources are [1, 2, 18]. In Section 1.2 we extract the relevant
results from [22] and [21] and present them in a concise way. The theorems in this section
represent the starting point of our current work.

Chapter 2 contains the majority of our contribution to the theory of Kronecker modules.
In Section 2.1 we give a numerical criteria in terms of the so-called Kronecker invariants (inte-
ger parameters which determine the Kronecker modules up to isomorphism) for the existence
of an embedding between (decomposable) preinjective Kronecker modules (and dually, for the
existence of a projection between preprojective ones). After characterizing the middle terms
in certain short exact sequences (Section 2.2), we proceed in Sections 2.3 and 2.4 to show that
the conditions governing the existence of the mentioned morphisms and short exact sequences
are independent of the underlying field κ – with a detailed proof for the preinjective and
preprojective case. The extension monoid product introduced by Reineke (see [17]) proves
to be a very convenient tool in dealing with short exact sequences of Kronecker modules in
this field independent setting, hence the monoid product is the subject of all the subsequent
sections of Chapter 2. In Sections 2.5 and 2.6 we completely describe this product in the
case when the modules involved are either preinjective or preprojective, exploring its combi-
natorial properties. As a result we get the conditions for the existence of the corresponding
short exact sequences and the characterization of the modules which may appear as middle
terms. In Section 2.7 we make some of the conditions fully explicit and describe the middle
terms in Ext1(I, I ′) – where I and I ′ are preinjectives – by easy to check numerical condi-
tions, resulting in an algorithm (linear in the number of indecomposable components) for the
decidability problem. We also propose a method to generate all extensions of I ′ by I and we
give a different (combinatorial) proof for the theorem providing numerical criteria in terms
of Kronecker invariants for the existence of a monomorphism I ′ ↪→ I. All these results apply
dually to preprojective modules as well.
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INTRODUCTION

Chapter 3 exemplifies the usefulness of our new results through an application to an
open problem originating from control theory (see for example [14]). Following [10] we make a
short introduction to the theory of matrix pencils (Sections 3.1, 3.2 and 3.3), briefly explaining
the notions and enlisting the relevant results needed in understanding the matrix subpencil
problem presented in Section 3.4. Matrix pencils are determined up to strict equivalence
relation by some integer parameters, called the classical Kronecker invariants, in the same
way as Kronecker modules are determined up to isomorphism by the Kronecker invariants.
This correspondence between Kronecker modules and matrix pencils is detailed in Section
3.5 and finally, our solution to the matrix subpencil problem in an important special case is
presented in Section 3.6.

We emphasize that all of our numerical criteria are valid over arbitrary fields and are
explicit and easy to check. Basically they are systems of inequalities involving only integers
(the Kronecker and the classical Kronecker invariants, respectively). If we wanted to write a
motto for our thesis, the following quotation attributed to Leopold Kronecker himself would
have certainly been a good candidate: “God created the integers, all else is the work of man.”[5]

We also mention that this work is the description of a research in progress. The aim
of our ongoing efforts is to find explicit numerical criteria for the existence of embeddings,
projections and short exact sequences involving arbitrary Kronecker modules (preprojectives,
regulars and preinjectives). As a result we expect to be able to solve the matrix subpencil
problem in the general case, by giving an explicit numerical condition as in the special case
treated in the last chapter.

The current thesis is based on the following four articles by the author: [25, 26, 27, 28] –
the first two written jointly with Cs. Szántó. The results from Section 2.6 and 3.6 are not
published yet, these will be included in future papers. The main results included here were
also presented at the following international scientific conferences:

1. I. Szöllősi, Kronecker modules and matrix pencils, 13th Postgraduate Group Theory
Conference, University of Aberdeen, Aberdeen, Scotland, June 23-25, 2011.

2. Cs. Szántó, I. Szöllősi, Short exact sequences of Kronecker modules (poster), New de-
velopments in noncommutative algebra and its applications (Workshop), Sabhal Mòr
Ostaig, Isle of Skye, Scotland, Jun 26 - Jul 2, 2011.

3. I. Szöllősi, Computing the extensions of preinjective and preprojective Kronecker mod-
ules, Groups and Semigroups: Interactions and Computations (Conference), University
of Lisbon, Lisbon, Portugal, July 25-29, 2011.

4. I. Szöllősi, Computational methods in the theory of Kronecker modules, A3 Abstract
Algebra and Algorithms Conference, Eszterházy Károly College, Eger, Hungary, August
14-17, 2011.

5. I. Szöllősi, On short exact sequences of Kronecker modules, Algebraic Representation
Theory, Uppsala University, Uppsala, Sweden, September 1-3, 2011.
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Chapter 1

Preliminaries

1.1 The category of Kronecker modules

Let K be the Kronecker quiver, i.e. the quiver having two vertices and two parallel arrows:

K : 1 2
β
oo
αoo

and κ an arbitrary field. The path algebra of the Kronecker quiver is the Kronecker algebra
and we will denote it by κK. The κ-base of the path algebra κK is determined by the set
of all paths in K. A finite dimensional right module over the Kronecker algebra is called a
Kronecker module. We denote by mod-κK the category of finite dimensional right modules
over the Kronecker algebra.

A (finite dimensional) κ-linear representation of the quiver K is a quadruple M =

(V1, V2;ϕα, ϕβ) where V1, V2 are finite dimensional κ-vector spaces (corresponding to the
vertices) and ϕα, ϕβ : V2 → V1 are κ-linear maps (corresponding to the arrows). Thus a
κ-linear representation of K associates vector spaces to the vertices and compatible κ-linear
functions (or equivalently, matrices) to the arrows. Let us denote by rep-κK the category of
finite dimensional κ-representations of the Kronecker quiver. Given two such representations
M = (V1, V2;ϕα, ϕβ) and M ′ = (V ′1 , V

′
2 ;ϕ′α, ϕ

′
β), a morphism in rep-κK between M and M ′

is a pair of κ-linear functions f = (f1, f2), where f1 : V1 → V ′1 and f2 : V2 → V ′2 so that the
following diagram commutes (i.e. f1ϕα = ϕ′αf2 and f1ϕβ = ϕ′βf2):

V1

f1
��

V2

f2
��

ϕβ
oo

ϕαoo

V ′1 V ′2
ϕ′β

oo

ϕ′αoo

.

The category of Kronecker modules (mod-κK) is equivalent with the category of κ-linear
representations of the Kronecker quiver (rep-κK) via the functors F and G, defined as follows:
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CHAPTER 1. PRELIMINARIES

• F : mod-κK → rep-κK with F (M) = (F (M)1, F (M)2;F (M)α, F (M)β) =

(V1, V2;ϕα, ϕβ), where V1 = Mε1, V2 = Mε2 and ϕα, ϕβ : V2 → V1, such that
ϕα(x) = xα and ϕβ(x) = xβ for any x ∈ V2. If f : M → M ′ is a morphism of
Kronecker modules, then F (f) : F (M) → F (M ′), F (f) = (f1, f2), where f1 = f |F (M)1

and f2 = f |F (M)2 .

• G : rep-κK → mod-κK with G(M) = M1 ⊕M2 being a κ-space, where the the right
κK-module structure is given by xε1 = (x1 + x2)ε1 = x1, xε2 = (x1 + x2)ε2 = x2,
xα = ϕα(x2), xβ = ϕβ(x2) and G(f) = f1 ⊕ f2.

The equivalence of the categories mod-κK and rep-κK made clear, from now on we will
identify a module M ∈ mod-κK with its corresponding κ-linear representation of the quiver

K and we will use sometimes the notation M : V1
ϕα
⇔
ϕβ

V2 or M : V1
[ϕα]

⇔
[ϕβ ]

V2, where [ϕα] and

[ϕβ] are the matrices of the linear maps ϕα and ϕβ in some basis.
The category mod-κK has been extensively studied because the Kronecker algebra is a

very important example of a tame hereditary algebra. Moreover, the category mod-κK has
also a geometric interpretation, since it is derived equivalent with the category Coh(P1(Fq)) of
coherent sheaves on the projective line (see [4]). The Kronecker quiver K is just the Beilinson
quiver for P1.

In what follows we put together a short compilation of definitions and well-known facts
about the category of Kronecker modules. The calculations, justifications and proofs leading
to these results can be found in many standard textbooks on representation theory of algebras,
see for example [1, 19, 2, 18]. We have no intent to replicate the arguments here, only to revisit
the material needed to understand the new results presented in Chapters 2 and 3.

The simple Kronecker modules (up to isomorphism) are

S1 : κ⇔ 0 and S2 : 0⇔ κ.

For a Kronecker module M we denote by dimM its dimension. The dimension of M is a
vector dimM = ((dimM)1, (dimM)2) = (mS1(M),mS2(M)), wheremSi(M) is the number of
factors isomorphic with the simple module Si in a composition series ofM , i = 1, 2. Regarded

as a representation, M : V1
ϕα
⇔
ϕβ
V2, we have that dimM = (dimκ V1,dimκ V2).

The defect of M ∈ mod-κK with dimM = (a, b) is defined in the Kronecker case as
∂M = b− a.

An indecomposable module M ∈ mod-κK is a member in one of the following three
families: preprojective indecomposables, regular indecomposables and preinjective indecom-
posables. Let us take them in order.

The preprojective indecomposable Kronecker modules are determined up to iso-
morphism by their dimension vector. For n ∈ N we will denote by Pn the indecomposable
preprojective module of dimension (n+1, n). So P0 and P1 are the projective indecomposable

10



CHAPTER 1. PRELIMINARIES

modules (P0 = S1 being simple). It is known that (up to isomorphism) Pn = (κn+1, κn; f, g),
where choosing the canonical basis in κn and κn+1, the matrix of f : κn → κn+1 (respectively

of g : κn → κn+1) is

(
En

0

)
(respectively

(
0

En

)
). Thus in this case

Pn : κn+1 κn

(En0 )
oo

(
0
En

)
oo

,

where En is the identity matrix. We have for the defect ∂Pn = −1.

We define a preprojective Kronecker module P as being a direct sum of indecom-
posable preprojective modules: P = Pa1 ⊕ Pa2 ⊕ · · · ⊕ Pal , where we use the convention that
a1 ≤ a2 ≤ · · · ≤ al.

The preinjective indecomposable Kronecker modules are also determined up to
isomorphism by their dimension vector. For n ∈ N we will denote by In the indecomposable
preinjective module of dimension (n, n + 1). So I0 and I1 are the injective indecomposable
modules (P0 = S2 being simple). It is known that (up to isomorphism) In = (κn, κn+1; f, g),
where choosing the canonical basis in κn+1 and κn, the matrix of f : κn+1 → κn (respectively
of g : κn+1 → κn) is

(
En 0

)
(respectively

(
0 En

)
). Thus in this case

In : κn κn+1

(0En)
oo
(En 0)oo

,

where En is the identity matrix. We have for the defect ∂In = 1.

We define a preinjective Kronecker module I as being a direct sum of indecomposable
preinjective modules: I = Ia1 ⊕ Ia2 ⊕ · · · ⊕ Ial , where we use the convention that a1 ≥ a2 ≥
· · · ≥ al.

The regular indecomposable Kronecker modules (R) are those indecomposable mod-
ulesM ∈ mod-κK which are neither preprojective nor preinjective. A regular indecomposable
is isomorphic as representation with one of the following ( fX denotes the multiplication by
X, id is the identity function and n ≥ 1):

• R∞(n) : κ[X]/(Xn) κ[X]/(Xn)
id
oo

fXoo
;

• Rφ(n) : κ[X]/(φ(X)n) κ[X]/(φ(X)n)
fX
oo
idoo

, where φ is a monic polynomial with

deg φ ≥ 2, irreducible in κ.

• Rk(n) : κ[X]/((X − k)n) κ[X]/((X − a)n)
fX
oo
idoo

, where k ∈ κ (hence Rk(n) is just a

notation for RX−k(n)).

11
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This is consistent with everything claimed about Kronecker modules so far, since we have
the following isomorphism g of representations, where φ is an arbitrary monic irreducible
polynomial, with deg φ = d ≥ 1:

κnd

g

��

κnd

Cφ(X)n

oo
idoo

g

��
κ[X]/(φ(X)n) κ[X]/(φ(X)n)

X
oo
idoo

,

where g : κnd → κ[X]/(φ(X)n), g(k0, k1, . . . , knd−1) = k0+k1X+ · · ·+knd−1X
nd−1+(φ(X)n)

for any (k0, k1, . . . , knd−1) ∈ κnd and Cφ(X)n is the companion matrix of the polynomial φ(X)n.
The companion matrix of an arbitrary monic polynomialA(X) = Xd+kd−1X

d−1+· · ·+k0 ∈
κ[X] of degree d is CA(X) ∈Md(κ), where

CA(X) =



0 0 · · · 0 −k0
1 0 · · · 0 −k1
0 1 0 −k2
...

. . .
...

0 0 1 −kd−1


.

We also have the isomorphism

κn

g

��

κn

id
oo

J
(n)
0oo

g

��
κ[X]/(Xn) κ[X]/(Xn)

id
oo

fXoo

,

where g : κn → κ[X]/(Xn) is defined as before and J (n)
0 =


0 1

0
. . .
. . . 1

0

 is the nilpotent

matrix of degree n.

To simplify notations and terminology, let us introduce the following set:

P = {∞} ∪ κ ∪ {φ|φ is a monic irreducible polynomial of degree degφ ≥2 over κ}

and call an element p ∈ P of this set simply a “point”. We will denote by dp the degree of the

point p, where dp =

1 p ∈ {∞} ∪ κ

deg φ p ∈ P \ ({∞} ∪ κ)
. We also use the convention Rp(0) = 0, for

any p ∈ P.
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Hence the dimension of a regular indecomposable will be dimRp(n) = (ndp, ndp) and we
have for the defect ∂Rp(n) = 0. As reveled from the Auslander-Reiten quiver the regular
modules lay on so-called tubes (see [18, 19]). Every point p ∈ P determines a tube (every
irreducible monic polynomial φ ∈ κ[X] determines a tube Tφ, in addition, there is the tube
T∞ of the modules R∞(n)).

If κ = κ̄ is algebraically closed, then all irreducible polynomials are of the form φ(X) =

X − k and the companion matrix C(X−k)n is similar to J (n)
k , where J (n)

k is the n× n Jordan

block J
(n)
k =


k 1

k
. . .
. . . 1

k

 = kEn + J
(n)
0 . In this case P = {∞} ∪ κ and the regular

indecomposables are

Rk(n) : κn κn

En
oo

pEn+J
(n)
0oo for k ∈ κ and R∞(n) : κn κn

J
(n)
0

oo
Enoo

.

A module R ∈ mod-κK will be called a regular Kronecker module if it is a direct sum
of regular indecomposables. If λ = (λ1, λ2, . . . , λm) is a partition, then we use the notation
Rp(λ) = Rp(λ1)⊕Rp(λ1)⊕ · · · ⊕Rp(λm).

The category mod-κK of Kronecker modules is a Krull-Schmidt category, hence we
have:

Theorem 1.1.1 (Krull-Schmidt). Every module in M ∈ mod-κK has the decomposition

M = (Pc1 ⊕ · · · ⊕ Pcn)⊕ (⊕p∈PRp(λ(p)))⊕ (Id1 ⊕ · · · ⊕ Idm)

up to isomorphism, where:

• (c1, . . . , cn) is a finite increasing sequence of nonnegative integers;

• λ(p) = (λ1, . . . , λt) is a nonzero partition for finitely many p ∈ P;

• (d1, . . . , dm) is a finite decreasing sequence of nonnegative integers.

The increasing sequences (c1, . . . , cn) and (d1, . . . , dm) together with the partitions λ(p)

corresponding to every p ∈ P are called the Kronecker invariants of the module M . Hence
Kronecker invariants determine a module M ∈ mod-κK up to isomorphism.

We end this section with the following well-known lemmas, summarizing some facts on
morphisms, extensions and short exact sequences in mod-κK:

Lemma 1.1.2. Denoting by R, P and I a preprojective, a regular, respectively a preinjective
Kronecker module, we have (where m,n, t, t1, t2 ∈ N, p ∈ P and dp is the degree of the point
p):

13
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(a) Hom(R,P ) = Hom(I, P ) = Hom(I,R) = Ext1(P,R) = Ext1(P, I) = Ext1(R, I) = 0.

(b) For n ≤ m, we have dimκHom(Pn, Pm) = m− n+ 1 and Ext1(Pn, Pm) = 0; otherwise
Hom(Pn, Pm) = 0 and dimκ Ext1(Pn, Pm) = n−m− 1. In particular End(Pn) ∼= κ and
Ext1(Pn, Pn) = 0.

(c) For n ≥ m, we have dimκHom(In, Im) = n −m + 1 and Ext1(In, Im) = 0; otherwise
Hom(In, Im) = 0 and dimκ Ext1(In, Im) = m − n − 1. In particular End(In) ∼= κ and
Ext1(In, In) = 0.

(d) If p 6= p′, then Hom(Rp(t), Rp′(t)) = Ext1(Rp(t), Rp′(t)) = 0.

(e) dimκHom(Pn, Im) = n+m and dimκ Ext1(Im, Pn) = m+ n+ 2.

(f) dimκHom(Pn, Rp(t)) = dimκHom(Rp(t), In) = dpt and dimκ Ext1(Rp(t), Pn) =

dimκ Ext1(In, Rp(t)) = dpt.

(g) dimκHom(Rp(t1), Rp(t2)) = dimκ Ext1(Rp(t1), Rp(t2)) = dp min(t1, t2).

Lemma 1.1.3. If there is a short exact sequence 0 → M ′ → M → M ′′ → 0 of Kronecker
modules, then dimM = dimM ′ + dimM ′′ and ∂M = ∂M ′ + ∂M ′′.

1.2 Ringel-Hall algebras in the Kronecker case

Let κ now be a finite field with |κ| = q (for the sake of this section, only). For a module
X ∈ mod-κK, [X] will denote its isomorphism class and tM := M ⊕ ...⊕M (t-times).

The Ringel-Hall algebraH(κK,Q) associated to the Kronecker algebra κK is the freeQ-
vector space having as basis the isomorphism classes in mod-κK together with a multiplication
(the Ringel-Hall product) defined by:

[N1][N2] =
∑
[M ]

FMN1N2
[M ],

where the structure constants FMN1N2
= |{M ⊇ U | U ∼= N2, M/U ∼= N1}| are called Ringel-

Hall numbers. Notice that H(κK,Q) is an associative, usually noncommutative algebra
with unit element the isomorphism class of the zero module.

More generally for M,N1, ..., Nt ∈ mod-κK we can define

FMN1...Nt = |{M = M0 ⊇M1 ⊇ ... ⊇Mt = 0| Mi−1/Mi
∼= Ni,∀1 ≤ i ≤ t}|.

We then have (using associativity)

[N1]...[Nt] =
∑
[M ]

FMN1...Nt [M ].

14



CHAPTER 1. PRELIMINARIES

In what follows we will present some known facts about the Ringel-Hall algebra associated
to the Kronecker algebra.

Lemma 1.2.1 ([22]). For N1, N2 ∈ mod-kK with Ext1(N1, N2) = 0 and Hom(N2, N1) = 0

we have [N1][N2] = [N1 ⊕N2].

It results from the previous section that the isomorphism class of a module M ∈ mod-kK
is of the form [M ] = [P ⊕R⊕ I], where P , R and I is a preprojective, a regular respectively
a preinjective module. From Lemma 1.1.2 (a) and Lemma 1.2.1 follows that [P ⊕ R ⊕ I] =

[P ][R][I], so for [M ′] = [P ′ ⊕R′ ⊕ I ′]

[M ][M ′] = [P ][R][I][P ′][R′][I ′].

This shows, that in order to obtain all the Ringel-Hall numbers we should be able to
describe the Hall products of the form

[I][I ′], [I][P ], [I][R], [R][R′], [R][P ], [P ][P ′].

We have a formula list for the Ringel-Hall products of specific modules in the Kronecker
case due to Szántó (see for example [22] and [21]).

If FMN1...Nt
6= 0 then we will call [M ] a term in [N1]...[Nt] and use the notation [M ] ∈

{[N1]...[Nt]} ({[N1]...[Nt]} denoting the set of all terms in [N1]...[Nt]).
Using the definitions above and the associativity in the Ringel-Hall algebra one can easily

check the following lemma:

Lemma 1.2.2. Let N1, N2,M,M ′ ∈ mod-κK. We have the following:

(a) {[N1][N2]} = {[M ]|FMN1N2
6= 0} = {[M ]|∃ short exact sequence 0 → N2 → M → N1 →

0}.

(b) M ′ ↪→ M ⇔ FMXM ′ 6= 0 for some X ∈ mod-κK ⇔ ∃ short exact sequence 0 → M ′ →
M → X → 0 for some X ∈ mod-κK ⇔ [M ] ∈ {[X][M ′]} for some X ∈ mod-κK.

(c) M � M ⇔ FMM ′X 6= 0 for some X ∈ mod-κK ⇔ ∃ short exact sequence 0 → X →
M →M ′ → 0 for some X ∈ mod-κK ⇔ [M ] ∈ {[M ′][X]} for some X ∈ mod-κK.

So, in order to check the existence of an embedding, projection or short exact sequence,
all we have to do is to look for nonzero Ringel-Hall numbers in the corresponding Ringel-Hall
product, i.e. to look for the terms in the product. As a consequence of the formulas from [22]
and [21] we deduce the following:

Corollary 1.2.3. We have the following terms in the Ringel-Hall product of various Kronecker
modules:

(a) {[P ][R][I]} = {[P ⊕R⊕I]}, where P,R, I ∈ mod-κK are arbitrary preprojective, regular
respectively preinjective modules;

15
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(b) {[R][R′]} = {[R′][R]}, moreover this set contains only regulars (for R,R′ ∈ mod-κK
arbitrary regulars)

(c) {[Ii][Ij ]} =

{[Ii ⊕ Ij ]} i− j ≥ −1

{[Ij ⊕ Ii], [Ij−1 ⊕ Ii+1], ..., [Ij−[ j−i
2

] ⊕ Ii+[ j−i
2

]]} i− j < −1

(d) {[Pi][Pj ]} =

{[Pi ⊕ Pj ]} i− j ≤ −1

{[Pj ⊕ Pi], [Pj+1 ⊕ Pi−1], ..., [Pj+[ i−j
2

] ⊕ Pi−[ i−j
2

]]} i− j > −1

(e) {[In−1−i][Pi]} = Rn ∪ {[Pi ⊕ In−1−i]}, where

Rn = {[Rp1(t1)⊕ ...⊕Rps(ts)] | s ∈ N∗, pi 6= pj if i 6= j, t1dp1 + ...+ tsdps = n}

(f) {[Im]Rn} = {Rn[Im]}∪{Rn−1[Im+1]}∪ ...∪{[Im+n]}, with [Im+n] ∈ {[Im][Rn]} for any
Rn = Rp1(t1) ⊕ ... ⊕ Rps(ts) such that p1, . . . ps ∈ P are pairwise distinct points and
t1dp1 + ...+ tsdps = n.

(g) {Rn[Pm]} = {[Pm]Rn} ∪ {[Pm+1]Rn−1]} ∪ ...∪ {[Pm+n]}, with [Pm+n] ∈ {[Rn][Pm]} for
any Rn = Rp1(t1)⊕ ...⊕Rps(ts) such that p1, . . . ps ∈ P are pairwise distinct points and
t1dp1 + ...+ tsdps = n.

As we will see, the generalization of Corollary 1.2.3 plays a crucial role in our study of
short exact sequences of Kronecker modules (in Chapter 2) and the matrix subpencil problem
(in Chapter 3). Although in this section we have put a finiteness condition on the underlying
field κ, we will show in Section 2.3 how to get rid of this restriction, at least in the case of
preprojective and preinjective Kronecker modules. By replacing the Ringel-Hall product with
Reineke’s extension monoid product, we will get the analogue versions of the various product
rules presented in Corollary 1.2.3, allowing us to deal with short exact sequences of Kronecker
modules over arbitrary fields.

16



Chapter 2

Short exact sequences of Kronecker
modules

2.1 Monomorphisms between preinjectives and epimorphisms
between preprojectives

Our aim is to give a numerical criteria in terms of Kronecker invariants for I ′ ↪→ I (where
I ′, I are preinjectives) and for P � P ′ (where P ′, P are preprojectives).

We begin with two (dual) lemmas which permits us to split the “smaller” modules I ′ and
P ′.

Lemma 2.1.1 ([25]). Let N1, N2,M1,M2 ∈ mod-κK be Kronecker modules (where κ is an
arbitrary field) such that Ext1(N1, N2) = 0 and Hom(N2,M1) = 0. Then there exists an exact
sequence of the form

0→ N1 ⊕N2 →M1 ⊕M2 → Y → 0

if and only if there is a module X with exact sequences

0→ N2 →M2 → X → 0

0→ N1 →M1 ⊕X → Y → 0.

Dually we have:

Lemma 2.1.2. Let N1, N2,M1,M2 be finite dimensional right modules over the Kronecker
algebra κK (where κ is a field) such that Ext1(N1, N2) = 0 and Hom(M2, N1) = 0. Then
there exists an exact sequence of the form

0→ Y →M1 ⊕M2 → N1 ⊕N2 → 0

17
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if and only if there is a module X with exact sequences

0→ X →M1 → N1 → 0

0→ Y → X ⊕M2 → N2 → 0.

The following lemma gives the criteria for the existence of a monomorphism f : In →
In1 ⊕ · · · ⊕ Inp with n ≥ n1 ≥ · · · ≥ np ≥ 0.

Lemma 2.1.3. We consider preinjective modules in mod-κK where κ is an arbitrary field.
Let n ≥ n1 ≥ · · · ≥ np ≥ 0 be integers such that s =

∑p
i=1 ni ≥ n. Then there exists

a monomorphism f : In → In1 ⊕ · · · ⊕ Inp . Moreover cokerf ∼= Im1 ⊕ ... ⊕ Imp−1 where
n ≥ m1 ≥ · · · ≥ mp−1 ≥ 0.

Based on the previous lemmas, we are ready now to give the numerical criteria for the
existence of a monomorphism f : I ′ → I where I, I ′ are preinjectives.

Theorem 2.1.4 ([25]). Suppose d1 ≥ ... ≥ dn > 0 and c1 ≥ ... ≥ cm > 0 are integers. We
have a monomorphism

f : Id1 ⊕ ...⊕ Idn ⊕ dI0 → Ic1 ⊕ ...⊕ Icm ⊕ cI0

if and only if d ≤ c and di + ...+ dn ≤
∑

cj≤di cj for i = 1, n (the empty sum being 0).

Remark 2.1.5. Using the notation I ′ = (a0I0)⊕ ...⊕ (anIn)⊕ ..., I = (b0I0)⊕ ...⊕ (bnIn)⊕ ...
we have a monomorphism f : I ′ → I if and only if

a0 ≤ b0

a1 ≤ b1

a1 + 2a2 ≤ b1 + 2b2
...

a1 + 2a2 + ...+ nan ≤ b1 + 2b2 + ...+ nbn
...

So one can see that in the preinjective case “a kind of” weighted dominance describes the
numerical criteria for the embedding.

Theorem 2.1.4 can be easily dualized for preprojectives:

Theorem 2.1.6 ([25]). Suppose d1 ≥ ... ≥ dn > 0 and c1 ≥ ... ≥ cm > 0 are integers. We
have an epimorphism

f : cP0 ⊕ Pcm ⊕ ...⊕ Pc1 → dP0 ⊕ Pdn ⊕ ...⊕ Pd1

18
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if and only if d ≤ c and di + ...+ dn ≤
∑

cj≤di cj for i = 1, n (the empty sum being 0).

2.2 Some particular preinjective and preprojective short exact
sequences

Applying Theorems 2.1.4 and 2.1.6 we describe first the possible middle terms in certain
preinjective and preprojective short exact sequences.

The proposition below is well-known:

Proposition 2.2.1. If I ′, I ′′ are preinjectives and X is a middle term in Ext1(I ′, I ′′) then X
is also preinjective. Dually if P ′, P ′′ are preprojectives and Y is a middle term in Ext1(P ′, P ′′)
then Y is also preprojective.

Corollary 2.2.2 ([25]). Suppose d1 ≥ ... ≥ dn > 0, c1 ≥ ... ≥ cm > 0 and a > 0 are integers.
Then we have:

(a) Ic1 ⊕ ... ⊕ Icm ⊕ cI0 is a middle term in Ext1(Ia, Id1 ⊕ ... ⊕ Idn ⊕ dI0) if and only if
m + c = n + d + 1,

∑m
i=1 ci = a +

∑n
j=1 dj, d ≤ c and di + ... + dn ≤

∑
cj≤di cj for

i = 1, n.

(b) Ic1 ⊕ ... ⊕ Icm ⊕ cI0 is a middle term in Ext1(aI0, Id1 ⊕ ... ⊕ Idn ⊕ dI0) if and only if
m+ c = n+ d+ a,

∑m
i=1 ci =

∑n
j=1 dj, d ≤ c and di + ...+ dn ≤

∑
cj≤di cj for i = 1, n.

Dually we have for the preprojectives:

Corollary 2.2.3 ([25]). Suppose d1 ≥ ... ≥ dn > 0, c1 ≥ ... ≥ cm > 0 and a > 0 are integers.
Then we have:

(a) cP0 ⊕ Pcm ⊕ ... ⊕ Pc1 is a middle term in Ext1(dP0 ⊕ Pdn ⊕ ... ⊕ Pd1 , Pa) if and only
if m + c = n + d + 1,

∑m
i=1 ci = a +

∑n
j=1 dj, d ≤ c and di + ... + dn ≤

∑
cj≤di cj for

i = 1, n.

(b) cP0 ⊕ Pcm ⊕ ...⊕ Pc1 is a middle term in Ext1(dP0 ⊕ Pdn ⊕ ...⊕ Pd1 , aP0) if and only if
m+ c = n+ d+ a,

∑m
i=1 ci =

∑n
j=1 dj, d ≤ c and di + ...+ dn ≤

∑
cj≤di cj for i = 1, n.

2.3 The field independence of preinjective and preprojective
short exact sequences

We prove that the possible middle terms in preinjective and preprojective short exact se-
quences do not depend on the base field κ. More precisely denote now by I(κ)n the preinjective
indecomposable in mod-κK of dimension (n, n+ 1). Then we have that
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Theorem 2.3.1 ([25]). Suppose d1 ≥ ... ≥ dn ≥ 0, c1 ≥ ... ≥ cm ≥ 0 and e1 ≥ ... ≥ ep ≥ 0

are integers, κ and κ′ are arbitrary fields and we have the short exact sequence in mod-κK

0→ I
(κ)
d1
⊕ ...⊕ I(κ)dn

→ I(κ)c1 ⊕ ...⊕ I
(κ)
cm → I(κ)e1 ⊕ ...⊕ I

(κ)
ep → 0.

Then we have a similar short exact sequence in mod-κ′K:

0→ I
(κ′)
d1
⊕ ...⊕ I(κ

′)
dn
→ I(κ

′)
c1 ⊕ ...⊕ I

(κ′)
cm → I(κ

′)
e1 ⊕ ...⊕ I

(κ′)
ep → 0.

Dually we have:

Theorem 2.3.2 ([25]). Suppose d1 ≥ ... ≥ dn ≥ 0, c1 ≥ ... ≥ cm ≥ 0 and e1 ≥ ... ≥ ep ≥ 0

are integers, κ and κ′ are arbitrary fields and we have the short exact sequence in mod-κK

0→ P
(κ)
dn
⊕ ...⊕ P (κ)

d1
→ P (κ)

cm ⊕ ...⊕ P
(κ)
c1 → P (κ)

ep ⊕ ...⊕ P
(κ)
e1 → 0.

Then we have a similar short exact sequence in mod-κ′K:

0→ P
(κ′)
dn
⊕ ...⊕ P (κ′)

d1
→ P (κ′)

cm ⊕ ...⊕ P (κ′)
c1 → P (κ′)

ep ⊕ ...⊕ P
(κ′)
e1 → 0.

2.4 Extensions of Kronecker modules over arbitrary fields

For d ∈ N2 let Md = {[M ]|M ∈ mod-κK,dimM = d} be the set of isomorphism classes of
Kronecker modules of dimension d. Following Reineke in [17] for subsets A ⊂ Md, B ⊂ Me

we define

A ∗ B = {[X] ∈Md+e | ∃ 0→ N → X →M → 0 exact for some [M ] ∈ A, [N ] ∈ B}.

So the product A ∗ B is the set of isoclasses of all extensions of modules M with [M ] ∈ A
by modules N with [N ] ∈ B. This is in fact Reineke’s extension monoid product using
isomorphism classes of modules instead of modules. It is important to know (see [17]) that the
product above is associative, i.e. forA ⊂Md, B ⊂Me, C ⊂Mf , we have (A∗B)∗C = A∗(B∗C).
Also {[0]} ∗A = A∗{[0]} = A. We will call the operation “∗” simply the extension monoid
product.

Remark 2.4.1. For M,N ∈ mod-κK and κ finite, the product {[M ]} ∗ {[N ]} = {[M ][N ]} (see
Section 1.2).

The aim of this section is to describe the products of the form {[M ]}∗{[N ]}, i.e to find all
extensions of N by M . It is important to note that by saying “an extension of N by M ” we
mean a module X, which is a middle term in Ext1(M,N). We emphasize that all the results
are valid over an arbitrary field κ.

Theorem 2.4.2. We have the following rules for the monoid product of various Kronecker
modules:
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(a) {[P ]}∗{[R]}∗{[I]} = {[P⊕R⊕I]}, where P,R, I ∈ mod-κK are arbitrary preprojective,
regular respectively preinjective modules;

(b) {[R]} ∗ {[R′]} = {[R′]} ∗ {[R]}, moreover this set contains only regulars (for R,R′ ∈
mod-κK arbitrary regulars)

(c) {[Ii]} ∗ {[Ij ]} =

{[Ii ⊕ Ij ]} i− j ≥ −1

{[Ij ⊕ Ii], [Ij−1 ⊕ Ii+1], ..., [Ij−[ j−i
2

] ⊕ Ii+[ j−i
2

]]} i− j < −1

(d) {[Pi]} ∗ {[Pj ]} =

{[Pi ⊕ Pj ]} i− j ≤ −1

{[Pj ⊕ Pi], [Pj+1 ⊕ Pi−1], ..., [Pj+[ i−j
2

] ⊕ Pi−[ i−j
2

]]} i− j > −1

(e) {[In−1−i]} ∗ {[Pi]} = Rn ∪ {[Pi ⊕ In−1−i]}, where

Rn = {[Rp1(t1)⊕ ...⊕Rps(ts)] | s ∈ N∗, pi 6= pj if i 6= j, t1dp1 + ...+ tsdps = n}.

(f) {[Im]} ∗ Rn = Rn ∗ {[Im]} ∪ Rn−1 ∗ {[Im+1]} ∪ ... ∪ {[Im+n]}.

(g) Rn ∗ {[Pm]} = {[Pm]} ∗ Rn ∪ {[Pm+1]} ∗ Rn−1 ∪ ... ∪ {[Pm+n]}.

2.5 The extension monoid product of preinjective (preprojec-
tive) Kronecker modules

Let I ′ = Ia1 ⊕ · · · ⊕ Iap and I = Ib1 ⊕ · · · ⊕ Ibn be preinjective Kronecker modules, where
a1 ≥ · · · ≥ ap and b1 ≥ · · · ≥ bn. Our aim is to describe the set {[I ′]}∗{[I]}, i.e. the isoclasses
appearing in the extension monoid product of [I ′] and [I]. All results of this section can be
dualized in a natural way for preprojective modules.

Lemma 2.5.1 ([26]). For a1 ≥ · · · ≥ an ≥ 0, c1 ≥ · · · ≥ cp ≥ 0 and b ≥ 0 nonnegative
integers, we have that

[Ic1 ⊕ · · · ⊕ Icp ] ∈ {[Ia1 ⊕ · · · ⊕ Ian ]} ∗ {[Ib]}

if and only if p = n + 1, c1 = a1, . . . , ck−1 = ak−1, ck+1 ≥ ak, . . . , cn+1 ≥ an for some
k ∈ {1, . . . , n+ 1} and

∑n
i=1 ai + b =

∑n+1
i=1 ci.

Lemma 2.5.1 may also be stated in the following equivalent way:

Lemma 2.5.2 ([26]). For a1 ≥ · · · ≥ an ≥ 0, c1 ≥ · · · ≥ cp ≥ 0 and b ≥ 0 nonnegative
integers, we have that

[Ic1 ⊕ · · · ⊕ Icp ] ∈ {[Ia1 ⊕ · · · ⊕ Ian ]} ∗ {[Ib]}

if and only if p = n+ 1, c1 = a1, . . . , ck−1 = ak−1, ck = b−
∑n

i=kmi, ck+1 = ak +mk, . . . ,
cn+1 = an +mn for some k ∈ {1, . . . , n+ 1} and mi ≥ 0, i = k, n.
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We are ready for the main theorem of this section:

Theorem 2.5.3 ([26]). If a1 ≥ . . . ap ≥ 0, b1 ≥ · · · ≥ bn ≥ 0 and c1 ≥ · · · ≥ cr ≥ 0 are
nonnegative integers, then [Ic1 ⊕ · · · ⊕ Icr ] ∈ {[Ia1 ⊕ · · · ⊕ Iap ]} ∗ {[Ib1 ⊕ · · · ⊕ Ibn ]} if and
only if r = n + p, ∃β : {1, . . . , n} → {1, . . . , n + p}, ∃α : {1, . . . , p} → {1, . . . , n + p} both
functions strictly increasing with Imα ∩ Imβ = ∅ and ∃mi

j ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ p, such
that ∀` ∈ {1, . . . , n+ p}

c` =


bi −

∑
β(i)<α(j)
1≤j≤p

mi
j , where i = β−1(`) ` ∈ Imβ

aj +
∑

β(i)<α(j)
1≤i≤n

mi
j , where j = α−1(`) ` ∈ Imα

. (2.5.1)

Example 2.5.4. In mod-κK we have that

[I8 ⊕ I6 ⊕ I4 ⊕ I3 ⊕ I3 ⊕ I1 ⊕ I1] ∈ {[I8 ⊕ I3 ⊕ I2 ⊕ I0]} ∗ {[I7 ⊕ I5 ⊕ I1]}.

Using the notations from Theorem 2.5.3, we have p = 4, n = 3, r = 7 and the to strictly
increasing functions are β : {1, 2, 3} → {1, . . . , 7} with β(1) = 2, β(2) = 4, β(3) = 7 and
α : {1, . . . , 4} → {1, . . . , 7} with α(1) = 1, α(2) = 3, α(3) = 5, α(4) = 6. For the values mi

j ,
1 ≤ i ≤ n, 1 ≤ j ≤ p, we have m1

2 = m2
3 = m2

4 = 1 and mi
j = 0 in all other cases. Hence there

exists a short exact sequence

0→ I7 ⊕ I5 ⊕ I1 → I8 ⊕ I6 ⊕ I4 ⊕ I3 ⊕ I3 ⊕ I1 ⊕ I1 → I8 ⊕ I3 ⊕ I2 ⊕ I0 → 0,

illustrated as follows:

7 5 1 8 3 2 08 6 4 3 3 1 1

So, less formally, Theorem 2.5.3 claims that [Ic1 ⊕ · · · ⊕ Icr ] ∈ {[Ia1 ⊕ · · · ⊕ Iap ]} ∗ {[Ib1 ⊕
· · · ⊕ Ibn ]} if and only if the sequence c1 ≥ · · · ≥ cr ≥ 0 is obtained by merging the sequences
a1 ≥ · · · ≥ ap ≥ 0 and b1 ≥ · · · ≥ bn ≥ 0 and by applying the “box dropping rule” illustrated
in the picture above. This rule says that in the middle term boxes can be dropped only to
the right and only from columns corresponding to elements of the sequence b1 ≥ · · · ≥ bn ≥ 0
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on top of columns corresponding to elements of the sequence a1 ≥ · · · ≥ ap ≥ 0. The values
mi
j from the theorem denote the number of boxes dropped from the column corresponding to

the element bi on top of the column corresponding to the element aj .

As immediate consequences, we get the following two corollaries:

Corollary 2.5.5. Let I, I ′, I ′′ ∈ mod-κK be preinjective Kronecker modules, where I =

Ic1 ⊕ · · · ⊕ Icr , I ′ = Ia1 ⊕ · · · ⊕ Iap and I ′′ = Ib1 ⊕ · · · ⊕ Ibn. Then there is a short exact
sequence

0→ Ib1 ⊕ · · · ⊕ Ibn → Ic1 ⊕ · · · ⊕ Icr → Ia1 ⊕ · · · ⊕ Iap → 0

if and only if there is a short exact sequence

0→ Ib1+m ⊕ · · · ⊕ Ibn+m → Ic1+m ⊕ · · · ⊕ Icr+m → Ia1+m ⊕ · · · ⊕ Iap+m → 0

for some m ∈ N.

Corollary 2.5.6. For a1 ≥ · · · ≥ an ≥ 0, c1 ≥ · · · ≥ cp ≥ 0 and b ≥ 0 nonnegative integers,
we have that

[Ic1 ⊕ · · · ⊕ Icp ] ∈ {[Ib]} ∗ {[Ia1 ⊕ · · · ⊕ Ian ]}

if and only if p = n+1, c1 = a1−m1, . . . , ck−1 = ak−1−mk−1, ck = b+
∑k−1

i=1 mi, ck+1 = ak,
. . . , cn+1 = an for some k ∈ {1, . . . , n+ 1} and mi ≥ 0, i = k, n.

Theorem 2.5.3 can be easily dualized for preprojectives:

Theorem 2.5.7 ([26]). If a1 ≥ . . . ap ≥ 0, b1 ≥ · · · ≥ bn ≥ 0 and c1 ≥ · · · ≥ cr ≥ 0 are
nonnegative integers, then [Pcr ⊕ · · · ⊕ Pc1 ] ∈ {[Pbn ⊕ · · · ⊕ Pb1 ]} ∗ {[Pap ⊕ · · · ⊕ Pa1 ]} if and
only if r = n + p, ∃β : {1, . . . , n} → {1, . . . , n + p}, ∃α : {1, . . . , p} → {1, . . . , n + p} both
functions strictly increasing with Imα ∩ Imβ = ∅ and ∃mi

j ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ p, such
that ∀` ∈ {1, . . . , n+ p}

c` =


bi −

∑
β(i)<α(j)
1≤j≤p

mi
j , where i = β−1(`) ` ∈ Imβ

aj +
∑

β(i)<α(j)
1≤i≤n

mi
j , where j = α−1(`) ` ∈ Imα

.

Corollary 2.5.5 also has an obvious analogue version for preprojective Kronecker modules.
We have seen that Theorem 2.5.3 describes the combinatorics of the monoid product of two
arbitrary preinjective Kronecker modules. An even more general result has been proved in
[28]:

Theorem 2.5.8 ([28]). For a1, . . . , an, c1, . . . , cr ∈ N, c1 ≥ · · · ≥ cr ≥ 0, r, n ≥ 2 we have
that

[Ic1 ⊕ · · · ⊕ Icr ] ∈ {[Ia1 ]} ∗ · · · ∗ {[Ian ]}
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if and only if r = n, ∃σ ∈ Sn a permutation and ∃mi
j ≥ 0 nonnegative integers, 1 ≤ j < i ≤ n,

such that ∀` ∈ {1, . . . , n}

c` = aσ(`) +
n∑

i=σ(`)+1

mi
σ(`) −

σ(`)−1∑
j=1

m
σ(`)
j ,

and the following conditions hold:

(i) mi
j > 0 =⇒ σ−1(i) < σ−1(j),

(ii) aj > ai =⇒ σ−1(i) > σ−1(j).

The proof is somewhat similar to that of Theorem 2.5.3. Using this theorem one can give
an easy proof for an interesting corollary, which was observed in [23]:

Corollary 2.5.9. Suppose that 0 ≤ a1 ≤ · · · ≤ an. Then [Ic1⊕· · ·⊕Icn ] ∈ {[Ia1 ]}∗· · ·∗{[Ian ]}
if and only if c1 ≥ · · · ≥ cn ≥ 0, |µ| = |λ| and µ E λ, where µ = (c1, c2, . . . , cn) and
λ = (an, an−1, . . . , a1)

1.

Remark 2.5.10. Theorem 2.5.8 and the previous corollary apply dually to preprojective mod-
ules as well.

2.6 The extension monoid product of a preinjective and a pre-
projective Kronecker module

In what follows, we are going to give some results needed in the solution of the matrix subpencil
problem in Chapter 3.

Lemma 2.6.1. Let d1 ≥ · · · ≥ dq ≥ 0 and c1 ≥ · · · ≥ cr ≥ 0 be nonnegative integers.
Then [Ic1 ⊕ · · · ⊕ Icr ] ∈ {[Id1 ⊕ · · · ⊕ Idq ]} ∗ {[Pn]} if and only if r = q − 1 and we have
c1 = d1 + m1, . . . , cl = dl + ml, cl+1 = dl+2, . . . , cq−1 = dq for some l ∈ {1, . . . , q − 1} with
mi ≥ 0, i = 1, l and

∑l
i=1mi = dl+1 + n+ 1.

Lemma 2.6.2. Let d1 ≥ · · · ≥ dq ≥ 0 and c1 ≥ · · · ≥ cq−1 ≥ 0 be nonnegative integers.
Then [Ic1 ⊕ · · · ⊕ Icq−1 ] ∈ {[Id1 ⊕ · · · ⊕ Idq ]} ∗ {[Pn]} if and only if [Id1+n+1 ⊕ · · · ⊕ Idq+n+1] ∈
{[I0]} ∗ {[Ic1+n+1 ⊕ · · · ⊕ Icq−1+n+1]}.

Proof. Follows easily from Corollary 2.5.6 and Lemma 2.6.1.

Theorem 2.6.3. Let q > n > 0, d1 ≥ · · · ≥ dq ≥ 0, c1 ≥ · · · ≥ cq−n ≥ 0 and 0 ≤ a1 ≤ · · · ≤
an be nonnegative integers. Then [Ic1 ⊕ · · ·⊕ Icq−n ] ∈ {[Id1 ⊕ · · ·⊕ Idq ]} ∗ {[Pa1 ⊕ · · ·⊕Pan ]} if
and only if [Id1+an+1 ⊕ · · · ⊕ Idq+an+1] ∈ {[Ian−a1 ⊕ · · · ⊕ Ian−an−1 ⊕ I0]} ∗ {[Ic1+an+1 ⊕ · · · ⊕
Icq−n+an+1]}, or equivalently there is a short exact sequence

0→ Pa1 ⊕ · · · ⊕ Pan → Ic1 ⊕ · · · ⊕ Icq−n → Id1 ⊕ · · · ⊕ Idq → 0

1Here µ and λ are partitions, see Section 1.1 for notations and other details.
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if and only if there is a short exact sequence

0→ Ic1+an+1⊕· · ·⊕Icq−n+an+1 → Id1+an+1⊕· · ·⊕Idq+an+1 → Ian−a1⊕· · ·⊕Ian−an−1⊕I0 → 0.

Corollary 2.6.4. Let q > α > 0, d1 ≥ · · · ≥ dq ≥ 0 and c1 ≥ · · · ≥ cq−n ≥ 0 be nonnegative
integers. Then [Ic1⊕· · ·⊕Icq−α ] ∈ {[Id1⊕· · ·⊕Idq ]}∗{[αP0]} if and only if [Id1+1⊕· · ·⊕Idq+1] ∈
{[αI0]} ∗ {[Ic1+1 ⊕ · · · ⊕ Icq−α+1]}, or equivalently there is a short exact sequence

0→ αP0 → Ic1 ⊕ · · · ⊕ Icq−α → Id1 ⊕ · · · ⊕ Idq → 0

if and only if there is a short exact sequence

0→ Ic1+1 ⊕ · · · ⊕ Icq−α+1 → Id1+1 ⊕ · · · ⊕ Idq+1 → αI0 → 0.

2.7 Computing the extension monoid product of preinjective
and preprojective Kronecker modules

In order to be able to handle computationally in the most efficient way possible the charac-
terization given in Theorem 2.5.3, we must get rid of the condition requiring the existence
of the nonnegative integers mi

j from the theorem. In the following two lemmas, we replace
the condition involving the existence by some inequalities depending only on the sequences
(a1, . . . , ap), (b1, . . . , bn) and (c1, . . . , cr) and on the functions α and β.

The following theorem characterizes the extension of preinjective Kronecker modules by
explicit, easy to check numerical conditions, involving only the decreasing sequences of integers
obtained from the dimension vectors of the respective modules.

Theorem 2.7.1 ([27]). Let a1 ≥ . . . ap ≥ 0, b1 ≥ · · · ≥ bn ≥ 0, c1 ≥ · · · ≥ cr ≥ 0 be decreasing
sequences of nonnegative integers and let Bj = {l ∈ {0, . . . , n}|

∑l
k=1 bk+

∑j
k=1 ak ≥

∑l+j
k=1 ck}

for j = 1, p. Then

[Ic1 ⊕ · · · ⊕ Icr ] ∈ {[Ia1 ⊕ · · · ⊕ Iap ]} ∗ {[Ib1 ⊕ · · · ⊕ Ibn ]}

if and only if r = p + n,
∑r

i=1 ci =
∑p

i=1 ai +
∑n

i=1 bi, Bj 6= ∅, aj ≤ cαj and bi ≥ cβi for
j = 1, p and i = 1, n, where

αj =

minB1 + 1 j = 1

max{αj−1 + 1,minBj + j} 1 < j ≤ p

and

βi =

min{l ∈ {1, . . . , r}|l 6= αj , j = 1, p} i = 1

min{l ∈ {βi−1 + 1, . . . , r}|l 6= αj , j = 1, p} 1 < i ≤ n
.
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Theorem 2.7.1 may seem thorny at first sight, so we are going to show how to use it
in order to obtain an algorithm which decides in linear time whether a certain preinjective
Kronecker module is an extension of two other preinjective Kronecker modules.

Suppose we are given three preinjective modules Ia1⊕· · ·⊕Iap , Ib1⊕· · ·⊕Ibn and Ic1⊕· · ·⊕
Icr and we want to decide if [Ic1⊕· · ·⊕Icr ] ∈ {[Ia1⊕· · ·⊕Iap ]}∗{[Ib1⊕· · ·⊕Ibn ]}. Obviously,
if r 6= p + n or

∑r
k=1 cr 6=

∑p
j=1 aj +

∑n
i=1 bi, the answer is a quick and unhesitating no, so

in what follows, we suppose that r = p+ n and
∑r

k=1 cr =
∑p

j=1 aj +
∑n

i=1 bi both hold, and
we work only with the decreasing sequences (a1, . . . , ap), (b1, . . . , bn) and (c1, . . . , cr).

So, let us set the initial values j = i = k = 1 for the integers used to index elements from
the sequences (a1, . . . , ap), (b1, . . . , bn) respectively (c1, . . . , cr). In a practical implementation
one can repeat the following steps for all successive values of k = 1, r:

1. If j ≤ p and aj ≤ ck and (a1 + · · ·+ aj−1) + (b1 + · · ·+ bi−1) + aj ≥ c1 + · · ·+ ck, then
increase j by one.

2. Else, if i ≤ n and bi ≥ ck and (a1 + · · ·+ aj−1) + (b1 + · · ·+ bi−1) + bi ≥ c1 + · · ·+ ck,
then increase i by one.

3. If none of the steps above can be carried out than stop with a negative answer, i.e.
[Ic1 ⊕ · · · ⊕ Icr ] /∈ {[Ia1 ⊕ · · · ⊕ Iap ]} ∗ {[Ib1 ⊕ · · · ⊕ Ibn ]}.

Finally, if one of the first two steps can be made for k = r too, then return a positive answer,
i.e. [Ic1 ⊕ · · · ⊕ Icr ] ∈ {[Ia1 ⊕ · · · ⊕ Iap ]} ∗ {[Ib1 ⊕ · · · ⊕ Ibn ]}.

Remark 2.7.2. If we know that I ′ ↪→ I, then then the possible factors I/I ′ are explicitly
described by the result in Theorem 2.7.1. So, if we are given three preinjective Kronecker
modules I, I ′ and I ′′ such that I ′ ↪→ I, then we can decide in linear time if [I ′′] ∈ {[I/Imf ]|f :

I ′ → I is a monomorphism}.

It is trivial to see that the algorithm is linear in the number of indecomposables (i.e. in
r = n + p), since the only cycle in the algorithm runs at most r times and the partial sums
a1 + · · · + aj , b1 + · · · + bi and c1 + · · · + ck can be computed one term at a time at every
iteration.

To develop an algorithm for generating all the middle terms X in the short exact sequence
0→ I ′ → X → I → 0, we could use of course “brute force” and generate all possible modules
while checking every one in part with the previous method. But we can do a little better than
that for example by using the method of non-recursive backtracking (also known as “iterative
backtracking”) to generate all the middle terms in Ext1(Ia1⊕· · ·⊕Iap , Ib1⊕· · ·⊕Ibn). In general,
using the backtracking method, one can find all solutions to some computational problem, by
incrementally building solution candidates, and abandoning each partial candidate as soon as
it is determined that the candidate cannot possibly be completed to a valid solution (see [13]).
In our case the space of possible solutions (or candidates) is a subset of the set all decreasing
sequences of nonnegative integers (c1, . . . , cr) with a fixed length and a fixed sum.
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Remark 2.7.3. The number of middle terms can be huge. For example, in worst case, when
we want to compute the middle terms in Ext1(In,mI0), where m ≥ n, the number of middle
terms is P(n), with P(n) being the number of partitions of the integer n. In practice however,
we have found that using the method described, one can generate almost instantly extensions
when they are up to around 100000 in number, so it fits its purpose quiet well. Based on
Theorem 2.7.1 a similar method can be developed to generate all factors I/I ′, when I ′ ↪→ I

is given.

Example 2.7.4. Using a non-recursive (iterative) backtracking implementation in GAP [31]
it turns out that:

1. There are 18 possible middle terms in Ext1(I4 ⊕ I3 ⊕ I1 ⊕ I0, I5 ⊕ I3 ⊕ I3 ⊕ I2 ⊕ I1),
namely the following: [I5⊕ I4⊕ I3⊕ I3⊕ I3⊕ I2⊕ I1⊕ I1⊕ I0], [I5⊕ I4⊕ I3⊕ I3⊕ I3⊕
I1⊕I1⊕I1⊕I1], [I5⊕I4⊕I3⊕I3⊕I2⊕I2⊕I2⊕I1⊕I0], [I5⊕I4⊕I3⊕I3⊕I2⊕I2⊕I1⊕
I1⊕ I1], [I5⊕ I4⊕ I3⊕ I2⊕ I2⊕ I2⊕ I2⊕ I1⊕ I1], [I4⊕ I4⊕ I4⊕ I3⊕ I3⊕ I2⊕ I1⊕ I1⊕
I0], [I4⊕I4⊕I4⊕I3⊕I3⊕I1⊕I1⊕I1⊕I1], [I4⊕I4⊕I4⊕I3⊕I2⊕I2⊕I2⊕I1⊕I0], [I4⊕
I4⊕I4⊕I3⊕I2⊕I2⊕I1⊕I1⊕I1], [I4⊕I4⊕I4⊕I2⊕I2⊕I2⊕I2⊕I1⊕I1], [I4⊕I4⊕I3⊕
I3⊕I3⊕I2⊕I2⊕I1⊕I0], [I4⊕I4⊕I3⊕I3⊕I3⊕I2⊕I1⊕I1⊕I1], [I4⊕I4⊕I3⊕I3⊕I2⊕
I2⊕I2⊕I1⊕I1], [I4⊕I4⊕I3⊕I2⊕I2⊕I2⊕I2⊕I2⊕I1], [I4⊕I3⊕I3⊕I3⊕I3⊕I3⊕I2⊕
I1⊕ I0], [I4⊕ I3⊕ I3⊕ I3⊕ I3⊕ I3⊕ I1⊕ I1⊕ I1], [I4⊕ I3⊕ I3⊕ I3⊕ I3⊕ I2⊕ I2⊕ I1⊕ I1]
and [I4 ⊕ I3 ⊕ I3 ⊕ I3 ⊕ I2 ⊕ I2 ⊕ I2 ⊕ I2 ⊕ I1].

2. The number of possible middle terms in Ext1(I19 ⊕ I15 ⊕ I8 ⊕ I4 ⊕ I1 ⊕ I1, I26 ⊕ I12 ⊕
I10 ⊕ I8 ⊕ I4) is 102501, generated in 2 seconds on a laptop computer.

3. The number of possible middle terms in Ext1(I16⊕ I11⊕ I7⊕ I6⊕ I3⊕ I1⊕ I1⊕ I0, I20⊕
I19⊕I18⊕I10⊕I8⊕I3⊕I2⊕I2) is 3322698, and all the 3322698 modules were generated
in just under 2 minutes on a laptop computer.

Remark 2.7.5. The methods and results described in this section will work in the case of
preprojective modules as well, after switching over the order of arguments and reversing the
indexes.
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Chapter 3

Matrix pencils

3.1 Polynomial matrices

A polynomial matrix, or λ-matrix is a matrix A(λ) ∈ Mm,n(κ[λ]) with the entries poly-
nomials in λ:

A(λ) =
(
aij(λ)

)
=
(
a
(0)
ij λ

l + a
(1)
ij λ

l−1 + · · ·+ a
(l)
ij

)
,

where for each element aij(λ) ∈ κ[λ], l is the largest of the degrees of the polynomials aij(λ),
i = 1,m and j = 1, n.

In this section we recall some basic notions related to polynomial matrices, such as: the
equivalence of polynomial matrices, the invariant polynomials and the elementary divisors.
We end with the following well-known result:

Theorem 3.1.1 ([10]). Two polynomial matrices A(λ) and B(λ) of the same size are equiv-
alent if and only if they have the same invariant polynomials, or equivalently, if and only if
they have the same elementary divisors.

For details on these notions, see [10].

3.2 The normal forms of a matrix

In this section we do a quick review of the normal (canonical) forms matrices from Mn(κ)

can be brought to, namely the first and the second natural normal form (in the case of an
arbitrary field κ) and the Jordan normal form (in the case when κ is algebraically closed).
These are block-diagonal forms, where the blocs are the companion matrices of the invariant
polynomials (in the case of the first normal form), the companion matrices of the elementary
divisors (in the case of the second normal form) and the well-known Jordan blocks (in the
case when κ is algebraically closed).

29



CHAPTER 3. MATRIX PENCILS

3.3 Linear matrix pencils

In this section we introduce the central notion of this chapter, the (linear) matrix pencils – a
special case of polynomial matrices. We present the results clarifying under which conditions
are two matrix pencils strictly equivalent. We also describe their canonical form, given by the
so called classical Kronecker invariants.

A polynomial matrix of the form A+λB ∈Mm,n(κ[λ]) is called a linear matrix pencil.
In the sequel we will usually omit the word “linear” and we refer to linear matrix pencils
simply as matrix pencils.

Two matrix pencils A + λB,A′ + λB′ ∈ Mm,n(κ[λ]) are told to be strictly equivalent
if there exist constant square non-singular matrices P ∈ Mm(κ) and Q ∈ Mn(κ) such that
A′+ λB′ = P (A+ λB)Q. We denote by A′+ λB′ ∼ A+ λB the strict equivalence of the two
pencils.

Note that we have the following equivalence:

A′ + λB′ = P (A+ λB)Q ⇐⇒ A′ = PAQ and B′ = PBQ.

Matrix pencils pencils are determined up to strict equivalence by some integer parameters,
called the classical Kronecker invariants. Classical Kronecker invariants are of four type:
minimal indices for columns, minimal indices for rows, finite elementary divisors and infinite
elementary divisors. The following theorem based on [10] established the connection between
the classical Kronecker invariants and the canonical block-diagonal form of an arbitrary matrix
pencil:

Theorem 3.3.1. An arbitrary matrix pencil A + λB is strictly equivalent to the following
block-diagonal form

A+ λB ∼ diag(0h×g, Lεg+1 , . . . , Lεp , L
ᵀ
ηh+1

, . . . , Lᵀηq , Eu1 + λHu1 , . . . , Eut + λHut , J + λE),

where

(a) the g zero-filled columns and the blocks Lεg+1 , . . . , Lεp correspond to the minimal indices
for columns 0 = ε1 = · · · = εg ≤ εg+1 ≤ · · · ≤ εp,

(b) the h zero-filled rows and the blocks Lᵀηh+1 , . . . , L
ᵀ
ηq correspond to the minimal indices

for rows 0 = η1 = · · · = ηh ≤ ηh+1 ≤ · · · ≤ ηq,

(c) the diagonal blocks Eu1 +λHu1 , . . . , Eut+λHut correspond to infinite elementary divisors
µu1 , . . . , µut ,

(d) the normal form of the last diagonal block J + λE is uniquely determined by the finite
elementary divisors of the pencil.

This matrix is the canonical form of the pencil A+ λB in the most general case1.
1Of course, depending on the pencil A+ λB, some of the “families” of diagonal blocks may be missing.
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Without insisting on the details, we just give the form of the diagonal blocks determined
by the minimal indices for columns. If the integer ε > 0 is a minimal index for columns of
the pencil A+ λB, then the pencil has a block of the form

Lε =


λ 1 0 · · · 0

0 λ 1
. . .

...
...

. . . . . . . . . 0

0 · · · 0 λ 1


when written in its canoncial block-diagonal form, where Lε ∈Mε,ε+1(κ[λ]).

Given an arbitrary matrix pencil A + λB, there are several methods (and software im-
plementations) to transform this pencil to its canonical diagonal form and reveal its classical
Kronecker invariants. Description of these methods are beyond the scope of this thesis, so we
refer the reader to works such as [3, 6, 7, 16, 24].

3.4 The matrix subpencil problem

A pencil A′ + λB′ is called subpencil of A+ λB if and only if there are pencils A12 + λB12,
A21 + λB21, A22 + λB22 such that

A+ λB ∼

(
A′ + λB′ A12 + λB12

A21 + λB21 A22 + λB22

)
.

In this case we also say that the subpencil can be completed to the bigger pencil. We
speak about row completion when A12, B12, A22, B22 are zero matrices and about column
completion when A21, B21, A22, B22 are zero.

There is an unsolved challenge in pencil theory with lots of applications in control theory
(problems related to pole placement, non-regular feedback, dynamic feedback etc. may be
formulated in terms of matrix pencils, for details see [14]):

Challenge: If A+λB, A′+λB′ are pencils over C, find a necessary and sufficient condition
in terms of their classical Kronecker invariants for A′+λB′ to be a subpencil of A+λB. Also
construct the completion pencils A12 + λB12, A21 + λB21, A22 + λB22. A particular case of
the challenge above is when we limit ourselves to column or row completions.

3.5 The matrix pencil – Kronecker module correspondence

Next we will translate the notions from Section 3.3 (taken from pencil theory) into the lan-
guage of Kronecker modules (representations). A matrix pencil A + λB ∈ Mm,n(C[λ]) cor-
responds to the Kronecker module MA,B = (κm, κn; fA, fB), where choosing the canonical
basis in κn and κm, the matrix of fA : κn → κm (respectively of fB : κn → κm) is A
(respectively B). The strict equivalence A+ λB ∼ A′ + λB′ means the isomorphism of mod-
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ules MA,B
∼= MA′,B′ . It follows easily that a pencil A′ + λB′ is a subpencil of A + λB if

and only if the module MA′,B′ is a subfactor of MA,B i.e. there is a module N such that
MA′,B′ � N ↪→ MA,B or equivalently there is a module L such that MA′,B′ ↪→ L � MA,B

(see [11]). We will call the modules N and L linking modules. Based on [11] we prove the
following:

Theorem 3.5.1. A′ + λB′ ∈ Mm′,n′(C[λ]) is a subpencil of A + λB ∈ Mm,n(C[λ]) if and
only if m ≥ m′, n ≥ n′ and [MA,B] ∈ {[(n− n′)I0]} ∗ {[MA′,B′ ]} ∗ {[(m−m′)P0]}.

In particular a pencil A′ + λB′ is a subpencil of A + λB by column completions if and
only if MA′,B′ ↪→ MA,B with factor isomorphic to tI0 where t ∈ N is arbitrary. Respectively,
a pencil A′ + λB′ is a subpencil of A+ λB by row completions if and only if MA′,B′ �MA,B

with kernel isomorphic to tP0 where t ∈ N is arbitrary.
A preinjective module Ib1 ⊕ ... ⊕ Ibk corresponds to the matrix pencil with the following

classical Kronecker invariants:

• minimal indices for columns: b1, ..., bk;

• no minimal indices for rows, no finite elementary divisors, no infinite elementary divisors.

A preprojective module Pb1 ⊕ ... ⊕ Pbk corresponds to the matrix pencil with the following
classical Kronecker invariants:

• minimal indices for rows: b1, ..., bk;

• no minimal indices for columns, no finite elementary divisors, no infinite elementary
divisors.

A regular module
⊕

p∈C∪{∞}Rp(ν
(p)) =

⊕
p∈C∪{∞}

(
Rp(ν

(p)
1 )⊕ · · · ⊕Rp(ν(p)sp )

)
(where ν(p)

is a partition for every point p ∈ C∪ {∞}) corresponds to the regular matrix pencil with the
following classical Kronecker invariants:

• for p =∞ the partition ν(∞) describes the dimensions of the diagonal blocks associated
to the infinite elementary divisors of the pencil

• for every p ∈ C, the partition ν(p) describes the dimensions of the Jordan blocks corre-
sponding to the characteristic value p (determined by the finite elementary divisors of
the pencil).

3.6 Solution of the subpencil problem in a particular case

As an application of our results on short exact sequences of Kronecker modules presented in
Chapter 2 we show how to solve the matrix subpencil problem in a special case.

Let us consider matrix pencils A+ λB, A′ + λB′ over C, having only minimal indices for
columns among their classical Kronecker invariants. In this case, using the notations from
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Section 3.3 A+λB ∼ diag(Lε1 , . . . , Lεp) and A′+λB′ ∼ diag(Lε′1 , . . . , Lε′q), where ε1 ≤ · · · ≤
εp and ε′1 ≤ · · · ≤ ε′q are the minimal indices for columns. Hence, as explained in Section 3.5,
one may identify the pencil A+ λB with the module MA,B = I = Iεp ⊕ · · · ⊕ Iε1 ∈ mod-CK
and the pencil A′+λB′ with the module MA′,B′ = I ′ = Iε′q ⊕ · · ·⊕ Iε′1 ∈ mod-CK. Using this
identification, we have that A′+λB′ is a subpencil of A+λB if and only if I ′ is a subfactor of
I, that is if and only if there exists a Kronecker module L ∈ mod-CK such that I ′ ↪→ L� I.
We have the following theorem:

Theorem 3.6.1. If I ′ = anIn⊕· · ·⊕a0I0 and I = cnIn⊕· · ·⊕c0I0 are preinjective Kronecker
modules, then I ′ is a subfactor of I (i.e. ∃L such that I ′ ↪→ L� I) if and only if

b1 ≤
1

2

(
n∑
i=1

(i+ 1)ci −
n∑
i=2

(i+ 1)bi

)
and b0 ≥ a0,

where

bk =



∑n
i=0(i+ 1)ci −

∑n
i=1(i+ 1)bi k = 0∑n

i=1 iai −
∑n

i=2 ibi k = 1⌊
min

(∑n
i=k iai−

∑n
i=k+1 ibi

k ,
∑n
i=k(i+1)ci−

∑n
i=k+1(i+1)bi

k+1

)⌋
2 ≤ k < n

min(an, cn) k = n

.

In this case (the values b0, . . . , bn being nonnegative) one of the linking modules is L = bnIn⊕
· · · ⊕ b0I0.

Example 3.6.2. Consider the following matrix pencils written in canonical diagonal form
and having only minimal indices for columns among their classical Kronecker invariants:

A+ λB =


λ 1 0 0
0 λ 1 0
0 0 λ 1

λ 1 0 0
0 λ 1 0
0 0 λ 1

λ 1 0 0
0 λ 1 0
0 0 λ 1

λ 1

 ∈M10,14(C[λ])

and

A′ + λB′ =


0 λ 1 0 0 0 0
0 λ 1 0 0 0
0 0 λ 1 0 0
0 0 0 λ 1 0
0 0 0 0 λ 1

λ 1 0
0 λ 1

λ 1

 ∈M8,12(C[λ]).

The pencil A+λB has ε1 = ε2 = ε3 = 3, and ε4 = 1 as its minimal indices for columns, while
in the case of the pencil A′+λB′ these are ε′1 = 0, ε′2 = 5, ε′3 = 2 and ε′4 = 1. Hence the corre-
sponding modules areMA,B = I3⊕I3⊕I3⊕I1 andMA′,B′ = I5⊕I2⊕I1⊕I0. Written using the
multiplicative notation used in Theorem 3.6.1, MA′,B′ =

⊕5
i=0 aiIi and MA,B =

⊕5
i=0 ciIi,
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where (a0, a1, . . . , a5) = (1, 1, 1, 0, 0, 1) and (c0, c1, . . . , c5) = (0, 1, 0, 3, 0, 0). We use the recur-
sive formula from the theorem to compute the sequence (b0, b1, . . . , b5) = (2, 1, 2, 1, 0, 0) and
to find out that the inequalities

b1 ≤
1

2

(
5∑
i=1

(i+ 1)ci −
5∑
i=2

(i+ 1)bi

)
and b0 ≥ a0

are satisfied. So A′ + λB′ is a subpencil of A + λB or equivalently, MA′,B′ is a subfactor of
MA,B, i.e. ∃L such that MA′,B′ ↪→ L� MA,B. Moreover, we can take the linking module L
to be L =

⊕5
i=0 biIi = I3⊕ I2⊕ I2⊕ I1⊕ I0⊕ I0. We could use at this point Theorem 2.1.4 to

verify the existence of the embedding MA′,B′ ↪→ L and Corollary 2.6.4 to verify the existence
of the projection L � MA,B with the kernel equal to 2P0. The matrix pencil corresponding
to the module L is

L1 + λL2 =


0 0 λ 1 0 0

0 λ 1 0
0 0 λ 1

λ 1 0
0 λ 1

λ 1 0
0 λ 1

λ 1

 ∈M8,14(C[λ]).

Let us construct now the completion matrices A12 + λB12, A21 + λB21, A22 + λB22, i.e.
those matrix blocks for which the following equivalence holds:

A+ λB ∼

(
A′ + λB′ A12 + λB12

A21 + λB21 A22 + λB22

)
.

Since we have an embedding MA′,B′
f
↪→ L, we must have f = (F1, F2), where F1 ∈

M14,12(C) and F2 ∈ M8(C) are full-rank matrices such that (L1 + λL2)F1 = F2(A
′ + λB′).

Also, for the projection MA,B

g
� L, we have g = (G1, G2), where G1 ∈ M14(C) and G2 ∈

M10,8(C) are full-rank matrices such that (L1 + λL2)G1 = G2(A + λB). Calculations show
that these matrices can be taken to be:

F1 =



0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


and F2 = E8,
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where E8 is the 8× 8 identity matrix and

G1 =



0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1


and G2 =


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

 .

Since F2 and G1 are full-rank matrices square matrices, they are invertible. In our case
F−12 = F2 and G−11 = Gᵀ1. The matrices G−11 F1 and F−12 G2 are also full-rank matrices, so

there are non-singular square matrices C1, C2, D1 and D2 such that G−11 F1 = C1

(
E12

0

)
C2

and F−12 G2 = D1

(
E8 0

)
D2, respectively. In our case these matrices are

C1 =



0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 1 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0


,

C2 =



0 0 0 0 −1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 −1


,

D1 = E8, and D2 =


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0

 .

Using these matrices we can write:

A′ + λB′ = F−12 F2(A
′ + λB′) = F−12 (L1 + λL2)F1

= F−12 (L1 + λL2)G1G
−1
1 F1 = F−12 G2(A+ λB)G−11 F1

= D1

(
E8 0

)
D2(A+ λB)C1

(
E12

0

)
C2.
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So D−11 (A′ + λB′)C−12 =
(
E8 0

)
D2(A+ λB)C1

(
E12

0

)
, hence

A′ + λB′ =
(
E8 0

)(D1

E2

)
D2(A+ λB)C1

(
C2

E2

)(
E12

0

)

=
(
E8 0

)
D2(A+ λB)C ′

(
E12

0

)
,

where

C ′ =



0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0


.

Obviously, A+ λB ∼ D2(A+ λB)C ′, where

D2(A+ λB)C ′ =


0 λ 1 0 0 0 0 0 0
0 λ 1 0 0 0 0 0
0 0 λ 1 0 0 1 0
0 0 0 λ 1 0 0 λ
0 0 0 0 λ 1 0 0

λ 1 0 0 0
0 λ 1 0 0

λ 1 0 0
0 0 0 0 1 0 λ 0 0 0 0 0 0 0
λ 0 0 0 0 0 0 1 0 0 0 0 0 0

 =

(
A′ + λB′ A12 + λB12

A21 + λB21 A22 + λB22

)
,

with the completion pencils

A12 + λB12 =


0 0
0 0
1 0
0 λ
0 0
0 0
0 0
0 0

 , A21 + λB21 =
(
0 0 0 0 1 0 λ 0 0 0 0 0
λ 0 0 0 0 0 0 1 0 0 0 0

)
, A22 + λB22 = ( 0 0

0 0 ) .

Remark 3.6.3. The calculations were verified using the computer algebra system Maxima [32].
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