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Introduction

This work is concerned with evolution equations and is structured in three parts as follows.

The �rst part (Part I) of this thesis deals with abstract evolution problems in generalized Banach
(or metric) spaces endowed with vector-valued norms (or metrics). This is a nontrivial extension of usual

normed spaces. The advantage of vector-valued norms in the study of semilinear (stationary) operator

systems is explained in Precup [58], and we apply the ideas in [58] to semilinear evolution systems.

Historically, the idea of using vector-valued norms goes back to Perov [56], and it provides a setting in

which one can work with more general growth conditions than those expressed in terms of scalar norms.

The �rst problem that we study (Chapter 2) are systems of abstract semilinear evolution equations8>>>>><>>>>>:

du1
dt
(t) +A1u1(t) = F1(t; u1(t); u2(t))

du2
dt
(t) +A2u2(t) = F2(t; u1(t); u2(t))

u1(0) = u01; u2(0) = u02:

In Section 2.1 we establish the well-posedness of the evolution system under Lipschitz-like growth

conditions by means of Perov�s �xed point theorem and an abstract Gronwall lemma of I. A. Rus [66].

In the second section of the chapter we prove the existence of solutions under more general growth

conditions which are compensated by supplementary compactness assumptions on the solutions of the

linear part of the system. The proofs rely on the �xed point principles of Schauder and Leray-Schauder

respectively.

The main original contributions are: Theorem 14, 15, 16, 17 and 18, some of which have already
been published (see Precup and Viorel [60]).

In Chapter 3 we extend the ideas of Chapter 2 to a multivalued setting. Instead of abstract di¤erential

equations here we deal with a system of di¤erential inclusions8>>>>><>>>>>:

du1
dt
(t) +A1u1(t) 2 F1(u1(t); u2(t))

du2
dt
(t) +A2u2(t) 2 F2(u1(t); u2(t))

u1(0) = u01; u2(0) = u02:

It proves that a similar analysis to the siglevalued case can be carried out.

When adapting the ideas of Chapter 2 to a multivalued setting the main observation is that the solution

operator corresponding to the system of semilinear inclusions is a composition between a singlevalued

operator (corresponding to the linear part of the system) and a multivalued operator (corresponding to

the multivalued nonlinearity F = (F1; F2)). In this way it becomes clear how properties of F transfer to

the solution operator.

The main results of this chapter are: a vector version of Nadler�s �xed point theorem (Theorem 20)
and the existence results Theorem 21, 22 and 23. All the mentioned personal results of Chapter 3 have
been published in the paper R. Precup and A. Viorel [61].

The �nal chapter of Part I (Chapter 4), deals with semilinear evolution problems with nonlocal initial
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conditions 8><>:
du

dt
(t) +Au(t) = F (t; u(t)); 0 < t < 1

u(0) =
R 1
0
u(t)d�(t):

Evolution problems where the initial condition has been replaced by a nonlocal condition are motivated

by applications in physics, since the nonlocal condition is more precise for physical measurement than

the local condition. Pioneering works in this �eld are due to L. Byszewski, and his work [18] shows how

semigroup methods apply to nonlocal evolution problems. Nonlocal conditions of Rieman-Stieltjes type

appear in J. R. L. Webb�s study [79] of nonlocal boundary value problems.

In their �xed point formulation, nonlocal evolution problems can be regarded as a systems of nonlinear

equations, where one equation is of evolutionary type, while the second is of stationary type. Spaces

endowed with vector-valued norms prove to be an appropriate setting for these nonstandard problems.

In Section 4.1 we prove a series of vector versions of Krasnoselskii�s �xed point theorem for the sum

of two operators. These original results are intended to be used in order to prove existence results for the

nonlocal Cauchy problem, but they are also of theoretical interest as they extend the results of Avramescu

and Vladimirescu [7] for example. Also, we note that the existence results Theorem 28, 29 and 30 are
just some of the possible applications of the abstract results in Theorem 24, 25, 26 and 27. All the
mentioned results are part of [76].

Part II is centered around a nonlocal model in nonlinear elasticity

utt = �1 (uxx � px)� �2 (uxx � qx) + "utxx + � (ux)x
�
21pxx + p = ux

�
22qxx + q = ux

proposed by X. Ren and L. Truskinovsky (Journal of Elasticity, 2000).

Our aim is to give a rigorous analysis of the Ren and Truskinovsky model, which up to our knowledge

is new, and to clarify its relationship with standard models in nonlinear elasticity. This line of inquiry,

as well as the model itself, have been suggested to the author by Prof. C. Rohde during a research stay

at the University of Stuttgart, Institute of Applied Analysis and Numerical Simulation.

Obviously, not all of the �ve parameters �1; �2; 
1; 
2 and " of the model are essential, and for simplicity

we restrict ourselves to the study of the following two cases1

(Ak)
utt = k (ux � p)x + uxxt + � (ux)x

� 1
kpxx + p = ux

(Bk)
utt = (ux � p)x + uxxt + � (ux)x

� 1
kpxx + p = ux:

Energy arguments suggest that these two models are approximations of the srain-gradient model

(A) utt = �uxxxx + uxxt + � (ux)x

and respectively of the nonlinear viscoelastic model

(B) utt = utxx + � (ux)x :

The key step in understanding the two k ! 1 limit regimes is the observation that the auxiliary
1We have chosen �1 = k; �2 = 0; 
21 =

1
k
; " = 1 for (Ak) and �1 = 1; �2 = 0; 
21 =

1
k
; " = 1 for (Bk)
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variable p is de�ned via a resolvent equation. This explains the approximation properties of Ren and

Truskinovsky�s model, which, from a functional analytical point of view, relies on the idea of replacing

an unbounded (di¤erential) operator by its bounded Yosida approximation.

In Chapters 6 and 7 we establish the global existence of classical solutions to (Ak) and (Bk) -Theorem
35 and Theorem 41. Then we give rigorous proofs which con�rm the conjectured behaviour

(Ak)! (A)

(Bk)! (B)

in the two k !1 limits - Theorem 38 and Theorem 42. These results are partially included in Engel,
Rohde and Viorel [34].

The main interest in such approximations is related to the fact that they are computationally less

expensive than their limit equations. Especially in real-time simulations or in large-scale, complex appli-

cations such properties become highly relevant.

In Part III we apply similar approximation ideas to those in Part II in a totally di¤erent model,
namely the Allen-Cahn equation

ut = "uxx � u3 + u:

This is a Ginzburg-Landau type equation which describes the evolution of a non-conserved order para-

meter during dynamic phase transitions in binary alloys, and it has attracted much attention over the

last decades due to its dynamic properties, a full account of which can be found in Chen [23].

In Chapter 9 we propose a �nonlocal�version of the Allen-Cahn equation

ut = "pxx � u3 + u

�"pxx + p = u

where the regularizing di¤usion term its replaced by its Yosida approximation. If the order of the Yosida

approximation is chosen to be exactly the inverse di¤usion coe¢ cient, then one obtains a new model

which shares many common properties with the standard Allen-Cahn model, but is much simpler form a

numerical point of view since it is equivalent to

ut = �u3 + p

�"pxx + p = u

which is a regular perturbation of

ut = �u3 + u:

The p-term in the evolution equation is actuaually a nonlocal interaction term as one can see by using

the Green�s function representation for the solution of the associated to the elliptic problem

p (t; x) =

Z
G (x; y)u (t; y) dy:

By this observation we can relate to the studies of Fife [36], Bates et. al. [11] or Cortazar et. al. [25]

who all deal with models containing nonlocal di¤usion terms.

In the �rst section of Chapter 9 we give a qualitative analysis of this new model, and show that it has

important common properties with the Allen-Cahn model. More precisely we show the global existence

of solutions (Theorem 47) and the fact that solutions are a priori bounded (Theorem 48) and that
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in the long time asymptotics t ! 1 (Theorem 49) we have kut (t)kL2(0;1) ! 0: All these results are

contained in A. Viorel [77].

The author whishes to express his gratitude to his supervisor Prof. Radu Precup. It has been a great

privilege to study under his guidance.

Also, the author is greatly indebted to Prof. C. Rohde (University of Stuttgart) for introducing him

to the fascinating world of phase transitions and to Prof. G. Desch (Karl-Franzens University Graz) for

the kind and constant support.

Chapter 1

Preliminaries

1.1 Semigroups and evolution equations

In this section we recall basic results from Semigroup Theory. The main references that we use are [22],

[33], [37], [44], [54], [78] or [84].

1.2 Fixed point theorems

In this section we list some well known �xed point theorems that we will need throughout the text. Some

standard references for this subject are [1], [29],[38], [53] and [68]. Besides the well-known �xed point

principles of Banach and Schauder we will also use the following theorems.

Theorem 1 (Krasnoselskii) Let X be a Banach space, C a nonempty closed bounded convex set and

N : C ! C such that:

(i) N = N1 +N2 with N1 : C ! C completely continuous and N2 : C ! C a contraction;

(ii) N1(x) +N2(y) 2 C for all x; y 2 C:

Then N has at least one �xed point in C.

Theorem 2 (Leray�Schauder) Let (X; jj : jj) be a Banach space, R > 0 and N : BR(0;X) ! X a

completely continuous operator. If jjujj < R for every solution u of the equation u = �N(u) and any

� 2 (0; 1); then N has at least one �xed point.

Theorem 3 (Granas�topologigal transversality theorem [38], [53]) Let U be a nonempty bounded
open set in a closed convex set K of a Banach space X and let H : U � [0; 1]! K be compact. Assume

(A) H(x; �) 6= x 8x 2 @U � 2 [0; 1]

(B) H(�; 0) is essential in the set MC of all compact maps from U into K.

Then for each � 2 [0; 1] there exists a �xed point of H(�; �) in U , moreover H(�; �) is essential in MC

for every � 2 [0; 1].

Finally we recall two basic topological �xed point theorems for set-valued maps (see e.g. [29])
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Theorem 4 (Bohnenblust-Karlin) Let X be a Banach space, D � X nonempty closed convex bounded

and N : D ! 2X upper semicontinuous with N (x) nonempty closed convex for all x 2 D: If N (D) � D

and N (D) is relatively compact, then N has at least one �xed point.

Theorem 5 Let X be a Banach space, U � X open bounded and N : U ! 2X upper semicontinuous with

N (x) nonempty closed convex for all x 2 U: If N
�
U
�
is relatively compact and x0 + � (x� x0) =2 N (x)

on @U for all � > 1; then N has at least one �xed point.

1.3 Convergent to zero matrices

This section introduces concepts that are intensively used in Part I. The key notions of a vector-valued

metric (or normed) space, as well as convergent to zero matrices are presented here. banach�s contraction

mapping principle was generalized to spaces endowed with vector-valued metrics by Perov [56].

De�nition 6 Let X be a nonempty set. By a vector-valued metric on X we mean a mapping d : X�X !
Rn+ that satis�es the axioms

(i) d(u; v) � 0 for all u; v 2 X and if d(u; v) = 0 then u = v;

(ii) d(u; v) = d(v; u) for all u; v 2 X;

(iii) d(u; v) � d(u;w) + d(w; v) for all u; v; w 2 X

with respect to the natural order relation of Rn. More precisely if x; y 2 Rn; x = (x1; x2; :::; xn);

y = (y1; y2; :::; yn); by x � y we mean xi � yi for i = 1; 2; :::; n:

For generalized metric spaces convergence is de�ned component wise and the notions of Cauchy

sequence, completeness, open or closed set are similar to those for usual metric spaces.

The following notion plays a similar role to that of a contraction constant in usual metric spaces.

De�nition 7 Let M 2Mn�n (Rn) be a square matrix with nonnegative elements is said to be convergent
to zero if

Mk ! 0 as k !1:

Convergent to zero matrices can be characterized as follows (for details see [51], [57], [63]).

Lemma 8 Let M be a square matrix with nonnegative elements. The following are equivalent

(a) M converges to zero;

(b) I �M is non-singular and (I �M)�1 = I +M +M2 + : : :

(c) the eigenvalues of M are located inside the unit disc of the complex plane;

(d) I �M is nonsingular and (I �M)�1 has nonnegative elements.

De�nition 9 An operator N : X ! X is said to be contractive (with respect to the vector-valued metric

d on X) if there exists a convergent to zero matrix M such that

d(N(u); N(v)) �Md(u; v) for all u; v 2 X:

The following result is due to Perov
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Theorem 10 (Perov) Let (X; d) be a complete generalized metric space and N : X ! X a contractive

operator with Lipschitz matrix M . Then N has a unique �xed point u� and for each u 2 X we have

d(Nk(u); u�) �Mk(I �M)�1d(u;N(u)) for all k 2 N:

A proof of Perov�s �xed point theorem can be found for example in [57].

Corollary 11 Under the same assumptions as in Theorem 10, I � N is bijective and (I �N)�1 is
continuous.

In the same manner as for vector-valued metrics one can intorduce vector-valued norms.

De�nition 12 Let X be a linear space. A mapping k�k : X ! Rn is called a vector-valued norm if

(i) kxk � 0 for all x 2 X, and if kxk = 0 then x = 0;

(ii) k�xk = j�j kxk for all x 2 X and � 2 R;

(iii) kx+ yk � kxk+ kyk for all x; y 2 X:

Completeness of a linear space endowed with a vector-valued norm can be de�ned similarly to the

case of standard normed spaces. And then, a similar notion to that of a Banach space can be de�ned.

De�nition 13 A linear space endowed with a vector-valued norm, which is complete with respect to the
vector-valued norm is called generalized Banach space.

I. SYSTEMS OF EVOLUTION EQUATIONS

Chapter 2

Systems of semilinear evolution equations

In his work [58] R. Precup has developed a technique for the investigation of systems of nonlinear op-

erator equations which is based on vector-valued norms and convergent to zero matrices together with

fundamental principles of nonlinear functional analysis. It is shown in [58] that the use of vector-valued

metrics is more appropriate when treating systems of equations than the more familiar product space

methods. In this chapter we are concerned with the existence (and the uniqueness) of solutions for the

Cauchy problem associated to a semilinear system of abstract evolution equations:8>>>>><>>>>>:

du1
dt
(t) +A1u1(t) = F1(t; u1(t); u2(t))

du2
dt
(t) +A2u2(t) = F2(t; u1(t); u2(t))

u1(0) = u01; u2(0) = u02:

(2.1)

Here the linear operator Ai : D(Ai) � Xi ! Xi is densely de�ned on the real Banach space Xi and �Ai
generates the strongly continuous semigroup of contractions fSi(t); t � 0g ; for i = 1; 2:

9



We shall look for global mild solutions on the interval [0; T ]; i.e., (u1; u2) 2 C([0; T ]; X1)�C([0; T ]; X1)

satisfying

ui(t) = Si(t)u
0
i +

Z t

0

Si(t� �)Fi(� ; u1(�); u2(�))d� (2.2)

for all t 2 [0; T ]; i = 1; 2: The nonlinear operator de�ned by the right hand side of (2.2) will be denoted
by Ni(u), where u = (u1; u2) 2 C([0; T ]; X1)� C([0; T ]; X2).

2.1 Well-posedness via Perov�s �xed point theorem

Our �rst result is an existence and uniqueness theorem for the case of nonlinearities which satisfy a

Lipschitz condition. Under the same basic assumptions on Xi and Ai, we have:

Theorem 14 (existence and uniqueness) Suppose that Fi : [0; T ] � X1 � X2 ! Xi satis�es the

Lipschitz condition

jjFi(t; u)� Fi(t; v)jjXi
� ai1(t)jju1 � v1jjX1

+ ai2(t)jju2 � v2jjX2
(2.3)

for all u = (u1; u2); v = (v1; v2) 2 X1 � X2; t 2 [0; T ] and i = 1; 2; where aij 2 Lp([0; T ];R+) for
i; j = 1; 2: Then for any (u01; u

0
2) 2 X1 �X2 the Cauchy problem (2.1) has a unique global mild solution.

We can also show that the solution depends continuously on the initial data, the problem being thus

wellposed.

Theorem 15 (data dependence) Under the assumptions of Theorem 14 and if u and v are two mild

solutions of (2.1) with di¤erent initial data u0 and v0 respectively, the following estimate holds for any

t 2 [0; T ]  
jju1(t)� v1(t)jjX1

jju2(t)� v2(t)jjX2

!
� U(t)

 
jju01 � v01 jjX1

jju02 � v02 jjX2

!
:

Here U(t) is a fundamental matrix of the system of ordinary di¤erential equations8>><>>:
dx1
dt
(t) = a11(t)x1(t) + a12(t)x2(t)

dx2
dt
(t) = a21(t)x1(t) + a22(t)x2(t)

(2.4)

where the coe¢ cients aij (t) are the same functions as in (2.3).

To prove this result we need the following vector-version of the Gronwall lemma. This is a special

case of the abstract Gronwall introduced by I. A. Rus [66]

Theorem 16 Let aij 2 Lp([0; T ];R+); p � 1 and bi > 0 for i; j = 1; 2: If xi 2 C [0; T ] ; i = 1; 2; are two
continuous functions such that

 
x1(t)

x2(t)

!
�

0BB@ b1 +

Z t

0

(a11(�)x1(�) + a12(�)x2(�)) d�

b2 +

Z t

0

(a21(�)x1(�) + a22(�)x2(�)) d�

1CCA ; (2.5)

then for any t 2 [0; T ] we have (x1 (t) ; x2 (t))T � U (t) (b1; b2)
T with U (t) a fundamental matrix of (2.4).
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2.2 Other existence results

Assuming that the operator N is completely continuous we can weaken condition (2.3). But now

Schauder�s �xed point theorem that we apply will only guarantee the existence not also the unique-

ness of the solution. A su¢ cient condition for N to be completely continuous is that the semigroups

Si (�), i = 1; 2; are both compact. A typical example are analytical semigroups with compact resolvent
such as the semigroup generated by the Laplacian with Dirichlet boundary conditions.

Theorem 17 If the operator N is completely continuous and Fi satis�es

jjFi(t; u)jjXi
� ai1(t)jju1jjX1

+ ai2(t)jju2jjX2
+ bi(t) (2.6)

for all u = (u1; u2) 2 X1 � X2; where aij 2 Lp([0; T ];R+) and bi 2 L1([0; T ];R+); for i; j = 1; 2; then

problem (2.1) has at least one global mild solution.

Now in the case of Hilbert spaces, and if all mild solutions are classical solutions , i.e., u 2 C([0; T ]; D(Ai))\
C1([0; T ]; Xi), we have the following result based on the Leray-Schauder �xed point theorem.

Theorem 18 Let (Xi; h:; :iXi
); i = 1; 2 be real Hilbert spaces. If all mild solutions of the equations

ui = �Ni(u); � 2 (0; 1); are classical solutions, the nonlinear operator N is completely continuous and Fi
satis�es

hFi(t; u); uiiXi
� ai1(t)jju1jj2X1

+ ai2(t)jju2jj2X2
+ bi(t) (2.7)

for all u 2 X1 �X2; where aij 2 Lp([0; T ];R+) and bi 2 L1([0; T ];R+) for i; j = 1; 2; then problem (2.1)

has at least one solution.

Chapter 3

Systems of semilinear di¤erential inclusions

The aim of this chapter is to extend the results of the previous chapter to a multi-valued setting. More ex-

actly we are concerned with the Cauchy problem associated to the semilinear system of abstract evolution

inclusions: 8>>>>><>>>>>:

du1
dt
(t) +A1u1(t) 2 F1(u1(t); u2(t))

du2
dt
(t) +A2u2(t) 2 F2(u1(t); u2(t))

u1(0) = u01; u2(0) = u02:

(3.1)

Under the same assumptions as in Chapter 2 we shall look for global mild solutions to (3.1) on the

interval [0; T ]; i.e., u = (u1; u2) 2 C ([0; T ] ; X1)� C ([0; T ] ; X2) such that

ui(t) = Si(t)u
0
i +

Z t

0

Si(t� �)wi(�)d� t 2 [0; T ]; (3.2)

where wi 2 L1 ([0; T ] ; Xi) is a selection for the multivalued function t 7! Fi (u (t)), i.e.,

wi(t) 2 Fi (u (t)) a.e. t 2 [0; T ] i = 1; 2: (3.3)

11



3.1 Some preliminary remarks

Let (X; d) be a metric space. For two nonempty sets A;B � X and x 2 X we use the following notations:

d (x;A) = inf fd (x; a) : a 2 Ag ;

H (A;B) = max

�
sup
a2A

d (a;B) : sup
b2B

d (b; A)

�
;

� (A;B) = sup fd (a; b) : a 2 A; b 2 Bg :

We recall that H is a metric (the Hausdor¤-Pompeiu metric) on the set of all nonempty closed bounded

subsets of (X; d) : We will use the following property of the Hausdor¤-Pompeiu metric.

Remark 19 Let (X; d) be a metric space, A;B � X nonempty closed bounded sets and q > 1: Then for

each a 2 A there exists b 2 B such that d (a; b) � qH (A;B) :

Our �rst result is a vector version of Nadler�s �xed point theorem. For the original result of Nadler

we refer for example to [38, page 28].

Theorem 20 Let (X1; d1) ; (X2; d2) be two complete metric spaces and N : X1 �X2 ! 2X1�X2 a mul-

tivalued operator with N (x) nonempty closed bounded for each x 2 X1 � X2: Assume that there exists

matrix M which is convergent to zero, such that 
H1 (N1 (u) ; N1 (v))

H2 (N2 (u) ; N2 (v))

!
�M

 
d1 (u1; v1)

d2 (u2; v2)

!
(3.4)

for all u = (u1; u2) ; v = (v1; v2) 2 X1 �X2; where N1 : X1 �X2 ! 2X1 and N2 : X1 �X2 ! 2X2 are

the two components of N and H1;H2 stand for the Hausdor¤-Pompeiu metrics associated to d1 and d2;

respectively. Then N has a �xed point.

3.2 Existence results

We follow a �xed point approach based on the fact that any mild solution of (3.1) is a �xed point of the

multivalued operator N : C ([0; T ] ; X1)� C ([0; T ] ; X2)! 2C([0;T ];X1�X2); where

Ni (u) =

�
Si(t)u

0
i +

Z t

0

Si(t� �)wi(�)d� : (3.5)

wi 2 L1 ([0; T ] ; Xi) ; wi(t) 2 Fi (u (t)) a.e. t 2 [0; T ]
	
:

The multivalued operator N can be written as a composition of a single-valued operator N with a

multivalued operator W

N = N�W;

where
N = (N1;N2)
Ni (f) (t) = Si(t)u

0
i +

R t
0
Si(t� �)fi(�)d�

W = (W1;W2)

Wi (u) =
�
wi 2 L1 ([0; T ] ; Xi) : wi(t) 2 Fi (u (t)) a.e. t 2 [0; T ]

	
:

In this way it becomes clear how the properties of F transfer to N . For example if Fi has bounded

values and is upper semicontinuous for i = 1; 2 then the operator N is also upper semicontinuous.

Our �rst existence result is established by means of the vector version of Nadler�s theorem proved in

the previous section.
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Theorem 21 Let Fi : X1 � X2 ! 2Xi and assume that Fi (x) is nonempty closed bounded for each

x 2 X1 �X2: In addition assume that there are constants aij � 0 for i; j = 1; 2 such that

�
Xi
(Fi (u) ; Fi (v)) � ai1 ku1 � v1kX1

+ ai2 ku2 � v2kX2
(3.6)

for all u = (u1; u2); v = (v1; v2) 2 X1 �X2 and i = 1; 2: Then problem (3.1) has a mild solution.

The next existence result is an application of Theorem 4 and uses growth conditions on Fi which are

more general than the Lipschitz condition (3.6).

Theorem 22 Let Fi : X1�X2 ! 2Xi be upper semicontinuous with Fi (x) nonempty closed bounded for

each x 2 X1 �X2: Assume that there exist constants aij � 0 and bi � 0 for i; j = 1; 2; such that

kwkXi
� ai1 ku1kX1

+ ai2 ku2kX2
+ bi (3.7)

for all u = (u1; u2) 2 X1 � X2 and w 2 Fi (u) (i = 1; 2) : If in addition operator N is completely

continuous, then problem (3.1) has at least one mild solution.

In the case of Hilbert spaces the existence of solutions can be also derived based on Theorem 5.

Theorem 23 Let (Xi; h:; :iXi
); i = 1; 2 be real Hilbert spaces, assume that all mild solutions of the system8>>>>><>>>>>:

du1
dt
(t) +A1u1 (t) 2 �F1 (u (t))

du2
dt
(t) +A2u2 (t) 2 �F2 (u (t))

u1 (0) = �u01; u2 (0) = �u02

(3.8)

for � 2 (0; 1) are classical solutions and that the nonlinear operator N is completely continuous. In

addition assume that there exist constants aij � 0 and bi � 0 for i; j = 1; 2 such that

sup
wi2Fi(u)

hwi; uiiXi
� ai1 ku1k2X1

+ ai2 ku2k2X2
+ bi (3.9)

for all u 2 X1 �X2; i = 1; 2: Then problem (3.1) has at least one solution.

Chapter 4

Semilinear evolution equations with nonlocal initial conditions

This chapter deals with semilinear evolution equations with nonlocal initial conditions given in the form

of a Riemann-Stieltjes integral. Such conditions have already been used in the case of two point boundary

value problems on the real line by Webb and Infante [79] and [80].

More exactly, we consider the following problem8><>:
du

dt
(t) +Au(t) = F (t; u(t)); 0 < t < 1

u(0) =
R 1
0
u(t)d�(t)

(4.1)

13



where�A : D(A) � X ! X is the in�nitesimal generator of the C0-semigroup of contractions fS(t); t � 0g
de�ned on the real Banach space X, F is a given continuous nonlinear operator and � : [0; 1] ! R is a
monotonic real function of bounded variation. Notice that the condition u(0) =

Pm
k=1 aku(tk) used for

example in [14] or [18] is a special case of the nonlocal condition used in (4.1).

The aim of this chapter is to provide su¢ cient conditions on the nonlinearity F and on the function

� in order to guarantee the existence (and uniqueness) of a solution (u; u0) 2 C([0; 1]; X)�X to8><>:
u(t) = S(t)u0 +

R t
0
S(t� �)F (� ; u(�))d�

u0 =
R 1
0
u(t)d�(t):

(4.2)

Notice that, if (u; u0) solves (4.2), then u(0) = u0 and u is a mild solution of (4.1). The main di¤erence to

earlier works (for instance [14], [18], [19] or [30]) lies in the new method of treating (4.2) as a �xed point

problem on the product space C([0; 1]; X)�X and using vector versions of classical �xed point theorems.

A crucial role in this vector approach will be played by convergent to zero matrices and vector-valued

metrics (or norms).

4.1 Vector versions of Krasnoselskii�s �xed point theorem for the sum of two
operators

The aim of this section is to present some �xed point theorems in generalized Banach spaces endowed

with a vector-valued norm. We begin a with a vector version of Krasnoselskii�s �xed point theorem for

the sum of two operators. The classical result and other results of the same type can be found in [1], [7],

[17] or [52].

Theorem 24 Let (X; k�k) be a generalized Banach space, C a nonempty closed bounded convex set and

N : C ! C such that:

(A) N = N1+N2 with N1 : C ! C completely continuous and N2 : C ! C contractive, i.e. there exists

a convergent to zero matrix M such that kN2(u)�N2(v)k �M ku� vk for all u; v 2 C;

(B) N1(x) +N2(y) 2 C for all x; y 2 C:

Then N has at least one �xed point in C.

Now as a direct consequence of this theorem we can give a �xed point result for an operator de�ned

on a product space, where one component satis�es a Lipschitz condition while the other component is

completely continuous.

Theorem 25 Let (X; j � jX) and (Y; j � jY ) be real Banach spaces, and C;D two nonempty closed bounded

convex subsets of X;Y respectively, and let N : C �D ! C �D,

N =

 
P

Q

!
:

Assume that P : C � D ! C is completely continuous and for Q : C � D ! D there are L1 � 0 and

L2 < 1 such that

jQ(x1; y1)�Q(x2; y2)jY � L1jx1 � x2jX + L2jy1 � y2jY (4.3)

for all (x1; y1) ; (x2; y2) 2 C �D. Then, N has at least one �xed point.

Using the topological transversality theorem instead of Schauder�s �xed point principle we can replace

the domain invariance condition with a Leray-Schauder condition to prove the following result.
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Theorem 26 Let (X; k�k) be a generalized Banach space,

U =
�
x 2 X : kxk < u; u 2 Rn+

	
� X

and let N : U ! X given by N = N1 +N2 where N1 is completely continuous and N2 is contractive. If

x 6= �N(x) for all x 2 @U; � 2 (0; 1); (4.4)

then there exists a �xed point for N in U .

The previous result can be applied to operators with two components in the following way.

Theorem 27 Let X;Y be two Banach spaces, B1 := fx 2 X : jxjX � R1g, B2 := fy 2 Y : jyjY � R2g
two closed balls in X; and Y respectively, and the operator N : B1 �B2 ! X � Y

N =

 
P

Q

!
:

Assume that P : B1 �B2 ! X is completely continuous and for Q : B1 �B2 ! Y there are L1 � 0 and
L2 2 (0; 1) such that for all (x1; y1) ; (x2; y2) 2 B1 �B2

jQ(x1; y1)�Q(x2; y2)jX � L1jx1 � x2jX + L2jy1 � y2jY : (4.5)

If for all solutions of 
x

y

!
= �N

 
x

y

!
; � 2 (0; 1); we have

jxjX < R1

jyjY < R2
(4.6)

then N has at least one �xed point.

4.2 Semilinear evolution equations with nonlocal initial conditions

In this section we apply the di¤erent �xed point results of the previous section to problem (4.2). First

we give an existence and uniqueness theorem for the mild solution of (4.1) based on Perov�s theorem.

In what follows X is a Banach space with norm j � jX .

Theorem 28 Suppose that nonlinearity F satis�es the Lipschitz condition

jF (t; u)� F (t; v)jX � a(t)ju� vjX (4.7)

for all u; v 2 X, t 2 [0; 1], where a 2 Lp([0; 1];R+). If there is k � 0 such that

kakLp
(qk)1=q

< (1� ekV�) (4.8)

with 1=p+ 1=q = 1 and V� = j�(1)� �(0)j, then the problem (4.1) has a unique mild solution..

The next result is based on Theorem 25.

Theorem 29 Assume that the semigroup fS(t); t � 0g is compact, and that F satis�es the growth con-

dition

jF (t; u)jX � a(t)jujX + b(t) (4.9)
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for all u 2 X, t 2 [0; 1], where a 2 Lp([0; 1];R+), b 2 L1([0; 1];R+) and there is k � 0 such that (4.8)

holds and

ekV� < 1:

Then the problem (4.1) has at least one mild solution.

Finally in the case of Hilbert spaces, and if all mild solutions are classical solutions, i.e., they are in

C([0; T ]; D(Ai) \ C1([0; T ]; Xi) and satisfy (4.1), we have the following result based on Theorem :

Theorem 30 Let (X; h:; :iX); be a real Hilbert space. Assume that the semigroup fS(t); t � 0g is compact,
all mild solutions of 8><>:

du

dt
(t) +Au(t) = �F (t; u(t))

u(0) = �u0

; � 2 (0; 1);

are classical solutions and that F satis�es the growth condition

hF (t; u); uiX � a(t)juj2X + b(t) (4.10)

for all u 2 X, where a 2 Lp([0; T ];R+) and b 2 L1([0; T ];R+).
If

ekV� < 1 and
2 kakLp
(2qk)1=q

� (1� e2kV 2� ); (4.11)

for some k > 0, then the problem (4.1) has at least one solution.

Notice that the conditions in (4.11) can be interpreted in the following way: there is a tradeo¤between

the growth of the nonlinear term F and the total variation of �. We cannot control both simultanously,

but if one of the two is small enough, then we can allow the other to be large.

II. DYNAMICAL PHASE TRANSITIONS IN SOLIDS

Chapter 5

Modeling multi-phase material dynamics

5.1 Ericksen�s nonlinear elasticity model.

A question that rises in te study of active materials is:

How to describe a material in which two phases coexist, still using the framework of continuum

mechanics?

The �rst step leading towards an answer of the above question was done by J. Ericksen in a seminal

paper [32] published in 1975. His idea is simple: since at equilibrium each of the two phases is stable,

they should each correspond to a minimum of the potential energy of the system. This means that the

potential energy should have two minima, in contrast to linear elasticity where the potential energy is
a quadratic function with only one minimum.
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The model proposed by Ericksen is based on a so called double well potential. This new type of

potential should replace the potential of quadratic type encountered in linear elasticity. Smoothness (at

least C2) and polynomial growth at �1 come as natural (and sometimes implicit) assumptions for W .

Although, for clear physical reasons, the two minima of double well potential ought not to be equal, the

mathematically simpler symmetric double well potential is most commonly used in literature.

The evolution equation for the system with non-quadratic potential energy (Ericksen�s bar) is a

nonlinear wave equation

utt = � (ux)x (5.1)

with

� : R! R; � (w) =W 0 (w) ;

and it can be derived from Hamilton�s variational principle for the corresponding action integral

S (u) =

Z t

0

Z �
1

2
u2t +W (ux)

�
dtdx:

In the double-well case the stress-strain relation � is nonmonotone.

­2 2

1

2

w

W

­2 2

­1

1

w

W'

Figure 1. The standard double-well potential W (w) = 1
4

�
w2 � 1

�2
and its corresponding stress-strain

relationship � (w) = w3 � w

Remark 31 The equation (5.1) can be rewritten as a system of two evolution equations in two ways

depending of the choice of state variables. We refer to the recent works [47] and [48] for a detailed

discussion of alternative Hamiltonian formulations of physical systems. In our case, the two alternative

formulations are either in terms of state variables displacement u and velocity v := ut

ut = v

vt = �(ux)x;

or in terms of strain w := ux and velocity as state variables

wt = vx

vt = �(w)x:
(5.2)

5.2 Extensions of Ericksen�s model. Regularizing e¤ects.

Extensive experimental observations done on materials which display dynamic phase boundaries showed

phenomena that can not be explained by Erickson�s model only. In the following we will discuss some
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extensions of the model related to regularizing e¤ects.

A. Dissipative e¤ects. The model of Ericksen is conservative, and it does not account for dissipative
e¤ects, which is unrealistic. This drawback is corrected by complementing the equation (5.1) with a

di¤usion term utxx

utt = "utxx + � (ux)x (5.3)

A thorough study of the equation of nonlinear viscoelasticity (5.3) was done by Andrews and Ball [5], [6]

in the 1980s. For a semigroup approach to linear viscoelasticity we refer to the book of Liu and Zheng

[46] and the references therein.

When writing (5.3) as a system in terms of strain and velocity as state variables one obtains

wt = vx

vt = "vxx + �(w)x;

a viscous regularization of (5.2). The " ! 0 vanishing viscosity limit plays a very important role in the

theory of conservation laws since it is widely used to single-out certain weak solutions of (5.2) which

satisfy supplementary, for example entropy, conditions [72], [40].

B. The �nite scale of the microstructure. The classical nonlinear elasticity of Ericksen fails
to predict the observed �nite scale of the equilibrium domains. Indeed, any piecewise constant function

taking values in the set of minimizers of the double-well potential energy W is an admissible equilibrium

of the system described by (5.1).

These arbitrarily �ne patterns are in contradiction with observations made on relevant materials which

exhibit an intrinsic length scale related to domain dimensions, and which although considerably smaller

compared to the length scale of the bulk material, is nevertheless �nite. To deal with this issue so called

capillarity, or strain gradient, models where introduced (see [41]). Here the dynamics of the system is

described by

utt = ��uxxxx + "utxx + � (ux)x (5.4)

and the total energy

E =

Z �
1

2
u2t +

�

2
u2xx +W (ux)

�
dx

contains a surface term proportional to kuxxk2L2 which penalizes sharp strain interfaces. Regularization
terms of this kind were �rst studied by Slemrod [74] in connection with liquid-vapour phase transitions

in van der Waals �uids.

In stress-velocity state variables the model reads

wt = vx

vt = ��wxxx + "vxx + �(w)x:

The appropriate scaling between " and � is usually considered to be � � "2 as discussed in [45] or [65].

5.3 The Model of Ren and Truskinovsky.

In their work [62] Ren and Truskinovsky develop a new one-dimensional model which extends Ericksen�s

nonlinear elastic bar with non-convex energy. Their model accounts for the formation and growth of

globally stable �nite scale microstructures.

The main new ingredient of this model are nonlocal interaction terms, and the motivation for intro-

ducing them is twofold:
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1. Although the observed patterns are mainly one-dimensional, a more realistic description of the ac-

tually three-dimensional material should also include possible higher-dimensional stabilizing e¤ects.

In connection with these modeling issues we refer to the work of Alberti et. al. [2] which motivates

nonlocal interaction terms by arguments from statistical physics.

2. A common problem of strain gradient models like (5.4) is that they lead to over-regularized unreal-

istically di¤use interfaces, in contrast, observations show phase boundaries which are close to being

atomically sharp.

The model allowing for sharp interfaces proposed by Ren and Truskinovsky has dynamics described

by

utt = �1 (uxx � px)� �2 (uxx � qx) + "utxx + � (ux)x (5.5)

coupled with

�
21pxx + p = ux

�
22qxx + q = ux:

This is only apparently a local model since the additional two internal (arti�cial) variables p and q are

used to introduce two nonlocal interaction terms. For example p has the following integral representation

p (x) =

Z 1

0

G
 (x; y)w (y) dy: (5.6)

Here G
1 (x; y) is the associated Green�s function and its expression can be given explicitly for Neumann

boundary conditions by

G
 (x; y) =
1



�
e1=
 � e�1=


� �cosh x+ y � 1



+ cosh
jx� yj � 1




�
:

This type of nonlocal interaction was �rst introduced by Rogers and Truskinovsky [64].

Chapter 6

A model of Ren and Truskinovsky - the strain gradient limit

regime

6.1 A low order visco-capillarity model

In the following we are interested in a special case of the Ren an Truskinovsky model (5.5) corresponding

to the following choice of parameters1

�1 = k; �2 = 0; 
21 =
1

k
; " = 1:

1One can notice that not all the parameters in (5.5) ought to be independent, and actually the interesting asymptotic
regimes are obtained for an appropriate cupling.
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We study well-posedness and the limit regime k !1 for the following one-dimensional model

utt = uxxt + k (ux � p)x + � (ux)x
� 1
kpxx + p = ux

(Pk)

where

� : R! R; � (w) = w3 � w

with Dirichlet boundary conditions for u, Neumann boundary conditions for p and initial conditions.

This is a low-orde viso-capillarity model, and energy arguments suggest that the appropriate limit

problem is the strain gradient model

utt = �uxxxx + uxxt + � (ux)x (P)

with boundary conditions and and initial conditions. Andrews and Ball [6] have studied the initial

boundary value problem corresponding to (P) and we recall here their existence and regularity result.

Theorem 32 (Andrews and Ball, [6]) For any T > 0, whenever

u0 2 H2 (0; 1) \H1
0 (0; 1) and v0 2 L2 (0; 1) (6.1)

there is a unique global solution to the problem (P)

u 2 C
�
[0; T ] ;H2 (0; 1) \H1

0 (0; 1)
�

(6.2)

ut 2 C
�
[0; T ] ; L2 (0; 1)

�
and furthermore for t > 0

u (t) 2 H4 (0; 1) \H1
0 (0; 1) ; and ut (t) 2 H2 (0; 1) \H1

0 (0; 1) :

We return now to the problem (Pk) and start by giving a functional analytic interpretation to the

nonlocal term.

Remark 33 For any positive integer k = 1; 2; : : : and any �xed w 2 L2 (0; 1) the elliptic boundary value
problem

�1
k
pxx + p = w (6.3)

with Neumann conditions

px (0) = px (1) = 0

has a unique solution p 2 H2 (0; 1) (see [16]). Furthermore, if w 2 H1 (0; 1) then also the solution has

better regularity p 2 H3 (0; 1) and

kpxk2L2(0;1) � (px; wx)L2(0;1) � kwxk
2
L2(0;1) : (6.4)

We note that (6.3) is a resolvent equation for the Laplacian subject to Neumann boundary conditions

and the previous facts imply also that the operator de�ned by the linear part of (Pk) approximates the

linear part of (P) in the sense that

Akz ! Az as k !1 (6.5)

for any z in the domain D (A) :=
�
H4 (0; 1) \H1

0 (0; 1)
�
�
�
H2 (0; 1) \H1

0 (0; 1)
�
of A. Where Ak and A
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are given by

Ak :=

 
0 I

�@x (@xxkRk) @x @xx

!
and A :=

 
0 I

�@xxxx @xx

!
:

6.2 Existence of classical solutions

Remark 34 For any classical solution of (Pk) one can show that the energy

E [u (t) ; v (t)] =
1

2
kv (t)k2L2(0;1) +

1

2
(px (t) ; uxx (t))L2(0;1) +

Z 1

0

W (ux (t)) dx

is bounded by the energy of the initial state E [u (t) ; v (t)] � E [u0; v0] ; and decreasing with time. On the

other hand we have that

E [u (t) ; v (t)]� E [u0; v0] = �
Z t

0

kvx (s)k2L2(0;1) ds

Theorem 35 (global classical solutions) The initial boundary value problem associated to (Pk), with
k 2 N �xed, has a unique global classical solution

u 2 C
�
[0; T ] ;H2 (0; 1) \H1

0 (0; 1)
�

ut 2 C
�
[0; T ] ; L2

�
for any initial conditions u0 2 H2 (0; 1) \H1

0 (0; 1) and v0 2 H2 (0; 1) \H1
0 (0; 1) :

6.3 Convergence in the limit regime

In order to prove a convergence result in the limit k !1 we need k-independent estimates on the family�
uk; vk

�
k2N of solutions to (Pk) with k = 1; 2; : : : Such estimates are the object of the following Lemma.

Lemma 36 (k-independent energy estimates) Let
�
uk; vk

�
be the classical solutions of (Pk) for k =

1; 2; : : :. Then the following k-independent energy estimates hold 8t � 0

1

2



vk (t)

2
L2(0;1)

+
1

2

�
pkx (t) ; u

k
xx (t)

�
L2(0;1)

+

Z 1

0

W
�
ukx (t)

�
dx � E0 (6.6)

Z T

0



vkx (t)

2L2(0;1) dt � E0 (6.7)

where E0 := 1
2 kv0k

2
L2(0;1) +

1
2 ku0xxk

2
L2(0;1) +

R 1
0
W (u0x) dx:

Using the Aubin lemma [71] we can prove the weak convergence of solutions to (Pk) when k !1:

Theorem 37 (weak convergence) There exists a subsequence
�
uk; vk

�
k2N of the family of classical

solutions of (Pk) all corresponding to the same initial conditions u0 2 H2 (0; 1) \ H1
0 (0; 1) and v0 2

H2 (0; 1) \H1
0 (0; 1), and a pair (w; v)

T 2 L2
�
0; T ;L2 (0; 1)

�
� L2

�
0; T ;H1

0 (0; 1)
�
such that

(i) we have
ukx ! w in L2

�
0; T ;L2 (0; 1)

�
vk ! v in L2

�
0; T ;H1

0 (0; 1)
�

�
�
ukx
�
! � (w) in L2

�
0; T ;L2 (0; 1)

�
and w 2 L1 ([0; T ]� [0; 1]) :
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(ii) (w; v)T is a weak solution of the problem (P) in conservation form, i.e.,Z T

0

Z 1

0

w t � v xdxdt = 0 (6.8)

Z T

0

Z 1

0

v t � v xx � w xxx + � (w) xdxdt = 0 (6.9)

for all  2 C10 ([0; T ]� [0; 1]).

Based on semigroup methods we can actually prove a result which is stronger than Theorem 37,

namely that the classical solutions of (Pk) converge to the classical solution of (P).

Theorem 38 Let
�
uk; vk

�
and (u; v) be the classical solutions of (Pk) and (P) with identical initial data

u0 2 H2 (0; 1) \H1
0 (0; 1) and v0 2 H2 (0; 1) \H1

0 (0; 1) :

Then, we have that for any t 2 [0; T ]

�
uk (t) ; vk (t)

�
! (u (t) ; v (t)) as k !1

in the norm topology of X =
�
H2 (0; 1) \H1

0 (0; 1)
�
� L2 (0; 1) :

Chapter 7

A model of Ren and Truskinovsky - the nonlinear viscoelasticity

limit regime

7.1 A special nonlinear elasticity model

This Chapter is devoted to a di¤erent limit regime of the Ren and Truskinovsky model, namely the

regime in which solutions to (5.5) for a special choice of the parameters converge to the unique solution

of the nonlinear viscoelasticity equation

utt = utxx + � (ux)x : (7.1)

We are interested in case1 when

�1 = 1; �2 = 0; 
21 =
1

k
; " = 1:

The equations we will deal with are thus

utt = uxx � px + utxx + � (ux)x (7.2)

�1
k
pxx + p = ux (7.3)

1 In previous chapter we have dealt with �1 = k; �2 = 0; 
21 =
1
k
; " = 1:
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with Dirichlet boundary conditions for u and ut; Neumann boundary conditions for p, and initial condi-

tions.

The particular nonlinear stress-strain relationship we consider is the same as in the previous two

chapters

� (w) = w3 � w:

which means we can reduce the two uxx terms in (7.2) to obtain the equivalent form

utt = utxx + �
k (ux)x : (7.4)

where �k (ux)x = 3u
2
xuxx � px.

Remark 39 Due to the properties of the elliptic equation we have that for a �xed u 2 H2 (0; 1)

pkx ! uxx as k !1;

and hence

�k (ux)x ! � (ux)x as k !1:

7.2 Existence of classical solutions

The equation (7.1) has been studied among others by G. Andrews and J. Ball in the 1980s. They were able

to prove a local existence and uniqueness result [5] and in a second article [6] they study the asymptotic

behaviour of solutions for t ! 1. The local existence proof of Andrews relies on Krasnoselskii�s �xed
point theorem for the sum of two operators, and on properties of Green�s function for the one-dimensional

heat equation. Using a semigroup argument we can prove the following result which is stronger than the

result of Andrews. Actually, for smooth enough initial data (7.1) admits a global classical solution, not

just an integral solution as in [5]. Our proof follows ideas in Engel-Nagel [33, VI.3].

Theorem 40 The initial boundary value problem associated to the nonlinear viscoelastic model

utt = utxx + � (ux)x

has a unique global solution

u 2 C
�
[0;1) ;H2 (0; 1) \H1

0 (0; 1)
�

ut 2 C
�
[0;1) ; L2 (0; 1)

�
for any initial conditions

u0 2 H2 (0; 1) \H1
0 (0; 1) and v0 2 H2 (0; 1) \H1

0 (0; 1) :

In a similar way we can prove that the particular case of the Ren and Truskinovsky model (7.4) also

admits global classical solutions.

Theorem 41 The initial boundary value problem associated to the modi�ed nonlinear viscoelastic model

utt = utxx + �
k (ux)x

23



with �k (ux)x = 3u
2
xuxx � px, has a unique global solution

u 2 C
�
[0;1) ;H2 (0; 1) \H1

0 (0; 1)
�

ut 2 C
�
[0;1) ; L2 (0; 1)

�
for any initial conditions

u0 2 H2 (0; 1) \H1
0 (0; 1) and v0 2 H2 (0; 1) \H1

0 (0; 1) :

7.3 Convergence in the limit regime

In this section we study the behaviour of solutions to (7.4) in the limit k ! 1: As already stated,
we expect that this sequence of solutions converges to the unique classical solution of the nonlinear

viscoelasticity model with the same initial data.

The main result of this section is based on k-independent estimates.

Theorem 42 Let (u; v) and
�
uk; vk

�
be the classical solutions of (7.1) and (7.2) with identical initial

data

u0 2 H2 (0; 1) \H1
0 (0; 1) and v0 2 H2 (0; 1) \H1

0 (0; 1) :

Then, we have that for any t 2 [0; T ]

�
uk (t) ; vk (t)

�
! (u (t) ; v (t)) as k !1

in the norm topology of X =
�
H2 (0; 1) \H1

0 (0; 1)
�
� L2 (0; 1) :

III. A NON-LOCAL ALLEN-CAHN EQUATION

Chapter 8

The Allen-Cahn equation

The Allen-Cahn equation

ut = "uxx � f (u) (8.1)

is a scalar Ginzburg-Landau equation �rst introduced by J. W. Cahn and S. M. Allen [4] to describe the

evolution of a non-conserved order parameter during dynamic phase transitions in binary alloys. The

equation is also related to pattern formation models (see [8], [27] or [49]) and to phase-�eld models (see

[20]).

We will study the Allen-Cahn equation on a bounded domain 
 = [0; 1], and the physically natural

boundary conditions are Neumann conditions

ux (t; 0) = 0 = ux (t; 1) ; for t � 0:

The di¤usion coe¢ cient " is usually very small and the nonlinearity f is of bi-stabile, non-monotone
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type f (u) = u3 � u.
For any smooth enough initial data the model has a unique classical solution which is bounded by the

L1-norm of the initial state and which converges in the long-time limit to a solution of the stationary

problem "uxx = f (u), as we will see in more detail later.

We remark also that (8.1) is the L2 (0; 1) gradient �ow (for details see [36] for example) of the free-

energy functional

E =

Z 1

0

"

2
u2x �W (u) dx

where W (u) is a double well potential with equal minima at �1. The two minima of W correspond to

the two phases that coexist in the material.

The recent article [23] of X. Chen gives a detailed account of the dynamics described by the Allen-Cahn

model. The four stages ideinti�ed by X. Chen are:

(i) phase separation (O (jln
p
"j) long)

(ii) generation of the metastable pattern (O
�
"�1
�
long)

(iii) super-slow movement of the metastable pattern (O
�
e1="

�
long), and

(iv) an annihilation of interfaces that are O (") close, which interlaces with (iii) :

The next three theorems establish characteristic properties of solutions to (8.1). We give a full account

of these results as they will serve as a guidline in the study of a new nonlocal version of the Allen-Cahn

equation later (Chapter 9).

Theorem 43 (global existence of classical solutions, [84]) For any initial data

u0 2 D (A) � H2 (0; 1) ;

where D (A) =
�
u 2 H2 (0; 1) : ux (0) = ux (1) = 0

	
is the domain of the Laplacian with Neumann bound-

ary condition, the problem (8.1) admits a unique global classical solution

u 2 C1
�
[0;1) ; L2 (0; 1)

�
\ C ([0;1) ; D (A)) :

To prove the L1 boundedness of solutions we employ a technique due to Stampacchia cited in [16].

Theorem 44 (a priori boundedness) Let u 2 C1
�
[0;1) ; L2 (0; 1)

�
\C

�
[0;1) ;H2 (0; 1)

�
be the clas-

sical solution of (8.1). Then

ku (t)kL1(0;1) � max
n
1; ku0kL1(0;1)

o
:

Theorem 45 (long-time behaviour, see [84]) If u 2 C1
�
[0;1) ; L2 (0; 1)

�
\ C ([0;1) ; D (A)) is a

classical solution of (8.1) then

kut (t)kL2(0;1) ! 0; as t!1:

Theorem 46 (convergence to stationary solutions, [84]) For any given u0 2 D (A), where A is

the Laplacian with Neumann conditions, there is an equilibrium  2 C1 (0; 1) satisfying

�" xx =  �  3 in [0; 1]

 x = 0 on @ [0; 1] ;
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such that the classical solution of (8.1) converges to  in the following sense

lim
t!1

ku (t)�  kH2(0;1) = 0:

For more details on the topic of convergence to stationary solutions we refer to [43].

Chapter 9

A special nonlocal Allen-Cahn Equation

The Allen-Cahn equation can be regarded as a singularly perturbed nonlinear evolution equation, the

dissipative perturbation having a regularizing e¤ect.

It is standard in semigroup theory to approximate unbounded operators like the Laplacian in the

dissipative term of (8.1) by bounded operators called Yosida approximants.

The main idea of this chapter is to perform such an approximation in a "tuned" way, choosing the

order n of the Yosida approximation to be exactly the inverse di¤usion coe¢ cient

n =
1

"
:

Due to the bi-stabile form of the nonlinearity and the special choice of the approximation the resulting

equation has a very simple form, as we will see .

As an alternative to the Allen-Cahn equation

ut = "uxx �
�
u3 � u

�
we propose

ut = "pxx �
�
u3 � u

�
(9.1)

�"pxx + p = u (9.2)

where p is given by the auxiliary elliptic problem. The interesting fact is that if " = 1=n, as announced

above, then by substituting pxx (9.1) becomes equivalent to

ut = �u3 + p (9.3)

�"pxx + p = u (9.4)

The equation (9.3) has the following remarkable properties:

(i) it is a regular perturbation of the nonlinear evolution equation

ut = �u3 + u;

(ii) it does not contain any spatial derivatives (in contrast to (9.1));

(iii) " does not explicitly appear in the equation.
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These properties are interesting from numerics point of view. Their meaning is that (9.3) can be

solved numerically by a direct time step method and the only price that we have to pay is that we need

to compute p at each step. But, since the elliptic problem relating p to u has constant coe¢ cients, solving

it amounts to performing one matrix multiplication at each time step. The matrix is the same for any

time point, and can be constructed beforehand. For interesting results and numerical simulations of both

local and nonlocal Allen-Cahn equations we refer to [12].

On the other hand, we can also use Green�s function for the elliptic problem exactly like in (5.6) for

it is the same elliptic problem, and thus

p (x) =

Z 1

0

G" (x; y)u (y) dy

From this point of view, the above integral de�nes a nonlocal bounded operator. The interest in nonlocal

versions of the Allen-Cahn

ut = (J � u� u)� f (u)

is not new, and the class of nonlocal regularizations de�ned by means of convolution

(J � u) (x) =
Z
J (x� y)u (y) dy

has been intensively studied in recent years starting with the seminal work concerning travelling wave

solutions [11]. In [25] and [26] the authors show that the solutions of convolutive nonlocal di¤usion

equations converge to the solution of the corresponding classical heat equation. For more details about

travelling wave solutions, the slow-motion of phase-interfaces and the numerical analysis of nonlocal

Allen-Cahn models we also refer to [12],[23],[24],[39].

9.1 A qualitative analysis of the nonlocal model

In this section we prove that the nonlocal Allen-Cahn model (9.1) with its equivalent reformulations

has the same "qualitative" properties as the classical Allen-Cahn equation. Here we are concerned with

well-posedness, a priori L1 bounds and long-time asympthotics for (9.1), while in the next section we

will give "quantitative" comparison.

Theorem 47 (existence of classical solutions) For any initial data u0 2 D (A) � H2 (0; 1) ; where

D (A) =
�
u 2 H2 (0; 1) : ux (0) = ux (1) = 0

	
is the domain of the Laplacian with Neumann bound-

ary conditions, the problem (9.1) admits a unique global classical solution u 2 C1
�
[0;1) ; L2 (0; 1)

�
\

C
�
[0;1) ;H1 (0; 1)

�
:

Theorem 48 (a priori boundedness of solutions) Let u (t; x) be a classical solution of (9.3) de�ned
on [0; T ]� [0; 1]. If u0 = u (0; �) 2 L1 (0; 1) then

ku (t; �)kL1(0;1) � ku0kL1(0;1)

for any t 2 [0; T ] :

The long-time behaviour of the solution to (9.1) is similar to that of solutions of (8.1) as the following

result states.

Theorem 49 (long-time behaviour of solutions) Let u be a classical solution of (9.1), then

kut (t)kL2(0;1) ! 0 as t!1:
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9.2 Error estimates

The aim of this section is to show that, at an appropriate time scale for the evolution process, the

di¤erence between the solution of the Allen-Cahn equation, and the solution of the proposed nonlocal

Allen-Cahn equation can be controlled by "-dependent terms, where " is the di¤usion coe¢ cient.

We remark that the Allen-Cahn equation (8.1) and the nonlocal Allen-Cahn equation (9.1) di¤er only

in the linear part, so estimates can be derived using representations of the corresponding semigroups in

terms of the eigenvalues of their generators.

An important problem is to identify the time scale at which the nonlocal Allen-Cahn equation is a

good approximation of the original equation. Our starting point lies in the detailed studies that have

been carried out on the Allen-Cahn equation during the last two decades. We know about the solutions

of this well studied equation that they develop steep transition layers, that is separated phase domains,

in a time proportional to

"
��lnp"�� :

The study of this phenomenon goes back to P. Fife and X. Chen [23], but there are also recent studies

like those of M. Alfaro, D. Hilhorst and H. Matano [3].

We will show that at this very time scale the solutions of the local and nonlocal Allen-Cahn equations

are close to each other, their di¤erence depending on the di¤usion coe¢ cient ".

Theorem 50 Let u and un be the solutions of the local and nonlocal Allen-Cahn equations with identical
initial data

u0 2 H2 (0; 1) ; ku0kL1(0;1) � 1:

Then at a time scale

t � "
��lnp"��

we have

ku (t)� un (t)kL2(0;1) �
�

1

jln
p
"j + 1

�p
":

Conclusions and further work

Conclusions

Part I has its starting point in recent works which study systems of nonlinear operator equations by
means of vector-valued norms. The original idea goes back to Perov ([56]) and since the 1960s it has been

extended and applied in many ways (for an abstract approach see [82]). In this context, our aim was

to study systems of semilinear evolution problems in spaces endowed with vector-valued norms/metrics.

Such extensions of the classical norm concept are more appropriate when dealing with systems of equations

as they give you the freedom of treating each component separately.

First, in Chapter 2, we were able to show wellposedness for a system of semilinear evolution equa-

tions in a generalized Banach space. Our results have the same structure as those in the classical theory

of ordinary di¤erential equations. Existence and uniqueness of solutions are a consequence of a gener-

alized contraction principle, while data dependence is obtained via a generalized Gronwall inequality.

Subsequently, the growth conditions imposed on the nonlinear terms of the systems were weakened and

existence results were proved using Schauder�s or Leray-Schauder�s �xed point principle.
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In Chapter 3 we went a step further, from single-valued to multi-valued problems. An analysis similar

to that in Chapter 2 has been carried out with success for systems of di¤erential inclusions. Although

the proofs in this chapter are technically more involved, the fundamental ideas are the same, and a key

role is played by convergent to zero matrices.

Part I ends with a nonstandard problem, an abstract Cauchy problem with nonlocal initial data.

Our idea was to treat this as a system of two coupled operator equations, one of the equations being of

evolutionary type, while the second is stationary. Due to the contrasting properties of the two equations

it was possible to prove existence of solutions only by means of vector versions of Krasnoselskii�s �xed

point theorem for the sum of two operators. These generalizations of the classical result of Krasnoselskii

are new.

In Part II we have discussed a model in nonlinear elasticity suggested by X. Ren and L. Truskinovsky
in 2000. The crucial observation was that the nonlocal regularizing terms proposed by these authors are

actually Yosida approximations of unbounded di¤erential operators, chosen such that they are compat-

ible with the capillarity coe¢ cient. Guided by this observation we have started to study the Ren and

Truskinovsky model using semigroup methods.

Our main interest was the relationship between the new model and older, well studied models. The

surprising fact that came out during this investigation is that, for special choices of the parameters,

the model of Ren and Truskinovsky can serve as an approximation of both the strain gradient model

(capillarity model) and the nonlinear viscoelasticity model. This surprising versatility is due to the

unconventional nonlocal regularizing term(s) which are the main novelty of the model.

Two chapters (Chapter 6 and Chapter 7) deal with one of the limit regimes (the strain gradient limit

and the nonlinear viscoelasticity limit) each. The structure of these two chapters is similar and in both,

the main results concern the existence of global solutions and the convergence of these solutions in the

limit regime to the solutions of the limit equations.

Once formulated in the terms of Yosida approximations and semigroups, the approximation idea of

Truskinovsky can be applied to any nonlinear evolution model stemming from a double-well potential

(free) energy. In Part III, our aim has been to show that a nonlocal �Truskinovsky� version of the

Allen-Cahn model has similar properties to those of its classical counterpart. In perfect analogy to the

well-established theory for the Allen-Cahn equation, we could show that also its nonlocal version admits

global classical solutions which are a priori bounded. The the long time asymptotics (t ! 1) are also
similar for the two models.

Further work

A possible direction in which the results obtained in Part I of this work could be extended is considering

an `2-valued (sequence-valued) norm instead of the Rn-valued norm that we have used. This would be

in many ways a natural extension since systems of in�nitely many ordinary di¤erential equations have

been studied for quite some time, and they are strongly related to partial di¤erential equations.

A di¤erent direction would be that of applying the abstract results in Part I to systems of coupled

nonlinear viscoelastic equations. In a very recent paper, M. Mustafa [50, Nonlinear Analysis 2012] studies

systems of the following type

utt ��u+
Z t

0

g1 (t� �)�u (�) d� + f1 (u; v) = 0

vtt ��v +
Z t

0

g2 (t� �)�v (�) d� + f2 (u; v) = 0:

We believe that his results, which are obtained by Galerkin methods, can be recover and possibly extended

by the vector-valued norm methods developed in this work.
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The �xed point results obtained in Chapter 3 are constructed in such a way that they are suitable for

treating systems of two coupled operator equations where one component has a compactness property

but the other does not. Typically, dissipative systems (described for example di¤usion equations) have

very good, smoothing, properties, their solution operators being compact; whereas solutions to wave-type

equations don�t have such properties. A further direction of research can be exactly in the �eld of coupled

parabolic-hyperbolic equations

ut ��u = f1 (u; v)

vtt ��v = f2 (u; v) :

In Part II we have considered two limit regimes for the Ren and Truskinowsky model in nonlinear

elasticity, but one can see that neither of these limits is singular. A still open question is related to the

behavior of solutions in the singular, also called sharp interface, limit when both the di¤usion coe¢ cient

and also the capillarity coe¢ cient go to zero. The study of such limits was initiated among others

by Kruzkov [42] and since then became a classical approach to single out weak entropy solutions for

hyperbolic systems of conservation laws. For the system of nonlinear elasticity the vanishing viscosity

method was �rst applied by DiPerna [31] and then extended by Shearer [72], LeFloch [40], Bressan [13]

and many others. Unfortunately, the compensated compactness technique of Murat and Tartar used by

DiPerna, Shearer and LeFloch, as well as the centre manifold theorem technique of Bressan apply only

to hyperbolic systems (with convex energy) and are therefore not suitable for the double-well potential

energy of Ericksen. Up to some extent nonlinear semigroups could provide an appropriate setting in which

to treat the above mentioned singular limits in the non-convex energy case, and the recent monograph

[10] already contains existence results for related models.

A second interesting problem related to nonlinear elasticity models which allow multiple phases is

boundary control of the microstructure. More precisely, the question is whether it is possible only
by thermo-mechanical actions on the boundary of the body (bar) to produce a prescribed pattern of

phase domains in the interior of the body. Obviously, to develop such a theory, one needs a very good

understanding, which is still lacking, of the behaviour of solutions to these nonlinear problems.

As we have seen in Part III, the approximation idea of Truskinovsky does not apply only to nonlinear

elasticity but to any evolution problem involving a double-well potential energy. The Allen-Cahn model

that we have discussed in some detail is only one example in this class. Other models to which this

approximation idea could be applied are: theCahn-Hilliard model, phase-�eld models or nonlinear
di¤usion models.
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