

Universitatea Babeş-Bolyai Facultatea de Chimie și Inginerie Chimica

STUDII PRIVIND SINTEZA, STRUCTURA SI REACTIVITATEA CHIMICA A UNOR NOI COMPUSI CALCOGEN-ORGANICI

Rezumatul tezei de doctorat

POP ALEXANDRA MIHAELA

Conducator ştiintific: Prof. Dr. CRISTIAN SILVESTRU

Cluj-Napoca, 2012

COMISIE

PRESEDINTE

Prof. Dr. Luminiţa SILAGHI-DUMITRESCU

REFERENTI

Prof. Dr. Vito Lippolis	- Universita degli Studi di Cagliari, Italy.
Prof. Dr. Ion Grosu	 Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, România.
CSI Dr. Otilia Costişor	- Institutul de Chimie Timişoara al Academiei Române, Timişoara, România.

Data sustinerii publice: 13 Februarie 2012

CUPRINS

I.	INTRODU	ICERE	1
II.	DATE DE I	ITERATURA	5
П	.1. Com	pusi diorganodiseleniu(I)	5
	II.1.1.	Preparare	7
	II.1.2.	Activitate catalitica	9
	II.1.3.	Organoselenolati metalici	17
II	.2. Com	pusi diorganoseleniu(II)	20
	II.2.1.	Preparare	22
	II.2.2.	Activitate catalitica	26
	II.2.3.	Organoselenolati metalici	29
III.	CONTRIBL	JTII ORIGINALE	32
III.A	. CALCOGE	NURI DE TRIARIL FOSFOR SI NOI COMPLECSI AI METALELOR DIN GRUPA 11	32
III.A	.1. REZULT/	ATE SI DISCUTII	34
П	I.A.1.1. Sint	eza si caracterizarea calcogenurilor de triaril fosfor	35
II	I.A.1.2. Sint	eza si reactivitatea $Ph_2MeP=Se$ asupra aurului	46
II	I.A.1.3. Rea	ctivitatea chimica a $Ph_2MeP=Se$ asupra argintului si cuprului	39
III.A	.2. CONCLU	ZII	65
III.A	.3. PARTEA	EXPERIMENTALA	67
	Sinteza Ph	₂ MeP=Se (1)	70
	Sinteza [2	-(Me ₂ NCH ₂)C ₆ H ₄)] ₃ P=S (2)	71
	Sinteza [2	-(Me ₂ NCH ₂)C ₆ H ₄)] ₃ P=Se (3)	72
	Sinteza [2	-(Me ₂ NCH ₂)C ₆ H ₄] ₂ PhP=Se (4)	73
	Sinteza [A	uCl(SePPh ₂ Me)] (5)	74
	Sinteza [(C	C ₆ F ₅)Au(SePPh ₂ Me)] (6)	75
	Sinteza [(O	$\Sigma_6 F_5$) $_3 Au(SePPh_2 Me)] (7)$	76
	Sinteza [A	g(OTf)(SePPh ₂ Me)] (8)	77
	Reactia di	ntre [Ag(OTf)(PPh ₃)] si Ph ₂ MeP=Se – compusii (9) si (10)	78
	Sinteza [C	uCl(SePPh ₂ Me)] (11)	80
	Reactia di	ntre [CuNO ₃ (PPh ₃) ₂] si Ph ₂ MeP=Se – compusii (12) si (13)	81
III.B		PUSI DE TIPUL RR'Se SI R ₂ Se ₂ SI COMPLECSII METALICI AI ACESTORA CU GRUPA 11	83

III.B.1. REZULTATE SI DISCUTII	83
III.B.1.1. Liganzi de tipul R ₂ Se si complecsii metalici ai acestora cu aur si argint	83
III.B.1.2. Liganzi de tipul RR'Se si complecsii metalici ai acestora cu aur si argint	93
III.B.1.3. Derivati de diorganodiseleniu(I)	
III.B.2. CONCLUZII	
III.B.3. PARTEA EXPERIMENTALA	111
Sinteza [(3,5-Me ₂ C ₃ HN ₂)CH ₂ CH ₂] ₂ Se (14)	
Sinteza [AuCl{(3,5-Me ₂ C ₃ HN ₂)CH ₂ CH ₂] ₂ Se}] (15)	
Sinteza [Ag(OTf){(3,5-Me ₂ C ₃ HN ₂)CH ₂ CH ₂] ₂ Se}] (16)	
Sinteza [(3,5-Me ₂ C ₃ HN ₂)CH ₂ CH ₂][2-(Me ₂ NCH ₂)C ₆ H ₄]Se (17)	115
Sinteza [AuCl{[(3,5-Me ₂ C ₃ HN ₂)CH ₂ CH ₂][2-(Me ₂ NCH ₂)C ₆ H ₄]Se}] (18)	116
Sinteza [Ag(OTf){[(3,5-Me ₂ C ₃ HN ₂)CH ₂ CH ₂][2-(Me ₂ NCH ₂)C ₆ H ₄]Se}] (19)	
Sinteza [2,6-(Me ₂ NCH ₂) ₂ C ₆ H ₃] ₂ Se ₂ (20)	
Sinteza [2,6-(Me ₂ NCH ₂) ₂ C ₆ H ₃]SeCl (21)	119
Sinteza [2,6-(Me ₂ NCH ₂) ₂ C ₆ H ₃]SeBr (22)	120
Sinteza [2,6-(Me ₂ NCH ₂) ₂ C ₆ H ₃]Sel (23)	
III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE	ERI CU BRAT
III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE PENDANT	ERI CU BRAT 123
III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE PENDANT III.C.1. REZULTATE SI DISCUTII	ERI CU BRAT 123 123
III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE PENDANT	ERI CU BRAT 123 123
III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE PENDANT III.C.1. REZULTATE SI DISCUTII III.C.1.1. Sinteza si caracterizarea macrociclului 25 III.C.1.2. Sinteza si caracterizarea amino-tioeterilor	ERI CU BRAT
III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE PENDANT III.C.1. REZULTATE SI DISCUTII III.C.1.1. Sinteza si caracterizarea macrociclului 25	ERI CU BRAT
III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE PENDANT	ERI CU BRAT 123 123 124 124 130 134 145
III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE PENDANT	ERI CU BRAT
 III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE PENDANT. III.C.1. REZULTATE SI DISCUTII	ERI CU BRAT
III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE PENDANT III.C.1. REZULTATE SI DISCUTII III.C.1.1. Sinteza si caracterizarea macrociclului 25. III.C.1.2. Sinteza si caracterizarea amino-tioeterilor III.C.1.3. Sinteza si caracterizarea amino-tioeteriloc cu brat pendant III.C.2. CONCLUZII. III.C.3. PARTEA EXPERIMENTALA Sinteza (H2NCH2CH2)2S (24). Sinteza compusului 25.	ERI CU BRAT
III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE PENDANT III.C.1. REZULTATE SI DISCUTII III.C.1.1. Sinteza si caracterizarea macrociclului 25. III.C.1.2. Sinteza si caracterizarea amino-tioeterilor III.C.1.3. Sinteza si caracterizarea amino-tioeteriloc cu brat pendant III.C.2. CONCLUZII III.C.3. PARTEA EXPERIMENTALA Sinteza (H2NCH2CH2)2S (24) Sinteza compusului 25 Sinteza compusului 26	ERI CU BRAT
III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE PENDANT. III.C.1. REZULTATE SI DISCUTII III.C.1.1. Sinteza si caracterizarea macrociclului 25. III.C.1.2. Sinteza si caracterizarea amino-tioeterilor III.C.1.3. Sinteza si caracterizarea amino-tioeterilor cu brat pendant III.C.2. CONCLUZII III.C.3. PARTEA EXPERIMENTALA Sinteza (H2NCH2CH2)2S (24) Sinteza compusului 25. Sinteza compusului 26. Sinteza compusului 27.	ERI CU BRAT 123 123 124 124 130 134 145 147 149 150 151 152
III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE PENDANT III.C.1. REZULTATE SI DISCUTII III.C.1.1. Sinteza si caracterizarea macrociclului 25. III.C.1.2. Sinteza si caracterizarea amino-tioeterilor III.C.1.3. Sinteza si caracterizarea amino-tioeteriloc cu brat pendant III.C.2. CONCLUZII. III.C.3. PARTEA EXPERIMENTALA Sinteza (H2NCH2CH2)2S (24). Sinteza compusului 25. Sinteza compusului 26. Sinteza compusului 27. Sinteza compusului 28.	ERI CU BRAT
III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE PENDANT III.C.1. REZULTATE SI DISCUTII III.C.1.1. Sinteza si caracterizarea macrociclului 25. III.C.1.2. Sinteza si caracterizarea amino-tioeterilor III.C.1.3. Sinteza si caracterizarea amino-tioeterilor cu brat pendant III.C.2. CONCLUZII III.C.3. PARTEA EXPERIMENTALA Sinteza (H2NCH2CH2)2S (24). Sinteza compusului 25. Sinteza compusului 26. Sinteza compusului 27. Sinteza compusului 28. Sinteza compusului 29.	ERI CU BRAT
III.C. LIGANZI MACROCICLICI CARE CONTIN ATOMI DONORI DE N/CALCOGEN SI AMINO-TIOETE PENDANT III.C.1. REZULTATE SI DISCUTII III.C.1.1. Sinteza si caracterizarea macrociclului 25. III.C.1.2. Sinteza si caracterizarea amino-tioeterilor III.C.1.3. Sinteza si caracterizarea amino-tioeteriloc cu brat pendant III.C.2. CONCLUZII. III.C.3. PARTEA EXPERIMENTALA Sinteza compusului 25. Sinteza compusului 26. Sinteza compusului 27. Sinteza compusului 28. Sinteza compusului 29. Sinteza compusului 30.	ERI CU BRAT 123 123 124 124 130 134 145 145 147 149 150 151 152 153 154

	Sinteza compusului 32	156	
	Sinteza compusului 33	157	
	Sinteza compusului 34	159	
	Sinteza compusului 35	160	
	Sinteza compusului 36	161	
	Sinteza compusului 37	162	
	EVE	162	
AN			

Cuvinte cheie: seleniu; sinteza; calcogen; macrociclu; spectroscopie RMN.

III. Contributii originale

III.A. Calcogenuri de triaril fosfor si noi complecsi ai metalelor din grupa 11

III.A.1. Rezultate si discutii

In acest Capitol se discuta despre sinteza si caracterizarea in solutie si in stare solida a unor noi calcogenuri de triaril fosfor. Complecsi ai ligandului **1** cu metale din grupa **11** au fost preparati si caracterizati structural.⁹⁴

 $Ph_2MeP + Se \longrightarrow Ph_2MeP=Se$ (1)

Schema 1. Reactivi si conditii: toluen, Se, reflux.

Calcogenuri de triaril fosfor de tipul $R_xPh_{3-x}P=E$ [R = 2-(Me₂NCH₂)C₆H₄, E = S, x = 3 (2), E = Se, x = 3 (3) si E = Se, x = 2 (4) au fost preparati prin reactia dintre compusii de triaril fosfor corespunzatori cu seleniu si sulf elemental, in raport molar de 1:1 (Schema 2). Comportamentul in solutie al compusilor 2 – 4 a fost investigat prin spectroscopie RMN (¹H, ¹³C si ³¹P). Structurile moleculare ale compusilor 2 si 3 a fost determinat prin difractie de raze X pe monocristal.

$$[2-(Me_2NCH_2)C_6H_4]_xPh_{3-x}P + E \longrightarrow [2-(Me_2NCH_2)C_6H_4]_xPh_{3-x}P=E$$

$$x = 3, E = S \quad (2)$$

$$x = 3, E = Se \quad (3)$$

$$x = 2, E = Se \quad (4)$$

Schema 2. Reactivi si conditii: THF, calcogen, reflux.

In spectrele ¹H si ¹³C RMN se observa gruparile organice atasate de atomul de fosfor. Atribuirea semnalelor a fost facuta cu ajutorul spectrelor RMN bidimensionale (HMBC si HSQC). Multiplicitatea semnalelor este data de cuplajele proton-proton, fosfor-proton si fosfor-carbon. In spectrul ¹H RMN al compusilor 2 - 4 la temperatura camerei (Figura 1), gruparile NMe₂ prezinta un semnal de tip singlet in jurul valorii de 2.0 ppm. Gruparile metilen din bratul pendant prezinta in cazul compusilor 2 si 3 un semnal de tip singlet, iar in compusul 4 un sistem AB. Acest comportament al compusilor sugereaza lipsa interactiunilor N \rightarrow P in solutie.

Figura 1. Spectrele ¹H RMN suprapuse (CDCl₃, 300 MHz): (a) compusul **2**, (b) compusul **3** si (c) compusul **4**.

Structurile moleculare ale compusilor **2** (**Figura 3**) si **3** (**Figura 4**) au fost determinate prin difractie de raze X pe monocristal. In cazul acestor compusi si in stare solida a fost observata lipsa interactiunilor azot - fosfor. In jurul atomilor de fosfor se observa o geometrie de coordinare tetraedrica distorsionata si pseudo-tetraedrica in jurul atomului de azot. In compusul **2** atomul N2 este mult mai apropiat de atomul de fosfor decat ceilalti doi atomi de azot, [P1–N2 3.346(35), P1–N1 4.598(52), P1–N3 4.620(42) Å, vs. Σr_{vdW} (NP) 3.44 Å], dar nu se poate considera ca fiind interactiune intre cei doi atomi. Distantele interatomice fosfor-calcogen evidentiaza dubla legatura P=E, *i.e.* P=S 1.962(2) in **2** si P=Se 2.118(1) Å in **3**.

Figura 3. Structura moleculara si numerotarea atomilor pentru: (a) compusul **2** si (b) compusul **3**. Atomii de hidrogen au fost omisi pentru claritate. Reprezentare ORTEP de elipsoizi la probabilitate de 30%.

Complecsi ai ligandului **1** cu complecsi ai aurului au fost obtinuti reactionand in raport molar 1:1 materiile prime, urmand schema de reactie de mai jos (**Schema 3**).

$$[AuCl(SePPh_2Me)] \stackrel{i}{\longleftarrow} Ph_2MePSe \stackrel{ii}{\longrightarrow} [Au(C_6F_5)(SePPh_2Me)]$$

$$5 \qquad 1 \qquad 6$$

$$\downarrow iii$$

$$[Au(C_6F_5)_3(SePPh_2Me)]$$

$$7$$

Schema 3. Reactivi si conditii: *i*) DCM, AuCl(tht), r.t.; *ii*) (C₆F₅)Au(tht), DCM, r.t.; *iii*) (C₆F₅)₃Au(tht), DCM, r.t.

Compusii **5** – **7** au fost caracterizati in solutie prin spectroscopie ¹H, ³¹P, ⁷⁷Se si ¹⁹F RMN, cat si in stare solida prin difractie de raze X pe monocristal. Spectrele RMN au fost inregistrate la temperatura camerei in CDCl₃. In spectrule ¹H RMN ale compusilor se observa acelasi aspect ca si in cazul ligandul **1** (**Figura 5**). In zona alifatica se poate observa semnalul dat de gruparea metil ca si un semnal de tip dublet, datorita cuplajului fosfor-proton. In zona aromatica, gruparea fenil prezinta semnale de tip multiplet caracteristice protonilor *orto, meta* si *para*. Protonii *orto* apar sub forma unui dublet de dublete de duplete datorita cuplajelor fosfor-proton si proton-proton.

Spectrele ⁷⁷Se RMN prezinta un semnal de tip dublet datorat cuplajului fosfor-seleniu. In compusul **7** valoarea deplasarii chimice este de δ -79.54 ppm, iar in ligand de δ -294.28 ppm, datorita interactiunilor dintre seleniu si atomul de aur.

8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 fl(pom)

Figura 5. Detalii din spectrele ¹H RMN (CDCl₃, 300 MHz): (a) ligandul **1**, (b) compusul **5**, (c) compusul **6** si (d) compusul **7**.

Figura 7. Detalii din spectrele ⁷⁷Se RMN (CDCl₃, 58 MHz) ale ligandului 1 si compusului 7.

Spctrele ¹⁹F RMN ale compusilor **6** si **7** contin trei semnale cu aspectul asteptat pentru gruparile C_6F_5 (**Figura 8**). In cazul compusului plan-patrat **7**, gruparile C_6F_5 atasate atomului de aur prezinta doua seturi de semnale in raport de 1:2, datorata nonechivalentei gruparilor (o grupare este *trans* fata de seleniu iar celelalte doua sunt trans una fata de cealalta).

Figura 8. Detalii din spectrele ¹⁹F RMN (CDCl₃, 282 MHz): (a) compusul 6 si (b) compusul 7.

Derivatii de aur **6** si **7** sunt specii monomere, in complexul **6** distanta dintre doi atomi de aur este la limita dintre suma razelor covalente si suma razelor van der Waals pentru aur [3.3387(7) Å vs. $\Sigma r_{vdW}(Au,Au)$ 3.40 Å].⁹⁸ Ligandul fosfororganic(V) in cei doi complecsi se comporta ca si o specie monometalica monoconectiva, ei fiind legati de metal prin seleniu. In complexul **6** geometria de coordinare a aurului este liniara, putin distorsionata [C1–Au1–Se1 176.72(2)°]. Considerand existenta interactiunilor slabe Au···Au, o geometrie in forma de T poate fi atribuita [Au2···Au1–Se1 75.22(2)° si Au2···Au1–C1 108.06(2)°]. In complexul **7** atomul de aur are o geometrie plan-patrata. Gruparea C₆F₅ *trans* fata de seleniu este deplasata la aproximativ 90° fata de celelalte doua grupari C₆F₅. Atomul de fosfor are in ambii compusi o geometrie de coordinare tetraedrica, iar atomul de seleniu prezinta o geometrie *pseudo* tetraedrica [Au1–Se1–P1 94.06(5)° in **7** si 102.98(4)° in **6**].

Figura 10. Structura moleculara si numerotarea atomilor pentru (**a**) compusul **6** si (**b**) compusul **7**. Atomii de hidrogen au fost omisi pentru claritate. Reprezentare ORTEP de elipsoizi la probabilitate de 50%.

Spectre DRUV (diffuse reflectance ultraviolet visible) au fost inregistrate pentru complecsii 6 si 7. In spectrul complexului 6 se poate observa o banda cu doua maxime la 231 si 260 nm, iar in complexul 7 o banda cu un maxim la 276 nm. Complecsii emit slab in stare solida, compusul 6 emite doar la 77 K iar compusul 7 emite la temperatura camerei si 77 K (Figura 11).

Figura 11. Spectrul de excitatie (linie punctata) si emisie (linie dreapta) pentru 6 la 77 K.

Solide cristaline au fost obtinute prin reactia ligandului **1** cu complecsi de argint si cupru in raport molar de 1:1 (**Schema 4**).

Spectrele ¹H si ³¹P RMN ale compusilor ce contin doar o specie de ligand triorganofosforic (compusii **8** si **11**) sugereaza existenta unei singure specii in solutie, iar in compusii care contin doua tipuri de ligand triorganofosforic spectrele RMN sugereaza un caracter dinamic. Gruparile fenil si metil din compusi prezinta multiplicitatea asteptata, datorita cuplajelor fosfor-proton si proton-proton.

Spectrele de ³¹P RMN ale compusilor **8** si **11** (**Figura 13**) prezinta semnalele corespunzatoare gruparii SePPh₂Me (δ 27.8 ppm pentru **8** in acetona- d_6 si 21.17 ppm pentru **11** in CDCl₃), cu satelitii de ⁷⁷Se si ¹³C corespunzatori.

Figura 12. Detalii din spectrele ¹H RMN (CDCl₃, 300 MHz): (a) ligandul 1, (b) compusul 8 si (c) compusul 11.

Figura 13. Detalii din spectrele ³¹P RMN: (a) compusul 8 (acetona-*d*₆, 300 MHz); (b) compusul 11 (CDCl₃, 121 MHz).

Spectrul IR al compusului **8** (**Figura 14**) prezinta benzi la 1280(vs), 1218(vs), 1155(s) si 1021(vs) cm⁻¹. Gruparea triflat este legata ionic la argint, aceasta observatie este dovedita de banda de vibratie asimetrica pentru ionul sulfuril care se observa in jurul valorii de 1280 cm⁻¹ si nu este scindata in doua benzi.

In cazul solidelor obtinute din reactia *(ii)*, de exemplu $[Ag(PPh_xMe_{3-x})(SePPh_yMe_{3-y})]OTf$, spectrul ¹H RMN prezinta in zona alifatica doua semnale in raport molar 1:4 (δ 1.85 ppm, ²J_{PH} 5.9 Hz si δ 2.60 ppm, ²J_{PH} 13.6 Hz). Constantele de cuplaj calculate sunt caracteristice pentru specile care contin P(III) si P(V)

Spectrul 2D H,P-HMQC inregistrat la temperatura camerei pentru reactia (*ii*) confirma prezenta celor doi compusi **9** si **10** (**Figura 19**).

Figura 19. Spectrul 2D H,P-HMQC (CDCl₃, 300 MHz) pentru solidul izolat din reactia (ii).

Spectrul de masa APCI+ al solidului rezultat din reactia (*ii*) prezinta ionul molecular $[AgOTf(PPh_3)(SePPh_2Me)^+]$ (*m/z* 800.9, 80%) si ionul $[Ag(PPh_3)(SePPh_2Me)^+ + Se]$ (*m/z* 729.6, 100%).

Spectrul IR (**Figura 21**) al solidului izolat din reactia (*ii*) prezinta benzi la 1262 (vs), 1222(s), 1151(s) si 1027(s) cm⁻¹, sugerand un caracter ionic al gruparii triflat. ^{106,107}

Figura 21. Spectrul IR al solidului izolat din reactia (ii).

Solidul izolat din reactia (*iv*) prezinta comportament similar cu cel al speciei de argint { $[Ag(PPh_xMe_{3-x})(SePPh_yMe_{3-y})]OTf$ }, (n = 1, 2). Spectrele ³¹P RMN inregistrate in acetona- d_6 sau CDCl₃, prezinta patru semnale, doua dintre semnale sunt mai dezecranate si prezinta sateliti de seleniu, iar celelalte doua sunt mai ecranate si sunt largi. Aceste patru semnale formeaza doua seturi de semnale, similar cu situatia

descrisa pentru compusii **9** si **10**. In cazul specilor de cupru(I) monomerul si dimerul sunt intr-un raport molar de 1:2. Semnalele observate in spectrele de ³¹P RMN sunt la deplasari comparabile cu SePPh₂Me, SePPh₃ si [CuNO₃(PPh₃)₂] (**Tabel 4**). Semnalul de la δ -17.4 ppm poate fi atribuit gruparii CuNO₃(PPh₂Me)₂]. Luand in considerare aceste similaritati, se poate conclude si pentru reactia *(iv)* un proces care implica transferul seleniului de la PPh₂Me la PPh₃. O asociere dimerica are loc in prima etapa (**Schema 4**) urmata de o disociere in SePPh₂Me, SePPh₃, CuNO₃(PPh₂Me)₂, CuNO₃(PPh₃)₂ si CuNO₃(PPh₂Me)(PPh₃) datorita labilitati specilor de cupru(I). In incercarea de a creste cristale sau obtinut prin difractie de raze X pe monocristal doar structuri pentru SePPh₃ si CuNO₃(PPh₃)₂. Spectrele de ³¹P RMN la temperatura scazuta nu au adus rezultate clare privind amestecul dintre monomeri (**12** si **13**) si dimeri(**12a** si **13a**) ca si in cazul derivatilor de argint, dar acest proces nu poate fi exclus. La -75 °C in spctrul de ³¹P RMN se pot observa doua semnale corespunzatoare gruparilor de PPh₃ si PPh₂Me (Figura **22**). Acest aspect poate explica prezenta unei a treia specii de cupru(I) in solutie, [CuNO₃(PPh₂)(PPh₂Me)].

Figura 22. Spectrul ³¹P RMN: (a) temperatura camerei; (b) temperatura scazuta [213K] si (c) temperatura scazuta [198 K]; pentru solidul obtinut din reactia *(iv)* (-25 - +5 ppm).

Figura 24. Spectrul 2D P,P-COSY (CDCl₃, 121 MHz) pentru solidul obtinut din reactia (iv).

Corelari 2D ${}^{31}P-{}^{31}P$ COSY (**Figura 24**) si ${}^{31}P-{}^{1}H$ HMQC (**Figura 25**) au fost utilizate in vederea atribuirilor semnalelor in cazul reactiei *(iv)*.

III.A.2. Concluzii

- Trei noi liganzi calcogen fosfororganici au fost sintetizati si caracterizati structural in solutie prin spectroscopie RMN. Structurile moleculare ale compusilor 2 si 3 au fost obtinute prin difractie de raze X pe monocristal.
- Cinci complecsi ai metalelor din grupa 11, [AuCl(SePPh₂Me)] (5), [Au(C₆F₅)(SePPh₂Me)] (6), [Au(C₆F₅)₃(SePPh₂Me)] (7), [AgOTf(SePPh₂Me)] (8) si ([CuCl(SePPh₂Me)] (11) au fost sintetizati si caracterizati in solutie prin spectroscopie RMN si in stare solida prin difractie de raze X pe monocristal.
- Compusii 6 si 7 au fost optimizati prin calcule DFT.⁹⁴ In cazul compusului 6 interactiuni slabe auraur au fost observate in cristal. Studii de luminiscenta DRUV au fost facute pentru compusii de aur 6 si 7 cat si pentru ligandul SePPh₂Me. Spectrele DRUV prezinta emisie in stare solida pentru ligand cat si pentru copusii de aur. Calcule TD-DFT au fost realizate pentru a investiga proprietatile electronice care determina luminiscenta in compusii 6 si 7, cat si in ligand.⁹⁴
- Opt produsi au fost izolati din reactia dintre SePPh₂Me si [AgOTf(PPh₃)] sau [CuNO₃(PPh₃)₂]. Formarea produsilor din reactiile *(ii)* si *(iv)* demonstreaza un caracter dinamic in solutie care implica transferul de seleniu de la P(V) la P(III). In cazul specilor de argint(I) experimentele RMN au adus o evidenta clara asupra procesului de dimerizare rezultand in formarea compusilor [Ag(PPh₃)(µ-SePPh₂Me)]₂(OTf)₂ (9a) si [Ag(PPh₂Me)(µ-SePPh₃)]₂(OTf)₂ (10a). In cazul compusilor de Cu(I) experimentele RMN sugereaza descompunerea produsilor initial obtinuti, [CuNO₃(PPh₃)₂(SePPh₂Me)] (12), [CuNO₃(PPh₂Me)(SePPh₃)] (13), [Cu(PPh₃)(µ-SePPh₂Me)]₂(NO₃)₂ (12a) si [Cu(PPh₂Me)(µ-SePPh₃)]₂(NO₃)₂ (13a) ducand la formarea complecsilor [CuNO₃(PPh₃)₂], [CuNO₃(PPh₃)(PPh₂Me)], SePPh₂Me si SePPh₃⁹⁴

III.B. Noi compusi de tipul RR'Se si R₂Se₂ si complecsii metalici ai acestora cu grupa 11

III.B.1. Rezultate si discutii

In vederea atingerii obiectivelor propuse, noi compusi de diorganoseleniu(II) care contin grupari de pirazol si diorganoseleniu(I) care contin doua brate pendante au fost sintetizati. Urmand metode din literatura, 1-(2-bromoetil)-3,5-dimetil-1H-pirazol a fost obtinut, refluxand 3,5-dimetil-1H-pirazol cu exces de 1,2-dibrometan.¹³¹ Compusul obtinut prin reactia *(i)* a fost purificat prin cromatografie utilizand etil acetat ca si eluent. Al doilea pas in sinteza ligandului **14** a fost realizat prin reactionarea bromuri corespunzatoare cu Na₂Se (**Schema 6**).

Schema 6. Reactivi si conditii: i) NaOH, TBAB; ii) NaBH₄, H₂O, NaOH, EtOH.

In vederea caracterizarii ligandului spectre ¹H, ¹³C, ⁷⁷Se si 2D RMN au fost inregistrate la temperatura camerei. In spectrul ¹H RMN al ligandului **14** existenta gruparilor metil atasate nucleului pirazolic a fost demonstrata prin doua semnale de tip singlet la δ 2.17 ppm si la δ 2.23 ppm. Doua semnale de tip triplet corespunzatoare gruparii etilen se observa la δ 2.83 ppm si 4.12 ppm. In zona aromatica un semnal de tip singlet corespunzator hidrogenului H₂ se observa la δ 5.75 ppm (**Figura 28**).

i 6.0 5.9 5.8 5.7 5.5 5.4 5.3 5.2 5.1 5.0 4.2 4.1 4.0 3.9 3.8 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 f(pm)

Figura 28. Spectrul ¹H RMN (CDCl₃, 300 MHz) al ligandului 14.

Ligandul **14** a fost caracterizat si prin spectrometrie de masa (ESI MS) prezentand semnale in ESI+ la m/z 349.7 (10%) pentru [M^++Na] si m/z 464.2 (100%) pentru [$(RSeEt)_2^+$], iar in ESI- la m/z 385.2 (100%) pentru [$(RSeEt)_2-Se^-$].

Reactia ligandului **14** cu [AuCl(tht)] sau AgOTf, in raport molar 1:1 a dus la formarea compusilor **15** si **16** (**Schema 7**). In cazul complecsilor de argint metoda de sinteza necesita atentie sporita, lipsa luminii si timp de prelucrare scurt, pentru a evita descompunerea.

Schema 7. Reactivi si conditii: i) AuCl(tht), DCM r.t.; ii) AgOTf, DCM, r.t.

Pentru a caracteriza complecsii metalici **15** si **16** au fost utilizate experimente ¹H, ¹³C, ⁷⁷Se si 2D RMN. In spectrul ¹H RMN trei semnale de rezonanta de tip singlet si doua semnale de rezonanta de tip triplet au fost observate in zona alifatica si un singlet in zona aromatica. Semnalele sunt deplasate comparativ cu materia prima. Semnalele au fost atribuite cu ajutorul spectrelor 2D [COSY, HSQC, HMBC].

Figura 32. Detalii din spectrele suprapuse ¹H RMN (CDCl₃, 300 MHz: (a) ligandul **14**; (b) compusul **15**, si (c) compusul **16**.

Prin spectrul ¹⁹F RMN a fost confirmata prezenta gruparii triflat (OTf⁻), semnalul aparand sub forma unui singlet cu sateliti de seleniu la δ –78.28 ppm (**Figura 36**).

Experimente ⁷⁷Se RMN au fost realizate pentru a obtine o caracterizare completa a compusilor. Un semnal larg la δ 144.6 ppm este observat in spectrul compusului **15** si un semnal ascutit la δ 129.39 ppm in spectrul compusului **16**. Semnalele sunt deplasate comparativ cu semnalul observat in spectrul de ⁷⁷Se al ligandului (δ 139.54 ppm) (**Figura 37**).

Figura 37. Spectrele suprapuse ⁷⁷Se RMN (CDCl₃, 58 MHz): (a) ligandul 14; (b) compusul 15, si (c) compusul 16.

Experimente ⁷⁷Se RMN la temperatura scazuta au fost inregistrate. Aceste studii sunt facilitate de sensibilitatea ridicata a nucleului de seleniu. In spectrele compusului **15 (Figura 38)** semnalul larg de la δ (144.60 ppm) la 293 K, devine ascutit si deplasat (δ 131.67 ppm) la 218 K. Semnalul larg poate sa fie explicat de o dimerizare a compusului, proces foarte des intalnit in derivatii aurului.

Figura 38. Spectre ⁷⁷Se RMN la temperatura variabila pentru compusul 15 (CDCl₃, 58 MHz).

Cei doi complecsi metalici au fost caracterizati si prin spectroscopie de masa ESI. Forma distincta a semnalelor in spectrele de masa pentru compusi organometalici este data de numarul de izotopi ai metalelor.¹³⁵ Acest aspect al semnalelor este observat si in cazul compusilor **15** si **16**. In spectrul de masa ESI+ al compusului **15** (**Figura 39**) se pot observa patru semnale la *m/z* 327.1 (100%) corespunzatoare

fragmentului [R₂Se⁺+H], *m/z* 524.1 (37%) pentru [R₂SeAu⁺+H], *m/z* 635.1 (1%) pentru [M⁺+Se] si *m/z* 725.1 (24 %) pentru [R₂SeAu⁺+Au. In spectrul ESI- un singur semnal poate fi observat la *m/z* 521 (100%) corespunzator fragmentului [R₂SeAu⁻].

Figura 39. Detalii din spectrul de masa ESI+ al compusului 15.

Compusi de tipul RR'Se au fost sintetizati cu succes prin reactia dintre selenolatul de sodiu cu bromura corespunzatoare (**Schema 8**).

Schema 8. Reactivi si conditii: i) Na, THF, r.t.; ii) 1-(2-bromoetil)-3,5-dimetil-1H-pirazol, THF, r.t.

Schema 9. Reactivi si conditii: i) AuCl(tht), DCM, r.t.; ii) AgOTf, DCM, r.t.

In vederea prepararii compusilor **18** si **19**, complecsii [AuCl(tht)] si AgOTf au fost utilizati ca si materie prima in reactie cu ligandul **17** (**Schema 9**). In vederea evitarii descompunerii si in aceste reactii a fost necesar un timp de reactie si prelucrare scurt.

Compusii **18** si **19** au fost caracterizati in solutie prin (¹H, ¹³C, ¹⁹F, ⁷⁷Se) si 2D RMN la temperatura camerei si la temperatura scazuta. Aspectul spectrelor ¹H RMN pentru compusii **18** si **19** a fost comparat cu cel al ligandului **17**, deplasarile chimice ale semnalelor fiind diferite. In zona alifatica prezenta celor patru grupari Me este dovedita de cele trei semnale caracteristice la δ 2.20, 2.23, 2.26 ppm in **18** si δ 1.99, 2.28, 2.59 ppm in **19**. Gruparea metilen din bratul pendand se observa la δ 3.52 ppm (**18**) si 3.70 ppm (**19**), iar semnalele date de gruparea etilen se observa la δ 3.35, 3.52 ppm in **18** si 3.42, 3.70 ppm in **19** (**Figura 40**). Protonii aromatici H_{6'} apar sub forma unui semnal de tip dublet, in timp ce protonii H_{3'-5'} in **18** si protonii H_{3'-6'} in **19**, apar sub forma unui semnal de tip multiplet nerezolvat.

Figura 40. Detalii din spectrele suprapuse de ¹H RMN (CDCl₃, 300 MHz): (a) ligandul **17**, (b) complexul **18** si (c) complexul **19**.

Figura 47. Detalii din spectrul de masa ESI+ a compusului 19.

Spectrele de masa ESI+ au confirmat formarea complecsilor de aur si argint cu ligandul **17**. In spectrul de masa ESI+ al compusului **18** se pot observa semnale la m/z 338.0 (100%) pentru fragmentul [RR'Se⁺+H] si m/z 532.0 (10%) pentru fragmentul [RR'SeAu⁺](**Figura 46**). In spectrul ESI- al compusului **18** se observa semnale la m/z 532 (10%) pentru [RR'SeAu⁻] si m/z 802.9 (20%) pentru [M⁻+AuCl]. In spectrele de masa ESI+ ale compusul **19** (**Figura 47**) se pot observa trei semnale la m/z 487.9 (100%) pentru [M⁺-Ag+H], m/z 593.9 (75%) pentru [M⁺+H] si 701 (2%) pentru [M⁺+Ag+H], iar in spectrul ESI- trei semnale la m/z 339.7 (75%) pentru [RR'Se⁻], m/z 447.0 (48%) pentru [RR'SeAg⁻] si m/z 657.2 (100%) pentru [M⁻+SO₂].

Bis[2,6-bis(dimetilaminometil)fenil]diseleniu(I),¹³⁷ a fost preparat prin metoda *orto* litierii, prin reactia de litiere cu ⁿBuLi a 1,3-bis(dimetilaminometil)benzen in hexan, urmata de insertia seleniului la legatura C-Li (**Schema 10**). Selenolatul litiat a fost mai departe hidrolizat si oxidat cu ajutorul oxigenului din atmosfera. In vederea purificarii compusului **20** (**Schema 10**), s-a folosit un amestec de DCM si hexan. Prin difractie de raze X pe monocristal s-a obtinut structura moleculara a selenolului **20a**. Obtinerea compusului **20a** se poate explica prin formarea acestuia in urma reactiei de hidroliza a intermediarului selenolat cu eliminare de hidroxid de litiu si compusul **20a**.

Compusul **20a** a fost caracterizat si prin spectroscopie ⁷⁷Se RMN. In spectrul ⁷⁷Se RMN se poate observa un semnal scindat in jurul valorii de 1200 ppm (**Figura 48**). In spectrul ¹H RMN se poate observa un singlet la δ 2.1 ppm corespunzator hidrogenului atasat de seleniu.

Schema 10. Reactivi si conditii: *i*) ^{*n*}BuLi, hexan, r.t.; *ii*) Se, THF r.t.; *iii*) H₂O, O₂.

Figura 48. Spectrul ⁷⁷Se RMN (CDCl₃, 58 MHz) al compusului 20a.

Selenolul $[2,6-(Me_2NCH_2)_2C_6H_3]$ SeH (**20a**) cristalizeaza cu trei molecule de apa. Interactiuni N…Se[2.177(3) si 2.174(3) Å] puternice au fost observate in structura moleculara a compusului **20a**, prin amandoi atomii de N ai bratelor pendante. Atomii de azot sunt in pozitie *trans* unul fata de celalalt $[N-Se-N 162.01(15)^\circ]$, rezultand o geometrie de coordinare de tip T. Valori similare au fost observate in structura moleculara a bromurii de *C*,*N*,*N*'-[2,6-bis(dimetilaminometil)fenil]selenium(II).¹³⁹

Figura 49. Structura moleculara si numerotarea atomilor pentru compusul **20a**. Atomii de hidrogen au fost omisi pentru claritate. Reprezentare ORTEP de elipsoizi la probabilitate de 50%.

Spectrele ¹H, ¹³C si ⁷⁷Se RMN inregistrate pentru compusul **20** demonstreaza formarea compusului $[2,6-(Me_2NCH_2)_2C_6H_3]_2Se_2$. In spectrul ¹H RMN (**Figura 50**) se pot observa semnalele de tip singlet caracteristice gruparilor metil si metilen din bratele pendante [δ 2.99 ppm pentru (H₈) si δ 4.20 ppm pentru (H₇)]. Aspectul semnalelor sugereaza echivalenta celor doua grupari aromatice. In zona aromatica a spectrului ¹H RMN un semnal de tip multiplet nerezolvat la δ 7.28 ppm este atribuit protonilor aromatici.

Clorura de C,N,N'-[2,6-bis(dimetilaminometil)fenil]seleniu(II) (**21**) a fost obtinuta prin reactia de scindare a legaturii Se–Se in bis[2,6-bis(dimetilaminometil)fenil]diseleniu(II) (**20**) cu SO₂Cl₂, la temperatura camerei in tetraclorura de carbon. Produsul izolat a fost spalat cu o solutie de DCM si o solutie saturata de KOH. Clorura **21** a fost folosita mai departe in reactii de schimb de halogen in vederea obtinerii bromurii de organoseleniu(I) (**22**) si iodurii de organoseleniu(II) (**23**). Urmand **Schema 11** halogenurile **22** si **23** au fost obtinute cu randamente bune.

Schema 11. Reactivi si conditii: i) SO₂Cl₂, CCl₄, r.t.; ii) KBr, Acetona; iii) KI, Acetona.

Comportamentul in solutie al halogenurilor **21**, **22** si **23** a fost investigat prin spectroscopie ¹H, ¹³C, ⁷⁷Se si 2D RMN. In spectrul ¹H RMN se observa semnalele asteptate, comparand cu materia prima de diorganodiseleniu(I) **20**, semnalele apar putin deplasate (**Figura 52**).

Spectrele de ⁷⁷Se RMN deconfirma formarea halogenurilor asteptate. Un semnal de tip singlet se observa la δ 1202.2 ppm pentru compusul **21**, fiind puternic deplasat comparativ cu materia prima **20** (δ 395.6 ppm). Bromura **22** si iodura **23** se gasesc tot in jurul valorii de δ 1200 ppm, putin deplasate. Aceste valori sunt confirmate si de date din literatura pentru compusi similari.^{140,141} (**Figura 54**).

Figura 52. Detalii din spectrele suprapuse de ¹H RMN (CDCl₃, 300 MHz: (a) ligandul 20, (b) compusul 21, (c) compusul 22, si (d) compusul 23.

III.B.2. Concluzii

- Noi diorganoseleniu(II); [(3,5-Me₂C₃HN₂)CH₂CH₂]₂Se (14), [(3,5-Me₂C₃HN₂)CH₂CH₂][2- (Me₂NCH₂)C₆H₄]Se (17), si diorganodiseleniu(I); [2,6-(Me₂NCH₂)₂C₆H₃]₂Se₂ (20), au fost preparati si caracterizati structural in solutie prin spectroscopie RMN si spectrometrie de masa.
- [(3,5-Me₂C₃HN₂)CH₂CH₂]₂Se (14) si [(3,5-Me₂C₃HN₂)CH₂CH₂][2-(Me₂NCH₂)C₆H₄]Se (17) au fost obtinuti prin reactia dintre (3,5-Me₂C₃HN₂)CH₂CH₂Br si Na₂Se sau selenolatul de sodiu [2-(Me₂NCH₂)C₆H₄]SeNa. Ambii liganzi au fost izolati, purificati si caracterizati in solutie.
- Liganzii 14 si 17 au fost investigati in chimia coordinativa a aurului si a argintului. Structurile complecsilor au fost confirmate prin spectroscopie RMN si spectrometrie de masa.
- Diorganodiseleniu(I) [2,6-(Me₂NCH₂)₂C₆H₃]₂Se₂ (20) a fost obtinut prin metoda *orto* litierii. In etapa de hidroliza a selenolatului de litiu, selenolul [2,6-(Me₂NCH₂)₂C₆H₃]SeH (20a) a fost izolat si caracterizat prin difractie de raze X pe monocristal.
- Clorura de organoseleniu(I) [2,6-(Me₂NCH₂)₂C₆H₃]SeCl (21), a fost obtinuta prin scindarea legaturii Se-Se in 20 si a fost folosita in reactii de schimb de halogen in vederea obtinerii bromurii (22) si iodurii de organoselenium(I) (23).

III.C. Liganzi macrociclici care contin atomi donori de N/calcogen si aminotioeteri cu brat pendant

III.C.1. Rezultate si discutii

Incorporarea seleniului in liganzi macrociclici, alaturi de alti atomi donori (S, O si N) poate duce la o marire a cavitatii macrociclurilor si comportament interesant in chimia coordinativa. Pornind de la aceasta premisa un nou ligand macrociclic **25** a fost sintetizat si caracterizat structural in solutie si in stare solida. Macrociclul **25** a fost obtinut prin reactia de condensare dintre bis(*o*-formilfenil)seleniu si sulfura de bis(2-aminoetil) (**24**), in acetonitril (**Schema 13**).

Schema 13. Reactivi si conditii: i) MeCN; 24 h; r.t.

Compusul **25** a fost caracterizat in solutie prin spectroscopie ¹H, ¹³C, ⁷⁷Se si 2D RMN si in stare solida prin difractie de raze X pe monocristal.

In zona alifatica a spectrului ¹H RMN pentru compusul **25** (Figura 55) se observa doua semnale corespunzatoare puntii etilenice, iar in zona aromatica au fost observate trei semnale corespunzatoare protonilor H_{3-5} , H_6 si N=CH.

8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 f1 (norm)

Figura 55. Spectrul RMN de ¹H (CDCl₃, 300 MHz) al macrociclului 25.

Structura moleculara a compusului **25** confirma prezenta unei cavitati de 28 de atomi. Valoarea interactiunilor intramoleculare seleniu-azot [Se(1)…N(1) of 2.7619(8) Å] este mai mica decat suma razelor covalente si mai mare decat suma razelor van der Waals [*cf*. Σr_{cov} (Se,N) 1.87 Å, Σr_{vdW} (Se,N) 3.54 Å].¹⁵⁶ Distanta dintre atomii de Se(1)…Se(1') 8.893(3) Å esta mai mare decat suma razelor van der Waals

(ca. 4 Å). Geometria de coordinare la atomul de seleniu este de tip T, datorita interactiunilor Se···N. Numai unul dintre atomii de azot este coordinat intramolecular la seleniu, rezultand o structura hipervalenta de tipul *10-Se-3*. Unghiul C(10)-Se(1)-C(1) in **25** este de 98.9(3)° comparabil cu unghiul C–Se–C [97.54(13) °] in macrociclul analog ce contine sulf in loc de azot, descris in literatura.¹⁵⁸

Figura 59. Structura moleculara si numerotarea atomilor pentru compusul **25**. Atomii de hidrogen au fost omisi pentru claritate. Reprezentare ORTEP de elipsoizi la probabilitate de 50%.

Macrocicluri ce contin 12 atomi in cavitate au fost preparate urmand metode din literatura. In vederea obtinerii macrociclurilor (28) si (30) (Schema 14), N-*tert*-butoxicarbonil-bis(2-cloroetil)amina (26) a fost obtinuta prin adaugarea di-*tert*-butil dicarbonatului la o solutie de clorhidrat de bis(2-cloroetil)amina si NaOH. Reactiile de ciclizare in vederea obtinerii macrociclurilor au fost realizate prin metoda dilutiei mare, agitare mecanica si atmosfera inerta. Deprotejarea macrociclurilor 27 si 29 s-a realizat prin adaugarea unei solutii de acid trifluoracetic si DCM la temperatura camerei.¹⁵⁹

Schema 14. Reactivi si conditii: i) NaOH, H₂O, r.t. ii); iii) Cs₂CO₃, DMF, 55 °C; iv); v) CF₃COOH, DCM, 2h, r.t.

Structura moleculara a macrociclului **28** a fost obtinuta prin difractie de raze X pe monocristal. Geometria moleculei se poate descrie ca si coroana quadrangulara distorsionata. Atomii de sulf sunt orientati cu perechea de electroni neparticipanti spre exteriorul coroanei (exodentat). Legaturile carbonsulf se gasesc in intervalul de 1.797(2)° - 1.813(2)°, in concordanta cu distantele gasite in alti tioeteri. ¹⁶⁰ Conformatia puntii C–S este *gauche* si *anti* pentru legatura C–C. Atomii de sulf nu au tendinta de a ocupa colturile coroanei ca si in cazul macrociclului [12]aneNS₃. ¹⁶¹

Figura 60. Structura moleculara si numerotarea atomilor pentru compusul **29**. Atomii de hidrogen au fost omisi pentru claritate. Reprezentare ORTEP de elipsoizi la probabilitate de 50%.

In vederea obtinerii macrociclului **32**, piridina-2,6-dimetanol a fost reactionata cu SOCl₂, mai departe cu 2,6-bis(clorometil)piridina si apoi cu tiouree. Macrociclul protejat **31** a fost obtinut prin reactia de ciclizare si mai departe deprotejat cu ajutorul unei solutii de acid trifluoracetic in DCM. Macrociclul **32** a fost purificat prin cromatografie utilizant un amestec de DCM/MeOH.¹⁶⁵

Schema 15. Reactivi si conditii: *i*) SOCl₂, DCM, 2 h, 0 °C; *ii*) tiouree, EtOH, 2 h, reflux; *iii*) 26, Cs₂CO₃, DMF, 55 °C; *iv*) CF₃COOH, DCM, 2h, r.t.

Macrociclul **33** a fost obtinut printr-un lant de sase reactii¹⁶⁶ descrise in **Schemele 16** si**17**.

Schema 16. Reactivi si conditii: i) H₂O, NaOH, 0 °C; ii) H₂O, NaOH, 0 °C; iii) EtOH, Na.

Schema 17. Reactivi si conditii: *iv*) DMF, 72 h, 105 °C; *v*) H₂SO₄, 72 h, 105 °C; *vi*) toluene, H₂O, NaOH, 20 h, reflux.

Amino-tioeterii cu brat pendant **34**, **35** si **36** au fost sintetizati prin reactia dintre macrociclurile **28**, **30** si **32** cu bromura de brombenzil in MeCN in prezenta de K_2CO_3 (Schema 17).

Schema 18. Reactivi si conditii: i); ii); iii); MeCN, 72 - 96 h, K₂CO₃, reflux.

Compusul **37** a fost obtinut prin reactia dintre macrociclul **34** si bromura de brombenzil in raport molar 1:3, in toluen, in prezenta de KOH (**Schema 19**).

Schema 19. Reactivi si conditii: i) toluen, 72 h, KOH, reflux.

Compusii **34** – **37** au fost caracterizati structural in solutie, prin spectroscopie ¹H, ¹³C si 2D RMN si prin spectrometrie de masa. Ca si o remarca generala se poate conclude din spectrele ¹H si ¹³C RMN ale compusilor **34**, **35** si **36**, ca moleculele sunt simetrice, atomii din cavitate prezentand un singur set de semnale.

Structura moleculara a compusului 35 a fost determinata prin difractie de raze X pe monocristal.

Figura 65. Structura moleculara si numerotarea atomilor pentru compusul **35**. Atomii de hidrogen au fost omisi pentru claritate. Atomii au fost desenati cu 50% probabilitate elipsoidica.

In structura moleculara a compusului **35** au fost observate interactiuni intramoleculare $[Br(1)\cdots H(6) \ [2.8673(3) \ Å] \ [\Sigma r_{cov}(H,Br) \ 2.18 \ Å si \ \Sigma r_{vdW}(H,Br) = 3.15 \ Å].$ ⁹⁸ Geometria de coordinare a macrociclului in **35** se poate descrie ca si coroana quadrangulara distorsionata. Atomii de sulf sunt orientati cu perechea de electroni neparticipanta inspre exteriorul cavitatii (exodentat) si au tendinta sa ocupe colturile dreptunghiului.

Figura 66. Spectrul ¹H RMN (CDCl₃, 300 MHz) al compusului 36.

In spectrul RMN al compusului **36** se observa doua semnale corespunzatoare protonilor din cavitatea macrociclului la δ 2.57 si 3.86 ppm si un semnal de rezonanta de tip singlet corespunzator gruparii metilen din bratul pendant. In zona aromatica a spectrului se observa trei semnale de rezonanta de tip triplet si trei semnale de rezonanta de tip dublet (**Figura 66**). Atribuirea semnalelor a fost realizata cu ajutorul integralelor si a spectrelor 2D-RMN [COSY, HSQC, HMBC]

Compusul **37** prezinta in zona alifatica a spectrului ¹H RMN un sistem AB corespunzator hidrogenilor din cavitatea macrociclului si un semnal de tip singlet corespunzator gruparii metilen din bratul pendant, iar in zona aromatica toate semnalele asteptate au fost observate (**Figura 69**).

Figura 69. Spectrul ¹H RMN (CDCl₃, 300 MHz) al compusului **37**.

III.C.2. Concluzii

- O Un nou macrociclu ce contine seleniu a fost obtinut prin reactia de condensare a sulfurii de bis(2-aminoetil) si bis(o-formilfenil)seleniu in acetonitril. Compusul 25 a fost caracterizat prin spectroscopie RMN si difractie de raze X pe monocristal.
- Macrociclurile 28, 30, 32 si 33 au fost sintetizate urmand metode din literatura si au fost purificate prin cromatografie utilizand diferiti solventi ca si eluenti. Puritatea macrociclurilor a fost determinata prin spectrometrie de masa ESI si spectroscopie RMN. Structura moleculara a compusului 28 a fost determinata prin difractie de raze X pe monocristal.
- Patru noi amino-tioeteri cu brat pendant 34, 35, 36 si 37 au fost sintetizati utilizand metode speciale de sinteza. Compusii 34, 35 si 36 au fost preparati reactionand bromura de brombenzil cu macrociclurile 28, 30 sau 32 in raport molar 1:1 in prezenta de K₂CO₃. Compusul 37 a fost obtinut prin reactia dintre macrociclul 33 si bromura de brombenzil in raport molar 1:3 in prezenta de KOH. Compusii au fost purificati prin cromatografie si caracterizati structural in solutie si in stare solida. Structura moleculara a compusului 35 a fost determinata prin difractie de raze X pe monocristal.

Bibliografie

- ¹ J. J. Berzelius, *Fys. Kemi Mineralogi*, **1818**, *6*, 42.
- ² C. J. Löwig, *Pogg. Ann.*, **1836**, *37*, 552.
- ³ S. B. Combs, G. F. Combs, *The Role of Selenium in Nutrition*, New York: Academic Press Inc., **1986**.
- ⁴ (a) J. I. Musher, Angew. Chem. Int. Ed. Engl., **1969**, *8*, 54; (b) Kin-ya Akiba (Ed.), Chemistry of Hypervalent Compusuluis, Wiley-VCH, New York, **1999**.
- ⁵ C. W. Perkins, J. C. Martin, A. J. Arduengo III, W. Lau, A. Alegria, J. C. Koci, *J. Am. Chem. Soc.*, **1980**, *102*, 7758.
- ⁶ N. Ramasubbu, R. Parthasarathy, *Phosphorus, Sulfur, Silicon Relat. Elem.*, **1987**, *31*, 221.
- ⁷ M. P. Coles, *Curr. Org. Chem.*, **2006**, *10*, 1993.
- ⁸ M. Vinceti, E. T. Wei, C. Malagoli, M. Bergomi, G. Vivoli, *Rev. Environ. Health*, **2001**, *16*, 233.
- ⁹ K. M. Brown, J. R. Arthur, *Pub. Health Nutr.*, **2001**, *4*(*2B*), 593.
- ¹⁰Y. Tabuchi, N. Sugiyama, T. Horiuchi, M. Furusawa, K. Furuhama, *Eur. J. Pharmacol.*, **1995**, 272, 195.
- ¹¹ C. A. Pritsos, M. Sokoloff, D. L. Gustafson, *Biochem. Pharmacol.*, **1992**, 44, 839.
- ¹² B. K. Sarma, G. Mugesh, J. Am. Chem. Soc., 2005, 127, 11477.
- ¹³ K. P. Bhabak, G. Mugesh, Acc. Chem. Res., **2010**, 43, 1408.
- ¹⁴ A. J. Mukherjee, S. S. Zade, H. B. Singh, R. B. Sunoj, *Chem. Rev.*, **2010**, *110*, 4357.
- ¹⁵ R. Kaur, H. B. Singh, R. P. Yatelb, J. Chem. Soc., Dalton Trans., **1996**, 2719.
- ¹⁶ M. Iwaoka, S. Tomoda, J. Am. Chem. Soc., **1996**, 118, 8077.
- ¹⁷ K. P. Bhabak, G. Mugesh, *Chem. Asian J.*, **2009**, *4*, 974.
- ¹⁸ G. Fragale, M. Neuburger, T. Wirth, *Chem. Commun.*, **1998**, 1867.
- ¹⁹ T. Wirth, G. Fragale, *Chem. Eur. J.*, **1997**, *11*, 1894.
- ²⁰Y. Nishibayashi, J. D. Singh, S. Uemura, *Tetrahedron Lett.*, **1994**, *35*, 3115.
- ²¹Y. Nishibayashi, K. Segawa, J. D. Singh, S. Fukuzawa, K. Ohe, S. Uemura, *Organometallics*, **1996**, *15*, 370.
- ²² S. S. Zade, H. B. Singh, R. J. Butcher, *Angew. Chem. Int. Ed. Engl.*, **2004**, *43*, 4513.
- ²³ D. L. Comins, J. D. Brown, *J. Org. Chem.*, **1989**, *54*, 3730.
- ²⁴ K. C. Nicolaou, N. A. Petasis, *Selenium in Natural Product Synthesis*, CIS, Philadelphia, PA, **1984**.
- ²⁵ T. G. Back, *Phosphorus, Sulfur, Silicon Relat. Elem.*, **1992**, 67, 223.
- ²⁶ M. Tiecco, L. Testaferri, M. Tingol, L. Bagnoli, *J. Chem. Soc., Chem. Commun.*, **1995**, 235.
- ²⁷ M. R. Bryce, A. Chesney, *J. Chem. Soc., Chem. Commun.*, **1995**, 195.
- ²⁸ H. Sies, *Free Rad. Biol. Med.*, **1993**, *14*, 313.
- ²⁹ N. Reich, C. P. Jasperse, *J. Am. Chem.Soc.*, **1987**, *109*, 5549.
- ³⁰ B. Halliwell, J. M. C. Gutteridge, *Free Radicals in Biology and Medicine*, 2nd ed., Clarendon Press, Oxford, **1989**, ch. 3.
- ³¹ M. Iwaoka, S. Tomoda, J. Chem. Soc., Chem. Commun., **1992**, 1165.
- ³² W. C. Still, I. Galinker, *Tetrahedron*, **1981**, *37*, 3981.
- ³³ L. Flohe, G. Loschen, W. A. Gunzler, E. *Z*. Eichelle, *Physiol. Chem.*, **1972**, *353*, 987.
- ³⁴ A. L. Tappel, *Curr. Top. Cell. Regul.*, **1984**, *24*, 87.
- ³⁵ L. Flohe, *Curr.Top. Cell. Regul.*, **1985**, *27*, 473.
- ³⁶ G. Mugesh, A. Panda, H. B. Singh, N. S. Punekar, R. J. Butcher, *J. Am. Chem. Soc.*, **2001**, *123*, 8839.
- ³⁷ M. Iwaoka, S. Tomoda, J. Am. Chem. Soc., **1994**, 116, 2557.
- ³⁸ B. K. Sarma, G. Mugesh, *Chem. Eur. J.*, **2008**, *14*, 10603.
- ³⁹ S. Fukuzawa, K. Takahashi, H. Kato, H. Yamazaki, *J. Org. Chem.*, **1997**, *62*, 7711.
- ⁴⁰ Y. Nishibayashi, S. K. Srivastava, H. Takada, S. Fukuzawa, S. Uemura, *J. Chem. Soc., Chem. Commun.*, **1995**, 2321.
- ⁴¹ K. Fujita, K. Murata, *Thetrahedron*, **1997**, *53*, 2029.

⁴² M. Tiecco, L. Testaferri, C. Santi, C. Tomassini, F. Marini, L. Bagnoli, A. Temperini, *Angew. Chem. Int. Ed. Engl.*, **2003**, *42*, 3131.

⁴³ C. Paulmier, *Selenium Reagents and Intermediates in Organic Synthesis,* Pergamon, Oxford, **1986**.

- ⁴⁴ G. Mugesh, A. Panda, H. B. Singh, N. S. Punekar. R. J. Butcher, *Chem. Commun.*, **1998**, 2227.
- ⁴⁵ T. G. Back, B. P. Dyck, J. Am. Chem. Soc., **1997**, 119, 2079.
- ⁴⁶ O. Crespo, M. C. Gimeno, A. Laguna, M. Kulcsar, C. Silvestru, *Inorg. Chem.*, **2009**, *48*, 4134.
- ⁴⁷ P. Pyykko, Angew. Chem. Int. Ed. Engl., **2004**, 43, 4412.
- ⁴⁸ H. Schmidbaur, *Gold Bull.*, **1990**, *23*, 11.
- ⁴⁹ H. Schmidbaur, *Gold Bull.*, **2000**, *33*, 3.

⁵⁰ A. Laguna (Ed.), *Modern Supramolecular Gold Chemistry - Gold-Metal Interactions and Applications*, Wiley-VCH, Weinheim, **2008**.

- ⁵¹ M. C. Gimeno, in *Handbook of Chalcogen Chemistry: New Perspectives in Sulfur, Selenium and Tellurium*, F. A. Devillanova (Ed.), RSC Publishing, Cambridge, **2007**.
- ⁵² R. V. Holm, E. I. Solomon, *Chem. Rev.*, **1996**, *96*, 2239.
- ⁵³ M. C. Daniel, D. Astruc, *Chem. Rev.*, **2004**, *104*, 293.
- ⁵⁴ M. Sawamura, Y. Ito, *Chem. Rev.*, **1992**, *92*, 867.
- ⁵⁵ T. Hayashi, N. Kawamura, Y. Ito, J. Am. Chem. Soc., **1987**, 109, 7876.
- ⁵⁶ T. Hayashi, N. Kawamura, Y. Ito, *Tetrahedron Lett.*, **1988**, *29*, 5969.
- ⁵⁷ R. Kaur, H. B. Singh, R. P. Patel, S. K. Kulshreshtha, J. Chem. Soc., Dalton Trans., **1996**, 461.
- ⁵⁸ K. Fujita, M. Kanakubo, H. Ushijima, A. Oishi, Y. Ikeda, Y. Taguchi, SYNLETT., **1998**, 987.
- ⁵⁹T. C. Bourland, R. G. Carter, A. F. T. Yokochi, *Org. Biomol. Chem.*, **2004**, *2*, 1315.
- ⁶⁰ B. Mishra, K. I. Priyadarsini, H. Mohan, G. Mugesh, *Bioorg. Med. Chem. Lett.*, **2006**, *16*, 5334.
- ⁶¹ T. C. Chang, M. L. Huang, W. L. Hsu, J. M. Hwang, L. Y. Hsu, *Chem. Pharm. Bull.*, **2003**, *51*, 1413.
- ⁶² A. Panda, G. Mugesh, H. B. Singh, R. J. Butcher, *Organometallics*, **1999**, *18*, 1986.
- ⁶³ A. Panda, S. C. Menon, H. B. Singh, R. J. Butcher, J. Organomet. Chem., **2001**, 623, 87.
- ⁶⁴ H. B. Singh, N. Sudha, R. T. Butcher, *Organometallics*, **2003**, *31*, 1431.
- ⁶⁵ U. Patel, H. B. Singh, R. J. Butcher, *Eur. J. Inorg. Chem.*, **2006**, 5089.
- ⁶⁶ F. A. Davis, O. D. Stringer, J. P. Jr. McCauley, *Tetrahedron*, **1985**, *41*, 4747.
- ⁶⁷ M. C. Pirrung, N. L. Tumey, *Comb. Chem.*, **2000**, *2*, 675.
- ⁶⁸ Q. Zhou, A. Pfaltz, *Tetrahedron*, **1994**, *50*, 4467.
- ⁶⁹ I. D. Sadekov, A. A. Maksimenko, V. I. Minkin, *Khim. Geterotsikl Soed.*, **1981**, 122.
- ⁷⁰ J. L. Piette, M. Renson, *Bull. Soc. Chim. Belges.*, **1970**, *79*, 367.
- ⁷¹ S. Panda, H. B. Singh, R. J. Butcher, *Chem. Commun.*, **2004**, 322.
- ⁷² E. J. Corey, C. J. Helal, Angew. Chem., Int. Ed. Engl., **1998**, 37, 1986.
- ⁷³ T. Ohkuma, E. Katayama, T. Yokozawa, T. Ikariya, R. Noyori, *J. Am. Chem. Soc.*, **1998**, *120*, 13529.
- ⁷⁴ A. H. Hoveyda, D. A. Evans, G. C. Fu, *Chem. Rev.*, **1993**, *93*, 1307.
- ⁷⁵ H. J. Reich, K. E. Yelm, *J. Org. Chem.*, **1991**, *56*, 5672.
- ⁷⁶ Y. Nishibayashi, J. D. Singh, S. Fukuzawa, S. Uemura, *J. Org. Chem.*, **1995**, *53*, 12115.
- ⁷⁷ Y. Nishibayashi, J. D. Singh, S. Fukuzawa, S. Uemura, *J. Org. Chem.*, **1995**, *60*, 4114.
- ⁷⁸ G. Mugesh, A. Panda, H. B. Singh, R. J. Butcher, *Chem. Eur. J.*, **1995**, *5*, 1411.
- ⁷⁹ I. Roussyn, K. Briviba, H. Masumoto, *H. Sies, Arch. Biochem. Biophys.*, **1996**, 330, 216.
- ⁸⁰ G. G. A. Balavoine, Y. V. Geletii, *Nitric Oxide*, **1999**, *3*, 40.
- ⁸¹ F. Bailly, V. Zoete, J. Vamecq, J. P. Catteau, J. L. Berniere, FEBS Lett., 2000, 486, 19.
- ⁸² E. Turner, L. J. Hager, B. M. Shapiro, *Science*, **1988**, *242*, 939.
- ⁸³ S. Panda, H. B. Singh, R. J. Butcher, *Inorg. Chem.*, **2004**, *43*, 8532.
- ⁸⁴ C. A. Tolman, *Chem. Rev.*, **1977**, *77*, 313.
- ⁸⁵ P. W. Codding, K. A. Kerr, *Acta Cryst. B*, **1978**, *34*, 3785.
- ⁸⁶ K. K. Chatterjeea, J. R. Durigb, *J. Mol. Struct.*, **1994**, 327, 237.

⁸⁷ G. Grossmann, M. J. Potrzebowski, U. Fleischer, K. Krüger, O. L. Malkina, W. Ciesielski, *Solid State Nucl. Magn. Res.*, **1998**, *13*, 71.

⁸⁸ R. A. Zingaro, R. M. Hedges, J. Phys. Chem., **1961**, 65, 1132.

⁸⁹ M. D. Rudd, S. V. Lindeman, S. Husebye, Acta Chem. Scand., **1997**, 51, 689.

⁹⁰ C. Daniliuc, C. Druckenbrodt, C. G. Hrib, F. Ruthe, A. Blaschette, P. G. Jones, W.-W. du Mont, *Chem. Commun.*, **2007**, 2060.

⁹¹ N. Burford, B. W. Royan, R. E. v. H. Spence, T. S. Cameron, A. Linden, R. D. Rogers, *J. Chem. Soc., Dalton Trans.*, **1990**, 1521 and refs. therein.

⁹² A. Rotar, A. Covaci, A. Pop, A. Silvestru, *Rev. Roum. Chim.*, **2010**, *55*, 823.

⁹³ F. Montilla, A. Galindo, V. Rosa, T. Aviles, *Dalton. Trans.*, **2004**, 2588.

⁹⁴ A. Pop, A. Silvestru, M. C. Gimeno, A. Laguna, M. Kulcsar, M. Arca, V. Lippolis, A. Pintus, *Dalton Trans.*, **2011**, *40*, 12479.

⁹⁵ A. Chandrasekaran, N. V. Timosheva, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **2002**, 41, 5235

⁹⁶ T. B. Rauchfuss, F. T. Patino, D. M. Roundhill, *Inorg. Chem.*, **1975**, *14*, 652.

⁹⁷ L. Pauling, *The Nature of the Chemical Bond*, 3rd edn., Cornell University Press, Ithaca, NY, **1960**, p. 255.

⁹⁸ J. Emsley, *Die Elemente*, Walter de Gruyter, Berlin, **1994**.

⁹⁹ M. Bardaj, O. Crespo, A. Laguna, A. K. Fischer, *Inorg. Chim. Acta*, **2000**, *304*, 7.

¹⁰⁰ S. Canales, O. Crespo, C. M. Gimeno, P. G. Jones, A. Laguna, A. Silvestru, C. Silvestru, *Inorg. Chim. Acta.*, **2003**, *347*, 16.

¹⁰¹ S. Canales, O. Crespo, M. C. Gimeno, P. G. Jones, A. Laguna, Z. Naturforsch., B: Chem. Sci., 2007, 62, 407.

¹⁰² P. F. Barron, J. C. Dyason, P. C. Healy, L. M. Engelhardt, B. W. Skelton, A. H. White, *J. Chem. Soc., Dalton Trans.*, **1986**, 1965.

¹⁰³ A. Caballero, A. Guerrero, F. A. Jalon, B. R. Manzano, R. M. Claramunt, M. D. Santa Maria, C. Escolastico, J. Elguero, *Inorg. Chim. Acta*, **2003**, *347*, 168.

¹⁰⁴ M. Barrow, H. B. Burgi, M. Camalli, F. Caruso, E. Fischer, L. M. Venanzi, L. Zambonelli, *Inorg. Chem.*, **1983**, *22*, 2356.

¹⁰⁵ A. Ilie, C. I. Rat, S. Scheutzow, C. Kiske, K. Lux, T. M. Klapotke, C. Silvestru, K. Karaghiosoff, *Inorg. Chem.*, **2011**, *50*, 2675.

¹⁰⁶ S. J. Angus-Dunne, L. E. P. Lee Chin, R. C. Burns, G. A. Lawrance, *Transition Met. Chem.*, **2006**, *31*, 268.

¹⁰⁷ S. Canales, O. Crespo, M. C. Gimeno, P. G. Jones, A. Laguna, *J. Organomet. Chem.*, **2000**, *613*, 50.

¹⁰⁸ M. Kullberg, J. Stawinski, J. Organomet. Chem., **2005**, 690, 2571.

¹⁰⁹ S. Trofimenko, A. L. Rheingold, C. D. Incarvito, *Angew. Chem. Int. Ed. Engl.*, **2003**, *42*, 3506.

¹¹⁰ M. Bollmark, J. Stawinski, *Chem. Commun.*, **2001**, *8*, 771.

¹¹¹ A. Chandrasekaran, N. V. Timosheva, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **2002**, 41, 5235.

¹¹² M. A. Alonso, J. A. Casares, P. Espinet, K. Soulantica, A. G. Orpen, H. Phetmung, *Inorg. Chem.*, **2003**, *42*, 3856.

¹¹³ R. Uson, A. Laguna, M. Laguna, *Inorg. Synth.*, **1989**, *26*, 85.

¹¹⁴ E. J. Fernandez, P. G. Jones, A. Laguna, J. M. Lopez-de-Luzuriaga, M. Monge, M. E. Olmos, R. C. Puelles, *Chem. Commun.*, **1976**, 353.

¹¹⁵ M. Bardaj, O. Crespo, A. Laguna, A. K. Fischer, *Inorg. Chim. Acta*, **2000**, *304*, 7.

¹¹⁶ F. H. Jardine, A. G. Vohra, F. J. Young, *J. Inorg. Nucl. Chem.*, **1971**, *33*, 2941.

¹¹⁷ P. N. Jayaram, G. Roy, G. Mugesh, J. Chem. Sci., **2008**, 120, 143.

¹¹⁸ CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.27p8, **2005**.

¹¹⁹ G. M. Sheldrick, SADABS: Empirical absorption correction program, Göttingen University, **1996**.

¹²⁰ G. M. Sheldrick, SHELX-97, Universität Göttingen, Germany, **1997**.

¹²¹ DIAMOND – Visual Crystal Structure Information System, CRYSTAL IMPACT: Bonn, Germany, **2001**.

¹²² C. Adamo, V. Barone, J. Chem. Phys., **1998**, 108, 664.

¹²³ Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.

- ¹²⁴ A. Schafer, H. Horn, R. Ahlrichs, J. Chem. Phys., **1992**, 97, 2571.
- ¹²⁵ L. E. Roy, P. J. Hay, R. L. Martin, *J. Chem. Theory Comput.*, **2008**, *4*, 1029.
- ¹²⁶ J. Tomasi, B. Mennucci, C. Cappelli, S. Corni, *Chem. Rev.*, **2005**, *105*, 2999.
- ¹²⁷ A. E. Reed, L. A. Curtiss, F. Weinhold, *Chem. Rev.*, **1988**, *88*, 899 and references therein.
- ¹²⁸ NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold.
- ¹²⁹ G. Schaftenaar, J. H. Noordik, J. Comput.-Aided Mol. Design, **2000**, 14, 123.

¹³⁰ O. Crespo, E. J. Fernandez, P. G. Jones, A. Laguna, J. M. Lopez-de-Luzuriaga, M. Monge, M. E. Olmos, J. Perez, *Dalton Trans.*, **2003**, 1076.

- ¹³¹ S. Burling, L. D. Field, B. A. Messerle, K. Q. Vuong, P. Turner, *Dalton Trans.*, **2003**, 4181.
- ¹³² M. Iwaoka, S. Tomoda, J. Am. Chem. Soc., **1996**, 118, 8077.
- ¹³³ W. Gombler, Z. Naturforsch., **1981**, 34B, 1561.
- ¹³⁴ G. A. Lawrance, *Chem. Rev.*, **1986**, *86*, 17.

¹³⁵ W. Henderson, J. S. McIndoe, in *Mass Spectrometry of Inorganic, Coordination and Organometallic Compusuluis*, Wiley, Chichester, **2005**, pp 50.

- ¹³⁶ K. B. Sharpless, R. F. Lauer, J. Am. Chem. Soc., **1973**, 95, 2697.
- ¹³⁷ H. Poleschner, K. Seppelt, *Chem. Eur. J.*, **2004**, *10*, 6565.
- ¹³⁸ R. Kaur, H. B. Singh, R. P. Yatelb, *J. Chem. Soc.*, *Dalton Trans.*, **1996**, 2719.
- ¹³⁹ R. A. Varga, M. Kulcsar, A. Silvestru, *Acta Cryst.*, **2010**, *E66*, o771.
- ¹⁴⁰ R. Kaur, H. B. Singh, R. P. Patel, *J. Chem. Soc., Dalton Trans.*, **1996**, 2719.
- ¹⁴¹ M. T. Klapoetke, B. Krumm, K. Polborn, J. Am. Chem. Soc., **2004**, 126, 710.
- ¹⁴² R. Uson, A. Laguna, M. Laguna, *Inorg. Synth.*, **1989**, *26*, 85.
- ¹⁴³ Y. Yamamoto, X. Chen, S. Kojima, K. Ohdoi, M. Kitano, Y. Doi, K.-y Akiba, *J. Am. Chem. Soc.*, **1995**, *117*, 3922.
- ¹⁴⁴ D. L. Field, B. A. Messerle, K. Q. Vuong, P. Turner, T. Failes, *Organometallics*, **2007**, *26*, 2058.
- ¹⁴⁵ A. J. Blake, M. Schroder, *Adv. Inorg. Chem.*, **1990**, *35*, 1.
- ¹⁴⁶ M. J. Hesford, W. Levason, M. L. Matthews, G. Reid, *Dalton Trans.*, **2003**, 2852.
- ¹⁴⁷ M. J. Hesford, W. Levason, M. L. Matthews, S. D. Orchard, G. Reid, *Dalton Trans.*, **2003**, 2434.
- ¹⁴⁸ W. Levason, S. D. Orchard, G. Reid, *Chem. Commun.*, **2001**, 427.
- ¹⁴⁹ A. McAuley., S. Subramanian, *Inorg. Chem.*, **1990**, *29*, 2830.

¹⁵⁰ V. A. Grillo, L. R. Gahan, G. R. Hanson, R. Stranger, T. W. Hambley, K. S. Murray, B. Moubaraki, J. D. Cashion, *J. Chem. Soc., Dalton Trans.*, **1998**, 2341.

¹⁵¹ R. J. Batchelor, F. W. B. Einstein, I. D. Gay, J. H. Gu, B. D. Johnston, B. M. Pinto, *J. Am. Chem. Soc.*, **1989**, *111*, 6582.

- ¹⁵² I. Cordova-Reyes, E. VandenHoven, A. Mohammed, B. M. Pinto, *Can. J. Chem.*, **1995**, *73*, 113.
- ¹⁵³ W. Levason, S. D. Orchard, G. Reid, *Organometallics*, **1999**, *18*, 1275.
- ¹⁵⁴ J. H. Koek, S. W. Russell, L. van der Wolf, R. Hage, J. B. Warnaar, A. L. Spek, J. Kerschner, L. DelPizzo, *J. Chem. Soc., Dalton Trans.*, **1996**, 353.
- ¹⁵⁵ S. Panda, S. S. Zade, A. Panda, H. B. Singh, R. J. Butcher, *J. Organomet. Chem.*, **2006**, *691*, 2793.

¹⁵⁶ J. E. Huheey, E. A. Keitera, R.L. Keiter, *Inorganic Chemistry*, 4th edn., Harper Collins, New York, **1993**, pp 292.

¹⁵⁷ W. Nakanishi, S. Hayashi, S. Toyota, *J. Org. Chem.*, **1998**, *63*, 8790.

¹⁵⁸ A. Panda, S. C. Menon, H. B. Singh, R. J. Butcher, *J. Organomet. Chem.*, **2001**, *623*, 87.

¹⁵⁹ C. Caltagirone, A. Bencini, F. Demartin, F. A. Devillanova, A. Garau, F. Isaia, V. Lippolis, P. Mariani, U. Papke, L. Tei, G. Verani, *Dalton. Trans.*, **2003**, 901.

¹⁶⁰ J. C. Huffman, M. L. Campbell, N. K. Dalley, S. B. Larson, *Acta Crystallogr.*, **1981**, *537*, 1739.

¹⁶¹ M. W. Glenny, L. G. A. van de Water, J. M. Vere, A. J. Blake, C. Wilson, W. L. Driessen, J. Reedijk, M. Schroder, *Polyhedron*, **2006**, *25*, 599.

¹⁶² R. E. Wolf Jr., J. A. R. Hartman, J. M. E. Storey, B. M. Foxman, S. R. Cooper, *J. Am. Chem. Soc.*, **1987**, *109*, 4328.

¹⁶³ N. K. Dalley, J. S. Smith, S. B. Larson, K. L Matheson, J. J. Christensen, R. M Izatt, *J. Chem. Soc., Chem. Commun.*, **1975**, 84.

¹⁶⁴ N. K. Dalley, J. S. Smith, S. B. Larson, K. L. Matheson, J. J. Christensen, R. M. Izatt, *Heterocycl. Chem.*, **1981**, 18, 463.

¹⁶⁵ A. J. Blake, A. Bencini, C. Caltagirone, G. De Filippo, L. S. Dolci, A. Garau, F. Isaia, V. Lippolis, P. Mariani, L. Prodi,
 M. Montalti, N. Zaccheronid, C. Wilsona, *Dalton. Trans.*, **2004**, 2771.

¹⁶⁶ C. Flassbeck, K. Wieghardt, Z. Anorg. Allg. Chem., **1992**, 608, 60.

¹⁶⁷ H. Stetter, K. H. Mayer, *Chem. Ber.*, **1961**, *94*, 1410.

¹⁶⁸ J. P. Collman, P. W. Schneider, *Inorg. Chem.*, **1966**, *5*, 1380.