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1 Preliminaries

Brown representability is replacement for the celebrated Freyd’s Adjoint Functor
Theorem, allowing us to construct adjoint functors, in the setting of triangulated
categories. In the following T is a triangulated category and A is an additive
category (often A is even abelian).

We say that T satisfies Brown representability if it has coproducts and every
cohomological functor F' : 7 — Ab which sends coproducts into products is
(contravariantly) representable, that is, it is naturally isomorphic to T (—, X)
for some X € T.

2 Abelianization

The category mod(7) of all functors F': 7° — Ab for which there is an exact
sequence
T(—X)—=T(-Y)—=F—=0,

is called the abelianization of T.

2.1 A reformulation of Brown representability

Theorem 2.1.1. The following are equivalent, for a triangulated category with
arbitrary coproducts T :

(i) T satisfies the Brown representability theorem.

(i) For every homological, coproducts preserving functor f : T — A, into an
abelian ABS category with enough injectives A, the induced functor

fe :mod(T) — A
has a right adjoint.

(i1i) Every ezact, coproducts preserving functor F : mod(T) — A, into an
abelian ABS3 category with enough injectives A, has a right adjoint.

(iv) Every exact, coproducts preserving functor F' : mod(T) — Ab° has a right
adjoint.
2.2 Heller’s criterion revisited

We say that F': T — Ab has a solution object provided that there is an object
S € T and a functorial epimorphism

T(S,—)— F—0.

The next Theorem was shown by Heller in [28, Theorem 1.4], hence we call it
Heller’s criterion of representability.

Theorem 2.2.3. If T is a triangulated category with products, then a homo-
logical product preserving functor F' : T — Ab is representable if and only if it
has a solution object.



3 Deconstructibility in triangulated categories

3.1 Deconstructibiliy

Consider a Y-closed set of objects in 7 and denote it by S. We define Prod(S)
to be the full subcategory of 7 consisting of all direct factors of products of
objects in S. Next we define inductively Prody(S) = {0} and Prod,,(S) is the
full subcategory of 7 which consists of all objects Y lying in a triangle

X—-Y—>7—-%¥YX

with X € Prod(S) and Z € Prod,(S). An object X € T will be called S-
cofiltered if it may be written as a homotopy limit X = holim X,, of an inverse
tower

Xo%X1<—X2(—"'

with Xy € Prody(S), and X, 11 lying in a triangle P, — X,,11 — X,, = XP,,
for some P,, € Prod;(S). Inductively we have X,, € Prod,(S), for all n € N*.

We say that T (respectively, 7°) is deconstructible if T has coproducts (prod-
ucts) and there is a X-closed set S C 7, which is not a proper class, such that
every object X € T is S-filtered (cofiltered).

Theorem 3.1.3. Let T be a triangulated category with products. If T° is
deconstructible, then T° satisfies Brown representability.

This Theorem is called the deconstructibility criterion for Brown repre-
sentability.

3.3 Well-generation and deconstructibility

Theorem 3.3.3. Let T be a triangulated category with coproducts which is
Ny -perfectly generated by a set. Then T is deconstructible and satisfies Brown
representability.

Corollary 3.3.5. If T is a well-generated triangulated category then T is de-
constructible, therefore it satisfies Brown representability.

4 Quasi-locally presentable categories

4.1 Quasi-locally presentable abelian categories

Denote by fR the class of all regular cardinals.
We consider a cocomplete category A which is a union

A= ] A,

AER

of a chain of subcategories {Ay | A € R} such that A,, C A, for all k < A, the
subcategory Ay locally A-presentable and the inclusion functor Iy : Ay — A
has a right adjoint Ry : A — A, for any A € R. closed under colimits in A, for
any A € R. We call quasi-locally presentable a category A as above satisfying
the additional property that Ry preserves colimits for all A € fR.



Theorem 4.1.5. Let A be a quasi-locally presentable, abelian category satisfying
some additional technical conditions. Then every exact, contravariant functor
F: A — Ab which sends coproducts into products is representable (necessarily
by an injective object).

4.2 The abelianization of a well-generated triangulated
category is quasi-locally presentable

Proposition 4.2.2. Fiz a regular cardinal kK > Rg. If T is a a well-generated,
namely compactly k—generated triangulated category, then mod(T) is a quasi-
locally presentable abelian category satisfying the additional propreties from The-
orem 4.1.5.

5 Homotopy category of complexes

5.1 Homtopy categories satisfying Brown representability

The category T is called locally well-generated if for any set S (not a proper
class!) of objects of T, Loc(S) is well-generated.

Theorem 5.1.3. Let T be a locally well-generated triangulated category. Then
T satisfies Brown representability if and only if T is well-generated. In partic-
ular, if R is a ring which is not right pure semisimple, for instance R = Z, then
K(Mod(R)) does not satisfy Brown representability.

5.2 Brown representability for the dual of a homotopy
category

We say that A has a product generator if there is an object G € A such that
A = Prod(G).

Theorem 5.2.6. Let A be an additive category with products. If K(A)° satisfies
Brown representability, then A has a product generator. In particular K(Ab)°
does not satisfy Brown representability.

Theorem 5.2.10. Let A be an additive category with products and split idem-
potents, possessing also images or kernels. Then K(A)° satisfies Brown repre-
sentability if and only if A has a product generator. In particular, if R is a ring
then K(Mod(R))® satisfies Brown representability if and only if Mod(R) has a
product generator.

5.3 Functors without adjoints

Theorem 5.3.1. Let R be a countable ring and let D be the class of all right
flat Mittag—Leffler R-modules in the sense of [71]. Then K(D) is always closed
under coproducts in K(Mod(R)), but the inclusion functor K(D) — K(Mod(R))
has a right adjoint if and only if R is a right perfect ring. In particular, a right
adjoint does not exist for R = 7.



6 Brown representability for the dual

6.1 The dual of Brown representability for some derived
categories

For a complex X*® consider the inverse tower
X220 X2l X272 .

obtained from the so called ”clever” truncations of X*°.
Following [65], the category D(.A) is said to be left—complete, provided that
it has products and with the notation above X*® = Qolim xXz-n,

Theorem 6.1.1. Let A be a complete abelian category possessing an injective
cogenerator, and let D(A) be its derived category. If D(A) is left-complete, then
D(A) has small hom—sets and D(A)° satisfies Brown representability.

Corollary 6.1.2. Let A be an abelian complete category possessing an injective
cogenerator. If A is AB4*-n, for some n € N and D(A) has products, then
D(A) has small hom-sets and D(A)° satisfies Brown representability.

Corollary 6.1.4. Let A be an abelian complete category possessing an injective
cogenerator. If A is of finite global injective dimension and D(A) has products,
then D(A) has small hom—sets and D(A)° satisfies Brown representability.

Corollary 6.1.5. If A is the category of quasi-coherent sheaves over a quasi-
compact and separated scheme then D(A) has small hom—sets and D(A)° satis-
fies Brown representability. In particular, the conclusion holds for the category
A of quasi-coherent sheaves over ]P’%, where P‘Ii% is the projective d-space, d € N*,
over an arbitrary commutative ring with one R.

6.3 The dual of Brown representability for homotoy cat-
egory of projectives

Theorem 6.3.2. If R is a ring with several objects, then K(Proj(R))° satisfies
Brown representability.

Corollary 6.3.4. If R is a ring, then the dual of the homotopy category of
pure—projective modules satisfies Brown representability.

Theorem 6.3.8. For a quiver Q we denote by Mod(R, Q) the categorii of all
representations of R-modules of @ and by Proj(R, Q) the subcategory of projec-
tive objects in Mod(R, Q). Then K(Proj(R,Q))° satisfies Brown representabil-
ity.
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