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Summary

This Ph.D. thesis is the result of my research in the field of Model Driven Engineer-

ing (MDE), particularly in Model Based Code Generation (MBCG), research which was

started in 2008 under the supervision of Prof. Dr. Bazil Pârv.

Motivation

A simple and easy question is: Why the thesis title is Model Based Code Generation? The

answers are:

• MBCG can be viewed as a subsection of MDE focused on model transformation en-

gines. The source metamodel is the modeling language used to specify the platform-

independent model (PIM) of a system and the target metamodel is the syntax of

the programming language for which the engine will generate the source code, rep-

resenting the platform-specific model (PSM) of the system.

• MBCG can improve the software development time due to the automated source

code generation.

• MBCG can increase the software quality because the codding errors are eliminated.

• MBCG is an open research space, there are many articles, books and conferences

focused on this domain.

• MBCG is the next step in software engineering and compilation. At the beginings

the human resources were forced to understand and to write programs in the com-

puter languages, the second step introduced the assembly language which assigned

a suggestive word to each computer instruction, at the third step programming lan-

guages and compilers were introduced, based on the language syntax the compiler

checks a program and generates computer statements. MBCG can be viewed as

the next step on this natural way, the models specified in a platform independent

way using domain specific languages (DSLs) are checked and translated into general

programming language (GPL) source code files.

• Using MBCG it is possible to reduce the gap between technical people and cus-

tomers. A domain specific language oriented on the client problem can be designed

and used in order to collect client requirements in a formal and non ambiguous way.
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Research objectives

In the context on current open research problems in the field of MDE, the research ob-

jectives of this thesis were focused on automatic code generation based on application

models. The following enumeration presents the main objectives:

• A proposed architecture for reusing PSMs in another platforms than the platforms

in which has been designed to be used. The proposed approach uses a generated

proxy object [108] which acts as a mediator between the new PSM and the old one.

Eah proxy object delegates the method calls to the old PSM.

• The proposal of a component-based development process which automate the source

code generation. There are two aspects: (1) the generation of the skeleton source

code of a component, not containg the business logic of a component, and (2) the

generation of the source code for connecting components [102, 103, 104].

• The proposal of a DSL for data intensive applications which allows the automatic

translation to different PSM, web oriented or not [107, 106, 105].

Each objective is described in detail in a dedicated chapter in a common way, first it

is presented the problem, the second step describes the proposed solution, a case study

or a list of case studies is presented at the third step and finally conclusions and future

improvements or open problems are described.

Chapter 2 presents an overview about Model Driven Architecture [4, 116, 8, 87, 59,

114, 90, 22, 12, 91, 27, 33, 70]. The Model Drive Architecture targets are [116]: Technology

obsolescence, Portability, Productivity and time-to-market, Quality, Integration, Mainte-

nance, Testing and simulation and Return on investment. This chapter enumerates the

major MDA concepts [4] such as: System, Model, Model driven, Architecture, Viewpoint,

MDA viewpoints, Platform, Platform Independence, Platform Model, Model Transfor-

mation, Implementation, Computation Independent Model (CIM), Platform Independent

Model (PIM) [26] and Platform Specific Model (PSM). OMG provided a general speci-

fications, and as answers, MDA tools has been developed by research teams. There are

many types of MDA tools, such as: [116]: Creation Tool, Analysis Tool, Transformation

Tool, Composition Tool, Test Tool, Simulation Tool, Metadata Management Tool and

Reverse Engineering Tool.

The basic MDA flow consists in defining a platform independent model (PIM) [26]

and transforming it automatically to one or more platform-specific models (PSMs) [28].

Model transformation domain can be divided into [28]: (1) Model to text transformations

and (2) Text to model transformations. At the end of this chapter a list of standards

used by the MDA is presented, such as: XML, XMI, UML, MOF, MDDA, SCA, BPMN

[8, 38, 23, 97, 125].
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Chapter 3 presents a set of MDA tools and frameworks used in the research presented

in this thesis. The presentation is structured into two main sections: (1) Academic Tools

and (2) Industrial Tools. Academic MDA Tools section contains instruments developed

by research teams from different universities and Industrial MDA Tools sections shows

productions IDE’s and frameworks that are used by software development companies.

Personal contributions are presented into Chapters 4, 5 and 6.

• Chapter 4 ”An approach for platform interoperability based on proxy objects”: presents

a technique for platform interoperability based on model transformation approaches.

Instead of serializing objects for implementing the communication between plat-

forms, the proposed approach involves generating proxy objects for the remote ob-

jects. The proxy objects types are generated automatically. The source code written

for implementing the remote object functionality acts as a model that conforms to

a metamodel (the programming language syntax), the proxy object’s type acts as

a model that conforms to another metamodel (the syntax of the programming lan-

guage used for implementing the proxy object). As a conclusion, the technique

presented in this chapter can be integrated in the model transformation area con-

tributions. The original solution is described in greater detail in [108].

• Chapter 5 ”A solution fo component-based developing using automatic code gener-

ation for component connections” proposes a technique for component-based soft-

ware development. The novelty of the proposed solution resides in each component

has public properties that can have one of the following directions: IN, OUT and

INOUT, and the communication between components is implemented using these

properties, called pins. As a result of the proposed technique, the components are

not dependent on each another. The components are only dependent on their pins

data types. The original contributions are presented in more detail in the papers

[104, 102, 103].

• Chapter 6: ”A domain-specific language for the development of data-intensive appli-

cations” presents a solution which involves (1) a language for defining the platform-

independent model of an application and (2) a transformation engine which support

translation from the platform-independent model to .NET web application model.

Both packages are included into an Eclipse plug-in with code completion and syntax

highlight. The original contributions from this chapter are described in more detail

in the papers [107, 105, 106].

Chapter 4 presents a new approach regarding interoperability. The novelty of the

proposed solution resides in using a proxy object for each used remote object in order to

avoid serialization.

An actual software engineering problem is the improvement of the software develop-

ment process and the final product quality [43]. In order to achive this, the source code
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should be reusable [73]. Obviously, it is good news for a developer if an old library de-

veloped in an old programming language can be used in a new programming language

without being necessary to rewrite the code. In this case, it saves time and improves the

quality of the final software system, because the old library has been tested in the past

and it works fine.

In the context of model transformation, one target of this PhD thesis was to determine

an algorithm for generating the source code for a specific programming language based

on a source code written for another programming language in an automatically mode.

This is not a translation of the source code from a programming language to another, the

autogenerated code acts as a proxy to the real code, so it delegates the execution to the

real routines. This research can be included into ”Model Transformation” area because

it transforms an executable model resulted from compiling a source code written for a

programming language to a source code written in another programming language which

acts as a proxy to the initial executable model.

There are many frameworks written for both Java and .NET, for instance: Hibernate

[25] respectively NHibernate, JUnit [80] respectively NUnit etc. These frameworks could

be written for a platform and reused from another platform, for instance instead, of rewrit-

ing Hibernate for .NET it can be reused directly. Chapter 5 uses the theoretical concepts

presented in Chapter 4 in a demo application presentation. The application manages en-

tities from a library such as: books, authors and members. The conceptual model of the

application is written in .NET, but the database component of this application is written

in Java, then it have to use proxy objects written in Java for the real library model which

is written in .NET. The beauty of the solution resides in offering the posibility to save

and load .NET objects using the Java version of Hibernate and Java proxy objects for

the real .NET objects. It is not necessary to use the NHibernate framework.

Chapter 4 is structured as follows: the first section presents the problem statement

together with: (1) the motivation of solving it, (2) current approaches and (3) their

drawbacks, the second presents the proposed approach and a proof of concept has been

presented in section three. Section four applies two evaluation metrics for the proposed

code generation solution. Finally, contributions of this work are presented together with

future improvements and open problems.

Chapter 5 presents a technique inspired from hardware development that can be ap-

plied in software engineering in order to develop flexible and modular systems based on

independent components. On the other hand, it presents the advantages and constraints

of this technique and how to implement it in an actual development platform, for instance

Java and .NET.

In the hardware development process, an engineer can use many integrated circuits in

order to develop a complex system, for instance he/she can use multiplexers, counters,

logic AND, logic OR, memory, register [76, 54, 85, 61, 52, 71, 50, 129, 93] etc, these
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components are interconnected on a main board and become a complex system. The

counter, the multiplexer or other components are developed by a third party company,

and they are not dependent by components that produce/consume their inputs/outputs.

This principle can be applied both on the hardware and software development process,

for example a software system can have many independent components that should be

interconnected on a main board in order to become a complex system. These components

can be developed by a third party company. Nowadays there are many third party com-

ponents that are used in software systems, but the connections between them are made

by a developer, and when a person should write a program that will use the third party

components, this can introduce many errors, more than this, changing the code written

by a developer is an expensive process that needs time and money.

This approach presents a technique that allows the automatic code generation for con-

necting different objects. This technique implies constraints for object classes in order to

support the connecting process. This chapter combines the presented theoretical concepts

with the notions introduced in Chapter 4 in order to exemplify the benefits of the proposed

solutions. The main benefit of the solution proposed in Chapter 5 is: a software compo-

nent design technique which allows the posibility to write independent components that

will be automatically connected using a source code generator. The development process

has three main steps: (1) design the system in a graphical environment, (2) generate the

skeleton source code and (3) implement the component functionalities.

Chapter 5 is structured as follows: the first section presents the open problem in

three subsections: (1) Problem motivation, (2) Current approaches and (3) drawbacks

of current approaches; section 2 shows the proposed solution in four subsections: (1)

Conceptual View, (2) Glossary, (2) Architecture and (3) How it works; section 3 presents

the Building Blocks Dev Studio into four subsections: (1) the main architecture, (2)

component communication mechanism, (3) a component-based development approach

based on the proposed solution and (4) a case study which contains a demo application

developed using the Building Blocks Dev Studio and Indep tools [103, 104]; the fourth

section presents two evaluation metrics for the proposed solution and finally section five

summarizes the contributions of this work and future improvements.

Chapter 6 presents my research during the three months of mobility to the Uni-

versity of Debrecen from October to December 2010 [107, 105, 106]. Together with

professor Adamko Attila, we developed a domain-specific language (DSL) for data in-

tensive application. The proof of concept resides in an Eclipse plug-in which can be

used in order to specify applications and to transform them to .NET web applications.

The benefits of the proposed DSL resides in the possibility to write transformations to

many platform specific models not only to web. Finally a comparison with WebML

[109, 86, 123, 98, 79, 17, 21, 133] and WebDSL [29, 56, 48, 49, 47] is presented.
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The research presents a DSL for specifying data intensive applications. Using the

proposed DSL a PIM of an application can be defined, then using transformations to given

PSM the source code can be automatically generated. The DSL has been implemented

using Eclipse Xtext, XPand and MWE2, based on documentations from [40, 81, 64, 74].

The terms PIM and PSM [26] are most frequently used in the context of the MDA

approach. The key concept is that it should be possible to use a MTL [35, 69, 82, 131] to

transform a PIM into a PSM [112, 31, 115, 82, 131].

This chapter proposes two transformation engines: (1) a PIM to .NET web applica-

tions engine and (2) a PIM to PHP Code Igniter applications engine. These engines are

proofs of concept presented into the Chapter 6, they demonstrate the possibility to trans-

form the platform independent model written using the proposed DSL to many platform

specific models.

Chapter 6 is structured as follows: section 1 presents the open problem in two sub-

sections: (1) problem motivation and (2) drawbacks of current DSLs for data intensive

applications; section 2 shows the technical details of the proposed solution into four sub-

sections: (1) conceptual view of the solution, (2) technical details, (3) how the solution

works and (4) a comparison with WebML and WebDSL. The DevDSL Eclipse plugin,

which is a proof of theoretical concepts, is presented in section 3 with the following sub-

sections: (1) the main architecture, (2) how it works; section four presents a list of case

studies which contains two demo applications [105] developed using the proposed DSL, a

custom transformation engine to PHP Code Igniter framework and a custom validation

mechanism for user inputs [106].

Finally, Chapter 7 presents the conclusions and future work. The intent of MDE

are: (1) improve software quality; (2) reduce the development time and budget by using

artifacts generators engines such as code generators, test cases generators etc; (3) reduce

complexity, and (4) improve reuse by enabling developers to work at higher levels of

abstraction and to ignore irrelevant details [7]. In this context, current research has been

focused on three open problems and proposed conceptual and technical solutions.

Each of the proposed solutions are accompanied by developed tools. The proposed

tools are proof of concepts presented as personal contributions. The following list presents

a short description of them:

• Indep, presented in Chapter 4 is a framework developed in order to use Java objects

in .NET and vice−versa. This framework is a proof of platform interoperability

concept presented in [108]. Indep framework provides: (1) the source code generator

for proxy objects and (2) the communication infrastructure between Java and .NET.

• Building Blocks Dev Studio, presented in Chapter 5 is a stand alone application de-

veloped in .NET. It is a proof of component-based development concept presented

in [102], and can be used together with Indep for developing component-based ap-

plications with components written in Java and .NET. The software solution has:
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(1) a graphical user interface environment for designing the components and links

between them and (2) an automatic code generator engine for components skeletons.

• DevDSL is an Eclipse plugin which implements the theoretical concepts presented

in [107]. This plugin offers: (1) a specification module which can be used in order to

write the application model and (2) a transformation engine which is used in order

to generate the .NET source code from the platform independent model written

with the specification module.
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