"BABEŞ-BOLYAI" UNIVERSITY FACULTY OF MATHEMATICS AND COMPUTER SCIENCE CLUJ-NAPOCA, ROMANIA

 $\begin{array}{c} \textbf{Habilitation Thesis} \\ \textbf{ABSTRACT} \end{array}$

Contributions to Brown Representability PROBLEM

GEORGE CIPRIAN MODOI

1 Preliminaries

Brown representability is replacement for the celebrated Freyd's Adjoint Functor Theorem, allowing us to construct adjoint functors, in the setting of triangulated categories. In the following \mathcal{T} is a triangulated category and \mathcal{A} is an additive category (often \mathcal{A} is even abelian).

We say that \mathcal{T} satisfies $Brown\ representability$ if it has coproducts and every cohomological functor $F:\mathcal{T}\to\mathcal{A}b$ which sends coproducts into products is (contravariantly) representable, that is, it is naturally isomorphic to $\mathcal{T}(-,X)$ for some $X\in\mathcal{T}$.

2 Abelianization

The category $\text{mod}(\mathcal{T})$ of all functors $F: \mathcal{T}^o \to \mathcal{A}b$ for which there is an exact sequence

$$\mathcal{T}(-,X) \to \mathcal{T}(-,Y) \to F \to 0,$$

is called the *abelianization* of \mathcal{T} .

2.1 A reformulation of Brown representability

Theorem 2.1.1. The following are equivalent, for a triangulated category with arbitrary coproducts \mathcal{T} :

- (i) \mathcal{T} satisfies the Brown representability theorem.
- (ii) For every homological, coproducts preserving functor $f: \mathcal{T} \to \mathcal{A}$, into an abelian AB3 category with enough injectives \mathcal{A} , the induced functor

$$f_*: \operatorname{mod}(\mathcal{T}) \to \mathcal{A}$$

has a right adjoint.

- (iii) Every exact, coproducts preserving functor $F : \text{mod}(\mathcal{T}) \to \mathcal{A}$, into an abelian AB3 category with enough injectives \mathcal{A} , has a right adjoint.
- (iv) Every exact, coproducts preserving functor $F : mod(\mathcal{T}) \to \mathcal{A}b^o$ has a right adjoint.

2.2 Heller's criterion revisited

We say that $F: \mathcal{T} \to \mathcal{A}b$ has a solution object provided that there is an object $S \in \mathcal{T}$ and a functorial epimorphism

$$\mathcal{T}(S,-) \to F \to 0.$$

The next Theorem was shown by Heller in [28, Theorem 1.4], hence we call it *Heller's criterion* of representability.

Theorem 2.2.3. If \mathcal{T} is a triangulated category with products, then a homological product preserving functor $F: \mathcal{T} \to \mathcal{A}b$ is representable if and only if it has a solution object.

3 Deconstructibility in triangulated categories

3.1 Deconstructibility

Consider a Σ -closed set of objects in \mathcal{T} and denote it by \mathcal{S} . We define $\operatorname{Prod}(\mathcal{S})$ to be the full subcategory of \mathcal{T} consisting of all direct factors of products of objects in \mathcal{S} . Next we define inductively $\operatorname{Prod}_0(\mathcal{S}) = \{0\}$ and $\operatorname{Prod}_n(\mathcal{S})$ is the full subcategory of \mathcal{T} which consists of all objects Y lying in a triangle

$$X \to Y \to Z \to \Sigma X$$

with $X \in \operatorname{Prod}(\mathcal{S})$ and $Z \in \operatorname{Prod}_n(\mathcal{S})$. An object $X \in \mathcal{T}$ will be called \mathcal{S} cofiltered if it may be written as a homotopy limit $X \cong \operatorname{\underline{holim}} X_n$ of an inverse
tower

$$X_0 \leftarrow X_1 \leftarrow X_2 \leftarrow \cdots$$

with $X_0 \in \operatorname{Prod}_0(\mathcal{S})$, and X_{n+1} lying in a triangle $P_n \to X_{n+1} \to X_n \to \Sigma P_n$, for some $P_n \in \operatorname{Prod}_1(\mathcal{S})$. Inductively we have $X_n \in \operatorname{Prod}_n(\mathcal{S})$, for all $n \in \mathbb{N}^*$.

We say that \mathcal{T} (respectively, \mathcal{T}^o) is deconstructible if \mathcal{T} has coproducts (products) and there is a Σ -closed set $\mathcal{S} \subseteq \mathcal{T}$, which is not a proper class, such that every object $X \in \mathcal{T}$ is \mathcal{S} -filtered (cofiltered).

Theorem 3.1.3. Let \mathcal{T} be a triangulated category with products. If \mathcal{T}^o is deconstructible, then \mathcal{T}^o satisfies Brown representability.

This Theorem is called the *deconstructibility criterion* for Brown representability.

3.3 Well-generation and deconstructibility

Theorem 3.3.3. Let \mathcal{T} be a triangulated category with coproducts which is \aleph_1 -perfectly generated by a set. Then \mathcal{T} is deconstructible and satisfies Brown representability.

Corollary 3.3.5. If \mathcal{T} is a well-generated triangulated category then \mathcal{T} is deconstructible, therefore it satisfies Brown representability.

4 Quasi-locally presentable categories

4.1 Quasi-locally presentable abelian categories

Denote by \Re the class of all regular cardinals.

We consider a cocomplete category A which is a union

$$\mathcal{A} = \bigcup_{\lambda \in \mathfrak{R}} \mathcal{A}_{\lambda},$$

of a chain of subcategories $\{\mathcal{A}_{\lambda} \mid \lambda \in \mathfrak{R}\}$ such that $\mathcal{A}_{\kappa} \subseteq \mathcal{A}_{\lambda}$ for all $\kappa \leq \lambda$, the subcategory \mathcal{A}_{λ} locally λ -presentable and the inclusion functor $I_{\lambda} : \mathcal{A}_{\lambda} \to \mathcal{A}$ has a right adjoint $R_{\lambda} : \mathcal{A} \to \mathcal{A}_{\lambda}$, for any $\lambda \in \mathfrak{R}$. closed under colimits in \mathcal{A} , for any $\lambda \in \mathfrak{R}$. We call *quasi-locally presentable* a category \mathcal{A} as above satisfying the additional property that R_{λ} preserves colimits for all $\lambda \in \mathfrak{R}$.

Theorem 4.1.5. Let A be a quasi-locally presentable, abelian category satisfying some additional technical conditions. Then every exact, contravariant functor $F: A \to Ab$ which sends coproducts into products is representable (necessarily by an injective object).

4.2 The abelianization of a well–generated triangulated category is quasi-locally presentable

Proposition 4.2.2. Fix a regular cardinal $\kappa > \aleph_0$. If \mathcal{T} is a a well-generated, namely compactly κ -generated triangulated category, then $\operatorname{mod}(\mathcal{T})$ is a quasi-locally presentable abelian category satisfying the additional propreties from Theorem 4.1.5.

5 Homotopy category of complexes

5.1 Homtopy categories satisfying Brown representability

The category \mathcal{T} is called *locally well-generated* if for any set \mathcal{S} (not a proper class!) of objects of \mathcal{T} , Loc(\mathcal{S}) is well-generated.

Theorem 5.1.3. Let \mathcal{T} be a locally well–generated triangulated category. Then \mathcal{T} satisfies Brown representability if and only if \mathcal{T} is well–generated. In particular, if R is a ring which is not right pure semisimple, for instance $R = \mathbb{Z}$, then $\mathbf{K}(\operatorname{Mod}(R))$ does not satisfy Brown representability.

5.2 Brown representability for the dual of a homotopy category

We say that \mathcal{A} has a product generator if there is an object $G \in \mathcal{A}$ such that $\mathcal{A} = \operatorname{Prod}(G)$.

Theorem 5.2.6. Let A be an additive category with products. If $\mathbf{K}(A)^o$ satisfies Brown representability, then A has a product generator. In particular $\mathbf{K}(Ab)^o$ does not satisfy Brown representability.

Theorem 5.2.10. Let A be an additive category with products and split idempotents, possessing also images or kernels. Then $\mathbf{K}(A)^o$ satisfies Brown representability if and only if A has a product generator. In particular, if R is a ring then $\mathbf{K}(\operatorname{Mod}(R))^o$ satisfies Brown representability if and only if $\operatorname{Mod}(R)$ has a product generator.

5.3 Functors without adjoints

Theorem 5.3.1. Let R be a countable ring and let \mathcal{D} be the class of all right flat Mittag-Leffler R-modules in the sense of [71]. Then $\mathbf{K}(\mathcal{D})$ is always closed under coproducts in $\mathbf{K}(\operatorname{Mod}(R))$, but the inclusion functor $\mathbf{K}(\mathcal{D}) \to \mathbf{K}(\operatorname{Mod}(R))$ has a right adjoint if and only if R is a right perfect ring. In particular, a right adjoint does not exist for $R = \mathbb{Z}$.

6 Brown representability for the dual

6.1 The dual of Brown representability for some derived categories

For a complex X^{\bullet} consider the inverse tower

$$X^{\geq 0} \leftarrow X^{\geq -1} \leftarrow X^{\geq -2} \leftarrow \cdots$$

obtained from the so called "clever" truncations of X^{\bullet} .

Following [65], the category $\mathbf{D}(\mathcal{A})$ is said to be *left-complete*, provided that it has products and with the notation above $X^{\bullet} \cong \underline{\text{holim}} X^{\geq -n}$.

Theorem 6.1.1. Let \mathcal{A} be a complete abelian category possessing an injective cogenerator, and let $\mathbf{D}(\mathcal{A})$ be its derived category. If $\mathbf{D}(\mathcal{A})$ is left-complete, then $\mathbf{D}(\mathcal{A})$ has small hom-sets and $\mathbf{D}(\mathcal{A})^{\circ}$ satisfies Brown representability.

Corollary 6.1.2. Let \mathcal{A} be an abelian complete category possessing an injective cogenerator. If \mathcal{A} is $AB4^*$ -n, for some $n \in \mathbb{N}$ and $\mathbf{D}(\mathcal{A})$ has products, then $\mathbf{D}(\mathcal{A})$ has small hom-sets and $\mathbf{D}(\mathcal{A})^o$ satisfies Brown representability.

Corollary 6.1.4. Let \mathcal{A} be an abelian complete category possessing an injective cogenerator. If \mathcal{A} is of finite global injective dimension and $\mathbf{D}(\mathcal{A})$ has products, then $\mathbf{D}(\mathcal{A})$ has small hom–sets and $\mathbf{D}(\mathcal{A})^o$ satisfies Brown representability.

Corollary 6.1.5. If A is the category of quasi-coherent sheaves over a quasi-compact and separated scheme then $\mathbf{D}(A)$ has small hom-sets and $\mathbf{D}(A)^o$ satisfies Brown representability. In particular, the conclusion holds for the category A of quasi-coherent sheaves over \mathbb{P}^d_R , where \mathbb{P}^d_R is the projective d-space, $d \in \mathbb{N}^*$, over an arbitrary commutative ring with one R.

6.3 The dual of Brown representability for homotoy category of projectives

Theorem 6.3.2. If R is a ring with several objects, then $\mathbf{K}(\text{Proj}(R))^o$ satisfies Brown representability.

Corollary 6.3.4. If R is a ring, then the dual of the homotopy category of pure–projective modules satisfies Brown representability.

Theorem 6.3.8. For a quiver Q we denote by Mod(R,Q) the categorii of all representations of R-modules of Q and by Proj(R,Q) the subcategory of projective objects in Mod(R,Q). Then $\mathbf{K}(Proj(R,Q))^o$ satisfies Brown representability.

Bibliography

- [1] J. Adámek and J. Rosický *Locally presentable and accessible categories*, Cambridge University Press, 1994.
- [2] L. Alonso Tarrío, A. Jeremías López, M. J. Souto Salorio, Localization in categories of complexes and unbounded resolutions, Canad. J. Math., 52
 (2) (2000), 225–247.

- [3] G. Azumaya, A. Facchini, Rings of pure global dimension zero and Mittag-Leffler modules, J. Pure Appl. Algebra, 62(2):109–122, 1989.
- [4] P. Balmer, M. Schlichting, *Idempotent completion of triangulated cate-gories*, J. Algebra, **236**(2), 2001, 819–834.
- [5] S. Bazzoni, J. Stovíček. Flat Mittag-Leffler modules over countable rings, Proc. Amer. Math. Soc., 140 (2012), 1527-1533
- [6] A. Beligiannis, Relative homological algebra and purity in triangulated categories, J. Algebra, 227 (2000), 268–361.
- [7] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux Pervers, in Analysis and topology on singular spaces, Soc. Math. France, Paris, Asterisque, 100 (1982), 5–171.
- [8] S. Breaz, Σ-pure injectivity and Brown representability, Proc. Amer. Math. Soc. 143 (2015), 2789–2794.
- [9] S. Breaz, G. C. Modoi, A reformulation of Brown representability theorem, Mathematica(Cluj), **51**(2009), 129–133.
- [10] S. Breaz, G. C. Modoi, Ideal cotorsion theories in triangulated categories, preprint, arXiv:1501.06810 [math.CT].
- [11] S. Breaz, G. C. Modoi, Equivalences induced by infinitely generated silting modules, preprint, arXiv:1705.10981 [math.RT].
- [12] S. Breaz, G. C. Modoi, *Derived equivalences induced by good silting complexes*, preprint, arXiv:1707.07353 [math.RT].
- [13] S. Brenner, M. C. R. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, in Representation Theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), volume 832 of Lecture Notes in Math., 103–169. Springer, Berlin, 1980.
- [14] E. H. Brown, Cohomology theories, Annals Math., **75** (1962) 467–484.
- [15] C. Casacuberta, J. Gutiérez, J. Rosický, Are all localizing subcategories of stable homotopy category coreflective?, Adv. Math., 252 (2014) 158–184.
- [16] C. Casacuberta, A. Neeman. Brown representability does not come for free Math. Res. Lett., **16** (2009), 1–5.
- [17] S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc., 97 (1960), 457–473.
- [18] X.W. Chen, Homotopy equivalences induced by balanced pairs, J. Algebra, 324 (2010), 2718–2731.
- [19] J. D. Christensen, Ideals in triangulated categories: phantoms, ghosts and skeleta. Adv. Math. 136 (1998), 284–339.
- [20] P. C. Eklof, A. H. Mekler, Almost free modules, volume 65 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, revised edition, 2002. Set-theoretic methods.

- [21] J. Franke, On the Brown representability theorem for triangulated categories, Topology, **40** (2001), 667–680.
- [22] P. Freyd, Abelian Categories. An Introduction to the Theory of Functors, Harper & Row, New York, 1964.
- [23] X.H. Fu, P.A. Guil Asensio, I. Herzog, B. Torrecillas, *Ideal Approximation Theory*, Adv. Math. 244 (2013), 750–790.
- [24] X.H. Fu, I. Herzog, Powers of the Phantom Ideal, Proc. London Math. Soc., 112 (2016), 714–752.
- [25] L. Fuchs. Infinite abelian groups. Vol. II. Academic Press, New York, 1973. Pure and Applied Mathematics. Vol. 36-II.
- [26] P. Gabriel, F. Ulmer, *Lokal präsentierbare Kategorien*, Springer Lecture Notes in Math., **221**, Berlin–Heidelberg, 1971.
- [27] R. Göbel, J. Trlifaj, Approximatins and Endomorphisms Algebras of Modules, De Gruyter Expositions in Mathematics, 41, Walter de Gruyter, 2006.
- [28] A. Heller, On the representability of homotopy functors, J. London Math. Soc., 23, (1981), 551–562.
- [29] D. Herbera, J. Trlifaj. Almost free modules and Mittag-Leffler conditions Adv. Math., 229 (2012), 3436–3467.
- [30] A. Hogadi, C. Xu, *Products, homotopy limits and applications*, preprint arXiv:0902.4016 [math CT].
- [31] Hovey, M. (1999). Model Categories, AMS Mathematical Surveys and Monographs 63, Providence, RI.
- [32] M. Hovey, Cotorsion pairs, model category structures, and representation theory, Math. Z., **241** (2002), 553–592.
- [33] M. Hovey, Brown representability and the Eilenberg-Watts theorem in homotopical algebra Proc. Am. Math. Soc., 143 (2015), 2269–2279.
- [34] S. Iyengar, H. Krause, Acyclicity versus total acyclicity for complexes over noetherian rings, Doc. Math. 11 (2006), 207–240.
- [35] B. Keller, Derived categories and their uses, Chapther of Handbook of Algebra, edited by M. Hazewinkel, Elsevier 1996.
- [36] B. Keller, Introduction to abelian and derived categories, in Representations of Reductive Groups, edited by R. W. Carter and M. Geck, Cambridge University Press 1998, 41–62.
- [37] B. Keller, On the construction of triangle equivalences, contribution to S. König, A. Zimmermann, Derived equivalences of group rings, Lecture notes in Mathematics 1685, Springer, Berlin, Heidelberg, 1998.
- [38] B. Keller, P. Nicolás, Weight structures and simple dg modules for positive dg algebras, Int. Math. Res. Not., 5 (2013), 1028–1078.

- [39] Krause, H. Functors on locally finitely presented additive categories. Colloq. Math. **75**(1998): 105–132.
- [40] H. Krause, Smashing subcategories and the telescope conjecture an algebraic approach, Invent. Math. 139(2000), 99–133.
- [41] H. Krause, The spectrum of a module category, Mem. Amer. Math. Soc. 149 (2001), x+125 pp.
- [42] H. Krause, On Neeman's well generated triangulated categories, Documenta Math. 6(2001), 121–126.
- [43] H. Krause, A Brown representability theorem via coherent functors, Topology, 41(2002), 853–561.
- [44] H. Krause. Localization theory for triangulated categories, in Triangulated categories, volume 375 of London Math. Soc. Lecture Note Ser., pages 161–235. Cambridge Univ. Press, Cambridge, 2010.
- [45] H. Krause. Approximations and adjoints in homotopy categories, Math. Ann., **353** (2012), 765–781.
- [46] S. Maclane, Categories for the Working Mathematician, Springer Verlag, New York, Heidelberg, Berlin, 1971.
- [47] D. Miličić, Lectures on Derived Categories, preprint available at author's homepage: http://www.math.utah.edu/milicic/
- [48] B. Mitchell, Theory of Categories, Academic Press, NY and London, 1965.
- [49] G. C. Modoi, On perfectly generating projective classes in triangulated categories, Comm. Algebra, **38** (2010), 995–1011.
- [50] G. C. Modoi, A representability theorem for some huge abelian categories, Homology Homotopy Appl., **14(2)** (2012), 23–36.
- [51] G. C. Modoi, The dual of Brown representability for homotopy categories of complexes, J. Algebra, **392** (2013), 115–124.
- [52] G. C. Modoi, The dual of the homotopy category of projective modules satisfies Brown representability, B. Lond. Math. Soc., 46 (2014), 765-770.
- [53] G. C. Modoi, Constructing cogenerators in triangulated categories and Brown representability, J. Pure Appl. Algebra, 219 (2015), 3214-3224.
- [54] G. C. Modoi, The dual of Brown representability for some derived categories, Arkiv for Mathematik, 54 (2016), 485-498.
- [55] G. C. Modoi, Reasonable triangulated categories have filtered enhancements, preprint, arXiv:1711.06331 [math.CT].
- [56] G. C. Modoi, J. Štovíček, Brown representability often fails for homotopy categories of complexes, J. K-Theory, 9 (2012), 151–160.
- [57] D. Murfet, The Mock Homotopy Category of Projectives and Grothendieck Duality, Ph.D. Thesis, Australian National University, Canberra, 2007.

- [58] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z., 193 (1986), 113–146.
- [59] Neeman, A. The Grothendieck duality theorem via Bousfield techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), 205–236.
- [60] A. Neeman, Triangulated Categories, Annals of Mathematics Studies, 148, Princeton University Press, Princeton, NJ, 2001.
- [61] A. Neeman, Brown Representability follows from Rosický's theorem, J. Topology, 2(2009), 262–276.
- [62] A. Neeman, The homotopy category of flat modules, and Grothendieck duality, Invent. Math., 174, (2008), 255–308.
- [63] A. Neeman, Some adjoints in homotopy categories, Ann. Math., 171 (2010), 2142–2155.
- [64] A. Neeman, Explicit cogenerators for the homotopy category of projective modules over a ring, Ann. Sci. Éc. Norm. Sup., 44 (2011), 607–629.
- [65] A. Neeman, Non-Left-Complete Derived Categories, Math Ress. Notes, 18 (2011), 827–832.
- [66] P. Nicolás, M. Saorín, Generalized tilting theory, Appl. Categ. Struct. (2017), https://doi.org/10.1007/s10485-017-9495-x.
- [67] Popescu, N., Popescu, L. (1979). *Theory of Categories*, Editura Academiei, București and Sijthoff & Noordhoff International Publishers.
- [68] M. Porta, The Popescu-Gabriel theorem for triangulated categories, Adv. Math., 225 (2010), 1669–1715.
- [69] C. Psaroudakis, J. Vitória, Realization functors in tilting theory, Math. Z. (2017), https://doi.org/10.1007/s00209-017-1923-y.
- [70] J. E. Roos, Derived functors of inverse limits revisited, J. London Math. Soc., 73 (2006), 65–83.
- [71] M. Raynaud, L. Gruson, Critères de platitude et de projectivité. Techniques de "platification" d'un module, Invent. Math., 13, (1971), 1–89.
- [72] N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. **65** (1988), 121–154.
- [73] B. Stenström, Rings of Quotients, Springer-Verlag, Berlin, Heidelberg, N.Y., 1975.
- [74] J. Štovíček. Locally well generated homotopy categories of complexes, Doc. Math., 15 (2010), 507–525.
- [75] J. Štovíček, Derived equivalences induced by big cotilting modules, Adv. Math., 263 (2014), 45–87,
- [76] J. Trlifaj, Brown representability test problems for locally Grothendieck categories, Appl. Cat. Struct., **20** (2012), 97–102.

- [77] R. Vakil, Foundations of Algebraic Geometry, http://math.stanford.edu/~vakil/216blog/FOAGjun1113public.pdf
- [78] E. A. Walker. The groups P_{β} . In Symposia Mathematica, Vol. XIII (Convegno di Gruppi Abeliani, INDAM, Rome, 1974), pages 245–255. Academic Press, London, 1974.
- [79] C. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Math. 38, Cambridge Univ. Press, Cambridge, 1994.