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INTRODUCTION 

 

PhD thesis addresses a current topic that is development of modern technologies for 

obtaining the second generation biofuel by superior capitalization of lignocellulosic biomass.  

PhD thesis presents two technologies for bioethanol obtaining from wood waste by 

use of two different types of hydrolysis: acid hydrolysis and enzymatic hydrolysis. The 

research, involved the study of various process parameters, the development of analysis 

methods for the fractions resulted in every stage, the optimization of the overall process for 

the determination of optimum parameters in order to improve each stage of the conversion to 

bioethanol. 

The technologies for conversion of wood waste to bioethanol consist in three stages: 

pretreatment, hydrolysis and fermentation. 

The thesis presents a modern method for pretreatment of wood waste: pretreatment 

with hot water (autohydrolysis). This pretreatment method uses only water at high 

temperature and pressure, without any chemicals for the separation of the wood waste in 

components. The chemical and enzymatic hydrolysis of cellulose were studied and compared, 

both in presence and absence of lignin in order to evaluate its influence on the process. 

The thesis deals mainly with the development and validation of new analytical 

methods for analysis and quantification of carbohydrates and secondary compounds resulted 

in every stage of the wood treatment. 

The thesis consists in three parts: the theoretical (Chapters 1-2) presents a literature 

review of the existing methods for obtaining bioethanol from different types of biomass, and a 

brief overview of pretreatment methods, hydrolysis and fermentation; the second part 

(Chapter 3-7) presents the original contribution of the thesis and the third part (Chapter 8) 

presents the experimental methods.   
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ORIGINAL CONTRIBUTIONS 

 

CHAPTER 3 PRETREATMENT OF WOOD WASTE  

 

3.1 The principle of water pretreatment technique 
 

In accordance with the objectives of the thesis, the wood pretreatment by 

autohydrolysis was studied for separation of silver fir wood components, specific wood 

species for our region. Autohydrolysis was studied at laboratory level using a pressure reactor 

tested at different temperatures and residence time. For these experiments, silver fir wood was 

used as raw material.  

In the last period of time, an increasing focus on green chemistry methods was 

noticed. The pretreatment method used in this study is a green method because the extraction 

of hemicelluloses was carried out with hot water without the use of chemical reagents. The 

carbohydrates from hemicelluloses are dissolved as soluble oligosaccharides and can be 

separated from insoluble fraction of cellulose and lignin. 

 

3.2 Pretreatment of wood waste  
 

The wood waste pretreatment stages are presented in Figure 3.4. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4 Wood waste pretreatment stages 
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The pretreatment of wood was carried out in a high pressure stainless steel reactor 

(Parr Instruments, Illinois, USA). 

 

3.3 Characterization of cellulosic components resulted after pretreatment with water 

 

After autohydrolysis pretreatment a solid fraction (cellulose and lignin) and a liquid 

fraction (monosaccharides, oligosaccharides, and degradation compounds) were formed. The 

composition of each phase was determined. New methods for carbohydrates, furfural and 

HMF analysis were developed and validated. The unhydrolysed oligosaccharides in liquid 

fraction were quantified as monosaccharides after hydrolysis.  

3.3.1 Composition of raw material  

The chemical composition of silver fir wood is presented in Table 3.2. 

 

Table 3.2 Chemical composition of silver fir wood (expressed as mean values of triplicate 

analysis  standard deviation) comparatively with the composition of other wood species 

reported in literature. 

 
Wood species Holocellulose Cellulose Hemicellulose Lignin Extractible  Ash 

Present study 69.9 46.0  0.7 23.9  0.6 28.4  0.3 1.3  0.1 0.3  0.1 

Douglas-fir 69.0 42.0 27.0 28.3 2.5 0.2 

Eucalyptus globulus 66.2 44.4 21.8 27.8 2.4 0.2 

Pinus pinaster 58.1 39.2 18.9 28.5 2.8 0.2 

 Albies balsamea 69.0 42.0 27.00 29.0 1.8 0.2 

 Picea abies 66.8 41.7 25.1 28.3 1.6 0.2 

 Tsuga canadensis 64.0 41.0 23.0 33.0 2.8 0.2 

Quercus ilex 71.2 43.0 28.3 16.3 n.d n.d 

Brutia pine 75.5 47.0 28.5 26.1 2.8 0.4 

Olive wood 65.8 41.5 24.3 15.6 17.0 1.4 

 

The analysis of the main constituents in the raw material showed that the silver fir 

wood samples contain about 70% carbohydrates (table 3.2). The content of moisture was 10% 
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and the content of total solids was 90%. The high carbohydrate content suggests that fir wood 

is a potential feedstock for bioethanol production. 

 
3.3.3 Composition of solid fraction  

After each experiment, the cellulose, lignin and hemicellulose contents in the solid 

fraction were determined (table 3.4). 

 

Table 3.4 Solid yield and composition of solid fraction resulting after every stage, at different 

temperatures and residence time 

Autohydrolysis 
condition 

180C 190C 200C 
5 10 15 5 10 15 5 10 15 

Solid yield 
(g/100 g raw 
material, on 
dry basis) 

81.5 79.5 76.5 75.3 74.6 73.6 73.1 72.2 71.9 

Solids 
compositions 

(g/100 g 
autohydrolysed 
wood, on dry 

basis) 
  

Cellulose  
Hemicellulose  

       Lignin 

 
 

93.4 
 
 
 

48.6 
6.2 

38.6

 
 

96.9 
 
 
 

56.6 
4.7 

35.6 

 
 

89.4 
 
 
 

50.6 
4.2 

36.6

 
 

92.9 
 
 
 

52.3 
3.8 

36.8

 
 

98.9 
 
 
 

57.8 
3.3 

37.8

 
 

96.9 
 
 
 

55.9 
2.5 

38.5

 
 

95.6 
 
 
 

56.3 
1.1 

38.2 

 
 

98.2 
 
 
 

59.5 
0.0 

38.7 

 
 

94.4 
 
 
 

54.9 
0.0 

39.5

 

The results show that solid yield (71.9–81.5%) of pretreated wood decreases with the 

increase of pretreatment temperature, due to the hydrolysis of hemicellulose in the liquid 

fraction. 

 
3.3.4 Composition of liquid fraction  

 

Hemicellulosic fraction was analysed for content of monosugars, furfural, 5-

hydroxymethylfurfural, oligomers sugar and acetic acid.  

For the analysis of carbohydrates, furfural and HMF new chromatographic analytical 

methods were developed and validated. The instrumentation and validation report of each 

analytical method (limit of detection, limit of quantification, accuracy, robustness, linearity), 

were presented. 
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3.3.4.1 Identification and quantification of carbohydrates from hemicellulose by 

GC-MS 

 

The aim of this study was development and validation of a new method for 

carbohydrates analyses obtained from woody biomass, as a step in the bioethanol production. 

The carbohydrates in wood were quantified by gas chromatography (GC) after derivatization. 

The samples were prepared by liquid-liquid extraction, derivatized by oximation and 

silylation and analysed by gas chromatography-mass spectrometry (GC-MS). 

Monosaccharide derivatives were identified by their GC retention time and MS 

fragmentation. N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) was used as derivatization 

reagent to prepare trimethylsilyl derivatives of hydrolysis products of hemicellulose after 

pretreatment. The sugar standards analysed in this study and their characteristics are given in 

Table 3.6. 

 

Tabel 3.6 Characteristics of sugar standards analysed by GC-MS as oxime-TMS derivatives 

Compounds 
Molecular 
formula 

Molecular 
mass 

Molecular 
mass –
oxime-
TMS 

Retention time 
(min α-, β-) 

m/z 

D-xylose C5H10O5 150 569 32.710, 32.985 73,103, 217
D-arabinose C5H10O5 150 569 33.002, 33.177 73,103, 217
D-galactose C6H12O6 180 627 43.853, 45.050 73,319, 205
D-mannose C6H12O6 180 627 44.026, 44.955 73,319, 205
D-glucose C6H12O6 180 627 44.363, 45.010 73, 319,205

 
 

Hexoses (glucose, galactose and mannose) contain five hydroxyl-groups, thus six-

TMS derivatives are formed. Pentoses (arabinose and xylose) contain four hydroxyl-groups 

thus five-TMS derivatives are formed. Each sugar standard was analysed individually by 

oximation and silylation in order to determine the retention time of each isomers (figure 3.13).  
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(a)  

(b) 

 
(c) 

 
(d) 

Figure 3.13 GC-MS data from monosaccharide standards: (a) GC-MS chromatogram for a 
derivatizated solution of D-glucose; (b) mass spectrum of α-D-glucose-oxime-TMS; (c) GC-MS 

chromatogram for a derivatizated solution of D-xylose; (d) mass spectrum of α-D-xylose-oxime-TMS 
 

The GC chromatogram of the carbohydrates obtained after oximation and 

derivatization of the sugar mixture with the internal standard is shown in figure 3.14. 

 

Figure 3.14 The chromatogram of TMS derivatives of the reference compounds (150 µg ml-1) 
determined by GC 

 

Due to very close retention times, the peaks of some compounds overlap and some 

isomers cannot be separated due to the epimerisation process. The peaks of α-arabinose and β-

xylose cannot be separated and also β-glucose, β-mannose and β-galactose have the same 

retention time. 
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Analysis of carbohydrates from wood  

The chromatogram of carbohydrates from hemicellulose obtained from wood by 

autohydrolysis pretreatment method is presented in figure 3.15. The carbohydrates were 

identified by coincidence of their retention time and mass spectra with those of pure 

standards. 

 

Figure 3.15 The chromatogram of TMS derivatives of the hemicellulose obtained from wood (190°C, 
10 min) 

 
Figure 3.17 (a) and (b) presents the hexose and pentose content in function of 

pretreatment conditions.  
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Figure 3.17 Composition of hexoses and pentoses in filtrates in different pretreatment conditions  

 
Figure 3.19 presents the contents of sugars from the hemicellulosic fraction and sugars 

recovery depending on the pretreatment conditions.  Hemicellulose is recovered as sugars 

(monomers and oligomers) are 34–47%. 
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Figure 3.19 Content of sugar monomers and oligomers from the hemicellulosic fraction  
 

3.3.4.2 Analysis of 5-hydroxymethylfurfural by GC-MS  

 

The aim of this study was to develop and validate a new gas chromatography – mass 

spectrometry (GC-MS) method used for the analysis of 5-hydroxymethylfurfural (HMF) in 

water soluble wood fraction, obtained after autohydrolysis pretreatment. Two different 

methods were used for HMF extraction from water soluble wood, before gas chromatographic 

analysis: liquid-liquid extraction (LLE) with dichloromethane and solid phase extraction 

(SPE) method.  

The analytical parameters of the two methods were compared. HMF is obtained from 

the degradation of hexoses (glucose, mannose and galactose) present in wood.  

Figure 3.21 shows the chromatogram of 5-hydroxymethylfurfural standard solution. 

The retention time of HMF was 9.322 min. 

The derivatization procedure and the extraction method were optimized for each 

method. HMF contains one hydroxyl-group, thus one-TMSi derivate is formed. The mono 

derivate for HMF was evidenced by the presence of m/z 183, 169, 109, indicating silylation of 

hydroxyl-group. The m/z 183 corresponding to the ion [M-CH3]
+ was selected for 

quantification and molecular ion at 169 corresponding to [M-COH]+ and 109 to the [M-

OTMS]+.  
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Figure 3.21 GC-MS data for HMF standard solution: (a) GC-MS chromatogram for a derivatizated 
solution of HMF; (b) mass spectrum of TMSi-HMF 

 

Comparison of SPE and LLE for extraction of HMF from wood – comparative study 

After each extraction procedure the HMF content of each sample was determined. The 

GC chromatogram of  HMF obtained after derivatization of the liquid fraction resulted after 

autohydrolysis pretreatment (190°C) using LLE and SPE extraction is shown in figures 3.22 a 

and b.  

 

a) b) 

Figure 3.22 The chromatogram of the TMSi-HMF compounds obtained by: (a) LLE and (b) SPE 
extraction method

 

The content of HMF obtained in hemicellulosic fraction in function of the 

pretreatment conditions is shown in Figure 3.23.  

a 

b 
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Figure 3.23 Composition of HMF 
in hemicellulosic fraction in 
function of the pretreatment 

conditions 

 0

10

20

30

40

50

60

5 10 15 5 10 15 5 10 15

180 190 200

C
o

n
te

n
t 

o
f 

H
M

F
 (

m
g

/1
00

 g
 w

o
o

d
)

Pretreatment conditions

 HMF content

 
3.3.4.3 Analysis of furfural by GC-MS 
 

Two extraction methods based on liquid-liquid (LLE) and headspace solid phase 

microextraction (HS-SPME) were evaluated for the analysis of furfural in the hemicellulose 

hydrolysate. For each method, the linearity, detection limits, quantification limits, recovery 

and reproducibility were determined (table 3.13). 

 

Table 3.13 Linearity range, correlation coefficient, detection limits, quantification limits and 

recovery obtained for each method for the analysis of furfural from hemicellulose 

hydrolysates 

Method 
Linearity Detection 

limit 
(µg ml-1) 

Quantification
limit 

(µg ml-1) 

RSD 
(%) 

 
n=5a 

Recovery 
(%) 

(mean±SD, 
n=5) 

Range 
(µg ml-1) 

R2 

LLE 10 –350 0.995 3    9 10.5 78 ± 6.3 

HS-
SPME 

0.1 - 35 0.999 0.03         0.09 7.3 95 ± 5.9 
a Relative standard deviation  

 

Content of furfural in the hemicellulosic hydrolysates  

 

Furfural was determined by GC-MS after liquid-liquid extraction and headspace 

SPME, methods without derivatization. 
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Figure 3.26 Chromatogram of furfural from hemicellulosic fraction obtained after HS-SPME 
extraction of samples autohydrolysed at 190°C for 10 min  

 
Figure 3.27 shows the furfural contents in hemicellulose fraction, in function of the 

reaction conditions.  
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Figure 3.27 Furfural contents of hemicellulosic fraction  
 

Furfural contents of hemicellulosic fraction obtained from wood increase with 

temperature and reaction time. 

 

3.3.6 Statistical analysis by adaptive neural fuzzy interference (ANFIS) 
 

The variation of components in the hemicellulosic and cellulosic fraction (dependent 

variables) and the independent variables were established by using a fuzzy neural model 

based on equation (3.18) [181]: 

                                        






m

l l

m

l l
l

e
R

Ry
Y

1

1                                                               (3.18) 
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where: Ye is the estimate value of output variable, m the number of rules, n the number 

of input variables, yl the defuzzifier, Rl fuzzy rule (is defined by the product of n membership 

functions). 

With two independent variables, one can establish nine fuzzy rules (Ri) with a 

Gaussian membership functions for independent variables with three levels (low, medium and 

high) of the temperature and time. The three levels are for one independent variable.  

The experimental data obtained by analysis of solid fraction resulted after 

autohydrolysis pretreatments were processed using the ANFIS model. The proposed model 

used two independent variables (temperature and time) and one dependent variable processed 

with Gaussian membership functions at three levels (low, medium, and high) for estimation 

the parameters. 

In Figures 3.29 -3.36 the variations of parameters depending on temperature and time 

is presented. 

The composition of solid and liquid fraction were modelled as a function of the 

independent variables (temperature and time) using the ANFIS Edit tool in Matlab 7.0. 

Software ANFIS Edit Matlab 7.0 was used to develop a fuzzy neural model that reproduces 

the experimental results of the dependent variables with errors below 1%. 
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Figures 3.29 -3.36 Composition of liquid fraction and solid fraction resulted after pretreatment as a 
function of independent variable 

 

CHAPTER 4 DELIGNIFICATION OF PRETREATED WOOD WASTE WITH 

SODIUM CHLORITE  

The aims of this chapter were obtaining cellulose from wood by using two methods: 

chlorite delignification after pretreatment and direct delignification of wood. Sodium chlorite 

delignification was used for lignin removal from non-pretreated wood. Direct delignification 
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of dried wood with sodium-chlorite was made for the extraction of holocellulose (mixture of 

cellulose and hemicellulose). 

In this chapter the autohydrolysis pretreatment for hemicellulose removing and the 

delignification with sodium-chlorite for lignin removement in order to obtain pure cellulose 

that is enzymatically hydrolysed to sugars was studied. Pretreatment with sodium chlorite 

degrade the lignin by generation of chlorine dioxine (ClO2), an oxidation product of chlorous 

acid (HClO2) and hypochlorous acids (HOCl) produced during pretreatment. Pretreatment 

with sodium chlorite was a selective method for lignin and cellulose degradation if the 

reaction medium is neutral. In these conditions, acetic acid was used for an acid reaction 

medium for preventing degradation of cellulose. Solid yield after autohydrolysis method and 

solids yield after delignification methods are shown in Table 4.1. 

 

Table 4.1 Composition of solid fraction obtained after autohydrolysis pretreatment and 

delignification of pretreated wood (a) and holocellulose (b)  

Autohydrolysis condition 180C-a 190C-a 200C-a 
No pretreated, 
delignified -b 

Solid yield (g/100 g raw 
material, on dry basis) 

79.5 74.6 72.2 - 

Solids compositions (g/100 
g autohydrolysed wood, on 
dry basis) 

             Cellulose  
                    Hemicellulose  

       Lignin  

96.9 
 

 
56.6 

4.7 
35.6

98.8 
 

 
57.8 

3.3 
37.8

98.2 
 

 
59.5 

0.0 
38.7 

- 

Solid yield (g pretreated and 
delignified wood/100 g raw 
material, on dry basis) 

47.6 42.9 39.5 
 

76.1 
 

Solids compositions (g/100 
g pretreated and delignified 
wood)  

                       Cellulose  
                  Hemicellulose  

      Lignin  

96.8 
 

 
85.0 

4.4 
7.3

98.8 
 

 
90.1 

2.5 
6.0

96.3 
 

 
93.0 

0.0 
3.2 

92.8 
 

 
59.9 
26.7 

6.0
 

The results show that solid yield (79.5–72.2/ 100 g raw material) of pretreated wood 

decreases with the increase of pretreatment temperature, due to the hydrolysis of 

hemicellulose in the liquid fraction. The content of cellulose (56.6–59.6%) and lignin (35.6–

38.7%) in the autohydrolysed wood confirmed that both components were recovered in solid 

fraction. The delignification yield decreases with the increasing of pretreatment temperature 

due to the solubilisation of lignin. In Figure 4.2 the composition of solids resulted after every 

process is shown. 
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Figure 4.2 The influence of temperature on solids compositions resulted after every treatment applied 

 

The results of delignification yield varied in the range 39.5–47.6 g pretreated and 

delignified wood/100 g raw material for the process with pretreatment by comparison with the 

process without pretreatment where, the delignification yield was 76.1 g wood delignified/100 

g raw material; this can be explained by the presence of cellulose and hemicellulose in the 

direct delignification process while, in the pretreated and delignified process, only cellulose 

and small amount of hemicellulose and lignin were obtained. 

 

CHAPTER 5 ACID HYDROLYSIS OF PRETREATED WOOD WASTE 

 Autohydrolysis involve separation of cellulose in solid fraction at high temperature 

and high pressure. The pretreated material is separated by filtration in solid and liquid phase. 

Solid fraction (which contains cellulose and lignin) can be hydrolysed or delignified for lignin 

removal and then hydrolysed to glucose. The aims of this chapter was the glucose obtaining 

from pretreated wood and from pretreated and delignified wood by acid hydrolysis with 

sulphuric acid in two hydrolysis stage. Figure 5.1 shows the experimental procedures used for 

glucose obtaining. 
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Figure 5.1 Glucose obtaining from solid fraction resulted after pretreatment  

 

5.2 Analytical methods used for glucose determination in hydrolysate 

 

The analysis of glucose from acid hydrolysate was made by two methods: analysis of 

glucose by GC-MS for identifying the presence of both α-and ß-glucose isomers (subchapter 

5.2.1 - GC-MS methods for analysis of glucose from cellulosic fraction resulted after 

hydrolysis) and analysis of reducing sugars by spectrophotometric method (subchapter 5.2.2 

- spectrophotometric method for reducing sugars determination from hydrolysate).  

 

5.2.1 GC-MS methods for analysis of glucose from cellulosic fraction resulted 

after hydrolysis 

The aim of this subchapter was developing and validation of a new method for glucose 

analysis. The method is based on derivatization of sugars with a silylation agent. As silylation 

agents HMDS (hexamethyldisilasan) in trifluoroacetic (TFA) and BSTFA were used. The 

glucose quantification was made by liquid-liquid extraction followed by GC-MS detection. 

The silylation of hexose by BSTFA is presented in figure 5.2. 

 

 

 

 

 

Glucose  

Solid fraction after 
pretretament  

Acid hydrolysis 
2% (60 min),130°C

Delignification with NaClO
2
  

Liquid fraction 

III

Acid hydrolysis 15% (90 min) 
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Acid hydrolysis 
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Liquid fraction Acid hydrolysis 15% (90 min) 
130°C  

Liquid fraction 
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Liquid fraction 
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Scheme 5.2 Chemical structure of the silylated derivative of glucose (BSTFA) 

 
The glucose was obtained from the wood biomass both in case of the pretreatment by 

autohydrolysis (in the hemicellulosic fraction) and in case of hydrolysis [173]. The separation 

of cellulose from hemicellulose requires a strong pretreatment. The autohydrolysis in the 

presence of water is a physical-chemical method for cellulose separation. The solid fraction 

obtained after pretreatment was hydrolysed by chemical or enzymatic methods.  

Figure 5.2 (a) shows the chromatogram of glucose obtained after oximation with 

hydroxylamine hydrochloride in pyridine and BSTFA obtained by GC-MS. 

 

Figure 5.2 (a) The SIM chromatogram of the glucose 
after oximation and silylation with BSTFA 

Figure 5.3 The MS spectra of the ions for the 
quantitative and qualitative analysis of glucose 

silylation derivatives  

The limit of detection (LOD) for glucose was calculated as the concentration that 

corresponds to three standard deviations of the blank (3s criterion, 10 independent blanks for 

each analyte) [8]. The limit of detection was 0.222 µg for 1α-glucose and 0.171 µg for 1ß-

glucose, respectively. 

 

5.2.2 Spectrophotometric method for reducing sugars determination from 

hydrolysate 

For the determination of carbohydrates a colorimetric method was used. The 3,5-

Dinitrosalicylic acid (DNS) was used as colouring agent. The DNS solution is white, but in 
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the presence of hexoses is transformed in 3-amino-5-nitrosalicilic of red colour. 
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Scheme 5.4 Reaction of glucose with DNS 

Determination of DNS reducing sugars from hydrolysate by spectrophotometric 

method has the following advantages: is a direct reaction; measures the reducing capacity of 

glucose; uses a reaction which is based on colour change from yellow to dark red, with 

maximum absorbance at 540 nm; is a mole to mole reaction, the amount of reducing sugars 

are proportional with the amount of glucose.  

The DNS method can determine the concentration of all reducing sugars from 

hydrolysis media, not only the glucose concentration. 
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Figure 5.4 Calibration curve for the determination of reducing sugars by DNS methods 

 

5.3 Acid hydrolysis of cellulosic components obtained from wood waste 

 

The acid hydrolysis of cellulosic components obtained from wood was carried out 

using as raw material the cellulosic material resulted after autohydrolysis pretreatment at 

different temperatures and residence time and the pretreated and delignified wood. The acid 

hydrolysis experiments was carried out using the material pretreated by autohydrolysis at 180, 
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190 and 200°C and 10 minutes residence time in all cases (the optimal pretreatment 

conditions). Two-step acid hydrolysis method was used for acid hydrolysis of celluloses 

obtained from silver fir wood.  

 

5.3.2 Sulphuric acid hydrolysis of pretreated wood 

 

In the literature no data was found regarding the application of acid hydrolysis method 

on pretreated and delignified wood with sodium chlorite. In this chapter, the hydrolysis with 

dilute sulphuric acid in two-stage acid impregnation was used. Given the above 

considerations, acid hydrolysis reaction was done in two stages. In the first stage, 2% 

concentration of acid was used, followed in the second stage where the concentration of acid 

was increased to 15%. The hydrolysis conditions were selected to achieve a lower cellulose 

degradation rate.  

Figures 5.5 b presents the acid hydrolysis yields determined from reducing sugars 

content for each stage of acid hydrolysis. 
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Figure 5.5 Acid hydrolysis yields expressed as reducing sugar concentration obtained for: (b) 

hydrolysis with 15% sulphuric acid at 30, 60 and 90 min 
 
 

Figure 5.6 shows the chromatogram of hydrolysate obtained after hydrolysis in two-

step acid hydrolysis. 



Stejeran (m. Şenilă) Lăcrimioara Ramona – PhD Thesis Summary 

25 
 

 

Figure 5.6 GC-MS chromatogram of the derivatized solution of hydrolysates obtained after acid 

hydrolysis 

 

The two isomers were found in the hydrolysate in a 4:1 (α-glucose/ß-glucose) molar 

ratio. Acid hydrolysis of wood resulted after autohydrolysis pretreatment was done by two-

stage hydrolysis. After the first hydrolysis stage (hydrolysis with 2% sulphuric acid) very low 

yield was obtained. In the second stage (hydrolysis with 15% sulphuric acid) the highest 

yield, 27%, was obtained at 190°C, which means that the presence of lignin in the acid 

hydrolysis acts as an inhibitor of hydrolysis. 

 

5.3.3 Dilute sulphuric acid hydrolysis of pretreated-delignified wood 

Figure 5.9 (a, b) shows the acid hydrolysis yields determined from the reducing sugar 

contents obtained by hydrolysis of pretreated and delignified wood. 
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Figure 5.9 Acid hydrolysis yields expressed as reducing sugar concentration obtained 
for: (a) hydrolysis with 2% sulphuric acid at 10, 30 and 60 min, and (b) hydrolysis with 15% 

sulphuric acid at 30, 60 and 90 min 
 

The acid hydrolysis yields were evaluated for 10, 30 and 60 minutes for hydrolysis 

with 2% sulphuric acid and for 30, 60 and 90 minutes for hydrolysis with 15% sulphuric acid. 

The low yield of acid hydrolysis in case of pretreated and delignified wood suggests that the 
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low concentration of acid has reduced influence on cellulose; therefore it is necessary to 

increase sulphuric acid concentration to 15%. 

 

5.3.4 The global yield of acid hydrolysis 

 

Figure 5.10 shows the global yield of acid hydrolysis. 

Figure 5.10 Material balances for glucose obtaining by acid hydrolysis of pretreated and delignified 
wood in two-step hydrolysis method 

 

CHAPTER 6 ENZYMATIC HYDROLYSIS OF PRETREATED WOOD WASTE  

 

Compared to acid hydrolysis, enzymatic hydrolysis is more promising because it not 

requires chemicals. Cellulase, the enzyme used for hydrolysis of cellulose complex, contains 

exoglucanase, endoglucanase, and beta-glucosidase. 

 

 

 

 

 

 

 

 
 

Figure 6.2 Schematic representation of the wood structure before and after autohydrolysis 
pretreatment and enzyme access to cellulose 
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The high content of lignin from wood is the main barrier for enzymatic hydrolysis of 

cellulose obtained from wood. The Accellerase 1500 enzymes was used in all enzymatic 

hydrolysis experiments because its capability to hydrolyse cellulose and hemicellulose.  

The aims of this chapter were obtaining cellulose by enzymatic hydrolysis of non-

pretreated and autohydrolysis pretreated wood under different conditions and chlorite 

delignification for evaluation of lignin and hemicellulose in the enzymatic hydrolysis process.  

 
6.2 Enzymatic hydrolysis of wood wastes  

 

The pretreated samples were submitted to enzymatic hydrolysis varying the 

concentrations of substrate. In all experiments 1% and 2% (w/v) substrate solids were 

evaluated. The enzymatic hydrolysate was analysed by GC-MS for evaluation of components. 

The total concentration of sugars was determined as reducing sugars. The concentration of 

reducing sugars (expressed as glucose) resulted after 72 hours is shown in Table 6.1. The 

enzymatic hydrolysis yield was evaluated for 24, 48 and 72 hours. 

 

Table 6.1. Concentration of reducing sugars (mg/g of substrate) obtained by enzymatic 

hydrolysis of pretreated wood  

Substrate 
treatment 

Hydrolysis time (h) 
 

1% (w/v) concentration 2% (w/v) concentration 

24 48 72 24 48 72 

Pretreatment -
180C 

258.6 302.5 352.6 305.3 357.8 417.5 

Pretreatment -
190C 

368.9 399.9 452.6 395.6 486.5 538.1 

Pretreatment -
200C 

312.6 358.9 386.5 312.1 352.5 496.1 
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Figure 6.4 Enzymatic hydrolysis yields at 24, 48 and 72 hours, expressed as ration of reducing sugar 
concentration obtained in the enzymatic hydrolysis and potential glucose in raw material, for: (a) 1% 

(w/v) substrate concentration and, (b) 2% (w/v) substrate concentration. 

 
6.2.2 Enzymatic hydrolysis of the pretreated and delignified wood  

 

Non-pretreated wood and the cellulosic material resulted after pretreatment and 

delignification of wood was enzymatically hydrolysed to sugars. The concentration of 

reducing sugars (expressed as glucose) is presented in Table 6.2. 

The results show that the composition of the wood significantly influences the enzymatic 

hydrolysis. A 40% yield was obtained for enzymatic hydrolysis with 1% (w/v) solid loading 

and 48% yield for enzymatic hydrolysis with 2% (w/v) solid loading. The highest enzymatic 

yield (91%) was obtained for silver fir wood after autohydrolysis at 190C pressure (60 bar), 

10 minutes residence time and 2% (w/v) solid loading, while a 80% yield was obtained for 

enzymatic hydrolysis with 1% (w/v) solid loading. The content of lignin in pretreated wood 

showed the limited accessibility of the enzyme to cellulose, suggesting that lignin is the 

restrictive component of enzymatic hydrolysis. The highest yield of the enzymatic hydrolysis 

in case of delignified wood suggested that the absence of lignin from delignified wood 

contribute to the easier access of enzymes to cellulose. 
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Table 6.2. Concentration of reducing sugars (mg/g of substrate) obtained by enzymatic 

hydrolysis of delignified silver fir wood and of autohydrolysis-delignified fir wood, at 

different temperatures, for 1% and 2% (w/v) concentration of substrate 

 

Concentration of reducing sugars (mg/g of substrate) for 
different substrates: 

1% (w/v) concentration 2% (w/v) concentration 

Hydrolysis time 
(h) 

Substrate 
treatment 

24 48 72 24 48 72 

Untreated 369.3 408.4 495.1 469.3 508.4 595.1 
180C 738.6 792.5 831.0 838.3 877.5 911.0 
190C 800.2 859.9 891.0 919.9 969.9 998.2 
200C 772.2 811.9 851.0 912.2 931.9 998 

Figure 6.5(a) and 6.5(b) shows the enzymatic hydrolysis yields expressed as reducing 

sugar concentration after 24, 48 and 72 hours. 
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Figura 6.5 Enzymatic hydrolysis yields at 24, 48 and 72 hours, expressed as ratio of reducing sugar 
concentration obtained in the enzymatic hydrolysis, and potential glucose in raw material, for: (a) 1% 

(w/v) substrate concentration and, (b) 2% (w/v) substrate concentration. 
 

The material balance for the wood pretreatment is shown in Figure 6.7. 

 

 
 
 
 

 

 

 

 
 
 
 
 

Figure 6.7 Material balances for wood pretreatment  
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The optimal conditions for sugar obtaining from silver fir wood in this work was 

defined by temperature (190°C), pressure (60 bar), residence time (10 minutes), solids loading 

(2%), and hydrolysis time (72 hours). These conditions led to obtaining of 33 g glucose/100 g 

wood. Overall, the processing of 100 g wood would result in the recovery of 74 g products. 

The sugars formed after enzymatic hydrolysis can be further fermented for bioethanol 

production.  

 

CHAPTER 7 FERMENTATION OF SUGARS OBTAINED FROM WOOD WASTE 

 
7.1 General principles of fermentation 
 

In this chapter the production of ethanol by Saccharomyces cerevisiae assisted 

fermentation of sugars produced by acid and enzymatic hydrolysis of pretreated and 

pretreated-delignified wood was studied.  

The obtaining of second generation bioethanol from fir wood includes the following 

steps: 

 Autohydrolysis pretreatment (Chapter 3); 

 Delignification of pretreated wood, lignin removal for easy accessibility of 

enzymes or acids to cellulose (Chapter 4); 

 Acid hydrolysis (Chapter 5) of pretreated and pretreated-delignified wood or 

enzymatic hydrolysis of pretreated and pretreated-delignified wood (Chapter 6); 

 Fermentation of glucose solution obtained both from acid hydrolysis and 

enzymatic hydrolysis (the results are presented in this chapter). 

 

7.2 Fermentation of sugars obtained from wood to bioethanol 
 

The ethanol determination by gas chromatography was validated. Ethanol was 

analysed by direct injection into the GC-MS through headspace. The concentration of ethanol 

was determined after 24, 48 and 72 hours for each hydrolysate subjected to yeast 

fermentation.  

Figure 7.5 shows the fermentation yields determined after 24, 48 and 72 h.  

Fermentation yields differ in case of acid or enzymatic hydrolysis of substrates. 

Fermentation of pretreated and acid hydrolysed wood (experiment a) gives a maximum yield 

of 32% (pretreatment temperature of 190C) compared with the yield of fermentation for 

pretreated and enzymatic hydrolysed wood (experiments c1 and c2) which giving a yield of 
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49% (solids loading of 1%), and 55% (solids loading of 2%). These results show that during 

the acid hydrolysis more inhibitors of hydrolysis are produced, due to the more drastic 

conditions (temperature and acid conditions for hydrolysis) compared to enzymatic hydrolysis 

conditions (neutral medium, low temperature and longer reaction time). 
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Figure 7.6 Fermentation yield variation in function of treatment 

conditions before fermentation: (a) pretreatment temperature of 180°C, (b) 
pretreatment temperature of 190°C, (c) pretreatment temperature of 200°C (a - 

acid hydrolysis of pretreated wood, b - acid hydrolysis of pretreated and 
delignified wood, c1 - enzymatic hydrolysis of pretreated wood (1%), c2 - 

enzymatic hydrolysis of pretreated wood (2%), d1 - enzymatic hydrolysis of 
pretreated and delignified wood (1%) and d2 - enzymatic hydrolysis of pretreated 

and delignified wood (2%)) 
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The pretreated- delignified - enzymatically hydrolysed wood give higher fermentation 

yields 75% (experiment d1) and 80%, respectively (experiment d2) at the pretreatment 

temperature of 190C, compared to the pretreated-delignified- acid hydrolysed wood which 

give a maximum fermentation yield of 65% (experiment b) at the pretreatment temperature of 

190 C. The pretreatment temperature has significant influence on delignification, enzymatic 

hydrolysis and fermentation. Generally, the higher fermentation yields were obtained at 

autohydrolysis treatment at 190 C. 

 

CONCLUSIONS 

 

Two technologies for the production of bioethanol by superior valorisation of wood 

waste by chemical hydrolysis and enzymatic hydrolysis were developed. Due to its high 

content of cellulose and hemicellulose, as raw material the lignocellulosic biomass of silver 

fir wood was used. 

For wood waste pretreatment a green method was developed. Wood hemicellulose 

extraction was achieved by autohydrolysis with at high temperatures and pressures. Using the 

autohydrolysis method, the components of wood were separate in two fractions: liquid 

fraction containing carbohydrates, soluble lignin and secondary products, and solid fraction 

containing cellulose and lignin.  

The determination of cellulose, lignin and hemicellulose content in the recovered 

fraction after solid autohydrolysis, confirmed that lignin and cellulose was recovered almost 

quantitatively from the solid fraction. 

Three new methods based on gas chromatography- mass spectrometry were developed 

and validated: 

 identification and quantification of carbohydrates in hemicellulose fraction by 

GC-MS, using a double derivatization method 

 analysis of 5- hydroxymethylfurfural  

 analysis of furfural. 

The performance parameters for each method: detection limits, quantification limits, 

working ranges, recovery studies of each method were established. 

The analysis of carbohydrates composition from the hemicellulosic fraction showed 

that the mixture is composed from pentose and hexose. 
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Hydroxymethylfurfural (HMF) was analysed by two extraction methods: liquid-liquid 

extraction (LLE) and solid phase extraction (SPE). The two extraction methods were 

validated and the obtained results were compared. Compared with LLE method, SPE method 

has several advantages: superior recoveries, shorter time, low sample and reagent 

consumption thus is more environment-friendly. HMF content in wood ranged from 0.03 to 

0.06 g/100 g wood, and its concentration increase with temperature and treatment time. 

Furfural fraction from hemicellulose was analysed by two extraction methods: liquid-

liquid and headspace SPME. Furfural content was within the range of 0.05 g – 0.1 g/100 g 

wood, depending on pretreatment conditions. 

A mathematical model was developed for modelling the content of solid and liquid 

fractions resulted after pretreatment of wood as a function of the independent variables 

(temperature and time) using the ANFIS editing system of MATLAB 7.0 software. It was 

found that the mathematical model estimates the experimental results with an error lower than 

1%. 

Delignification of untreated and pretreated wood was carried out using sodium chlorite 

in acidic conditions in order to remove lignin before hydrolysis. Cellulose was obtained after 

the delignification. Yields of solid recovered after delignification with sodium chlorite ranged 

from 39.5 to 47.6 g treated and delignified wood/100 and raw material, depending on 

experimental conditions, which showed that after delignification it was obtained only 

cellulose. Effectiveness of the delignification methods was shown by determining the content 

of lignin removed (92-96%) after the delignification stage. 

The cellulose obtained after delignification of pretreated wood was acid hydrolysed. 

Two methods for glucose determination from wood hydrolysate were developed and 

validated: 

 a new method for glucose analysis by gas chromatography;  

 a spectrophotometric method for determination of reducing sugars.  

There have been established the performance parameters of the methods: detection 

limits, quantification limits, working ranges, recovery studies. The method for glucose 

determination based on derivatization of glucose by oximation and silylation with BSTFA, 

showed the presence of both α-and ß-glucose isomers. 

A method for glucose obtaining by two-step acid hydrolysis of pretreated wood was 

developed. The results showed that acid hydrolysis with 2% sulphuric acid concentration give 

low acid hydrolysis yield, while the acid hydrolysis with 15% sulphuric acid give higher yield 
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(27%), for wood pretreated at 190°C, leading to conclusion that the presence of lignin in the 

substrate acts as inhibitors of hydrolysis.  

A method for glucose obtaining by acid hydrolysis of pretreated and delignified wood 

was developed. The highest acid hydrolysis yield (70%) was obtained for silver fir wood after 

autohydrolysis at 190C, 60 bar pressure for 10 min residence time. The results showed that 

15% concentration of acid is required in order to maximize the acid hydrolysis yield.  

Methods for glucose obtaining by enzymatic hydrolysis of pretreated and pretreated-

delignified wood were developed. The optimal conditions for glucose obtaining from silver fir 

wood in this work were: temperature (190°C), pressure (60 bar), residence time (10 minutes), 

solids loading (2%), and hydrolysis time (72 hours). These conditions led to obtaining of 33 g 

glucose/100 g wood. The highest enzymatic yield (91%) obtained for silver fir wood after 

autohydrolysis at 190C with 2% (w/v) solid loading and lignin removal before enzymatic 

hydrolysis, showed that the treatment with sodium chlorite, besides lignin removing from 

substrate improves the accessibility of cellulosic material that becomes more susceptible to 

enzymatic action.  

The technology for fir wood processing to bioethanol was carried out in the following 

steps: 

 autohydrolysis pretreatment,  

 delignification with sodium chloride of pretreated wood,  

 acid or enzymatic hydrolysis,  

 fermentation of acid or enzymatic hydrolysate to bioethanol with S. cerevisiae. 

The ethanol was obtained by fermentation of acid or enzymatic hydrolysates with 

baker yeast S. cerevisiae. The fermentation of hydrolysate resulted after enzymatic hydrolysis 

of pretreated and delignified wood give the highest fermentation efficiency (81%) 

comparatively with fermentation of hydrolysate resulted after acid hydrolysis of pretreated 

and delignified wood (65%), for pretreatment temperature of 190C, in both cases. The 

pretreatment temperature influence the delignification, hydrolysis and fermentation processes. 
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