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Introduction

Nowadays advanced laser facilities can routinely achieve intensities of
the order of 1015 W/cm2 and pulse lengths of the order of 10 fs, which cor-
responds to a few cycles of an electrical field of 800 nm wavelength [1–3].
In the past years research activities have turned to investigations of the
interactions between such short and strong pulses with matter. Dur-
ing the interaction of such laser beams and atoms or molecules new and
only partially understood processes are taken place. In very a simpli-
fied picture, the interaction between atoms and strong, ultrashort laser
pulses can be understood using the simple man’s three step model [4]. In
the first step the atoms are ionized by the external laser field via mul-
tiphoton ionization (MPI), tunneling ionization (TI), or over-the-barrier
ionization (OBI)(also called direct ionization) depending on the field’s
parameters. In the second step the free electron wave packet is moving
under the influence of the external laser field, while in the third step, de-
pending on the field parameters, the free electron wave packet may return
to the vicinity of the parent ion, where it interacts with the ion. In this
third step the returning electron wave packet may excite, further ionize
the parent ion, or it may be reabsorbed by the parent ion followed by the
emission of an energetic photon (high harmonics generation (HHG)).

The subject of the present thesis is the investigation of the direct
ionization process, which is the first step of the three step model. The
further propagation and the eventual recollision of the free electron wave
packet with the parent ion is not the subject of the present work. All
the theoretical investigations of the ionization processes are based on the
solution of the time dependent Schrödinger equation (TDSE). Since ex-
act analytical solution of the TDSE does not exist even for the simplest
system (hydrogen atom in electromagnetic field), there are two possible
approaches to solve the TDSE. The first possibility is the direct numeri-
cal solution of the TDSE using various techniques. These approaches are
“exact” and provide accurate results, but they involve extensive numeri-
cal calculations with high computational costs (memory and CPU time).
The second possibility is the approximate solution of the TDSE, which
has the advantage that involves much less computations, but they provide
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Chapter 1. Introduction

less accurate results.
In the first part of the thesis we will present an approximate theoret-

ical approach, which can be considered as viable alternate to Coulomb-
Volkov (CV) models. Our theoretical approach is based on the first order
iterative solution of the TDSE in momentum space. This approach is
closely related to the strong-field approximation (SFA) [5]. The main
difference between our method and the SFA is that we perform our calcu-
lations in momentum space. Therefore, to distinguish our scheme from the
traditional SFA, we call our approach the momentum-space strong-field
approximation (MSSFA). The main advantage of this approach stands in
its simplicity and in the fact, that the intermediate excited bound states
are implicitly included in the ionization dynamics. The main shortcom-
ing of the MSSFA is that it considers the Coulomb interaction between
the core and the active electron only as a first order perturbation, which
limits the applicability of the model at lower laser field intensities. The
theoretical foundations of the MSSFA model are presented in chapter 2,
while its viability is tested in chapter 3., where it is applied to describe
the ionization of hydrogen type systems by ultrashort laser pulses.

In the second part of the thesis a numerical approach is presented for
the solution of the TDSE. In this approach the time dependent wave
function of the system is expanded in terms of Volkov wave functions,
and for the expansion coefficients an integro-differential equation is estab-
lished based on the TDSE. The expansion coefficients are discretized on
a finite element discrete variable representation (FEDVR) numerical grid
and according to the integro-differential equation, they are propagated in
time using the Kutta-Merson method. The advantage of the present ap-
proach is that the expansion coefficients are coupled only by the Coulomb
potential, but this simplification comes with the price that this coupling
is not sparse, which significantly complicates the numerical calculations.
The main advantage of the approach surface, when it is applied to study
the ionization of molecules, where the Coulomb potential is multicentered.
These multicentered Coulomb potentials have several singularities (one in
each center), and the numerical treatment of these singularities in coor-
dinate space is difficult, because they are not located at the center of the
coordinate system. In our numerical approach these Coulomb singulari-
ties can be easily eliminated even in the case of the multicenter potentials,
where all singularities are reduced to only one.
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TDSE in momentum space

In the present chapter the TDSE written in momentum space for
atomic systems in external electromagnetic fields is analyzed in detail,
and iterative approximate solutions of the TDSE are presented.

General Considerations

The time evolution of atomic systems in the presence of one intense
ultrashort laser pulse is investigated. The studied atomic system consist
of an active electron moving in an effective Coulomb potential, V (~r),
describing the interaction between the active electron and the rest of the
atomic system.

In the literature there are two alternate ways [5] to describe theoret-
ically the few-cycle ultrashort laser pulses. The first one specifies the
electric field of the pulse, while the second one its vector potential. In
the present work we define the linearly polarized laser pulse by its electric
component and we use a sine-square envelope function:

~E(t) =
{
ε̂E0 sin

[
ω(t− τ

2 )− π
2

]
sin2

(
πt
τ

)
if t ∈ [0, τ ]

0 elsewhere , (1)

where ε̂ is the polarization vector, ω is the frequency of the carrier wave, τ
is the pulse duration, and E0 is the strength of the laser field. The shape
of a typical pulse used in the present calculations is presented on Fig. 1.

The Hamiltonian of the studied atomic system is expressed as

Ĥ =
p̂2

2
+ ~r · ~E(t) + V (~r), (2)

where ~r · ~E(t) is the interaction potential between the active electron and
the laser pulse in length gauge.

Using expression (2) for the Hamiltonian, the TDSE describing the
time evolution of the active electron is written as

i
∂

∂t
Ψ(~r, t) =

[
p̂2

2
+ ~r · ~E(t) + V (~r)

]
Ψ(~r, t), (3)
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Chapter 2. TDSE in momentum space
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Figure 1: The shape of the pulses in time (a) and in frequency domain. The param-
eters of the pulse are: ω = 0.05 a.u., E0 = 1 a.u. and τ = 5 a.u.

where Ψ(~r, t) is the time-dependent wave function. In the present ap-
proach the wave function is searched in the following form

Ψ(~r, t) =
∫
d~kc(~k, t)ΨV (~k,~r, t), (4)

with ΨV (~k, ~r, t) being the Volkov wave functions. By substituting the
time-dependent wave function of Eq. (4) into the TDSE given by Eq. (3)
the following integro-differential equation for the c(~k, t) expansion coeffi-
cients can be obtained

∂

∂t
c(~k, t) = − i

(2π)3
e

i
2 [k2t+2~k·~F (t)]

∫
d~pc(~p, t)e−

i
2 [p2t+2~p·~F (t)]I(~p−~k), (5)

where
I(~s) =

∫
d~r V (~r)ei~s·~r (6)

is the Fourier transform of the Coulomb potential.
Regardless of the method used to solve Eq. (5), an initial condition is

needed:
c(~k, t = 0) ≡ c(0)(~k) =

1
(2π)3

〈
ei
~k·~r | ψi(~r)

〉
, (7)

where ψi(~r) is the initial state wave function.
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Chapter 2. TDSE in momentum space

Volkov solution

The simplest possible way of solving Eq. (5) is by neglecting com-
pletely the Coulomb potential (V (~r) = 0), which can be considered as a
zeroth order iterative solution of Eq. (5):

c(~k, t) = c(~k, t = t) ≡ c(0)(~k). (8)

This approximate solution in the literature is known as the Volkov or
sudden SFA model [6].

MSSFA solution

In most cases, the Volkov model (see Eq. (8)) does not provide ac-
curate results, and higher order approximations are needed. In the first
order iterative approximation, Eq. (5) can be given as follows:

∂

∂t
c(1)(~k, t) = − i

(2π)3
e

i
2 [k2t+2~k·~F (t)]

∫
d~pc(0)(~p)e−

i
2 [p2t+2~p·~F (t)]I(~p− ~k).

(9)
The advantage of this approach is that it eliminates the direct coupling
between the expansion coefficients c(~k, t), making easier and faster the
solution of Eq. (5). Our present approach is similar to the SFA em-
ployed by Milošević et al [5]. Therefore, to distinguish our scheme from
the traditional SFA, we call our model the momentum-space strong-field
approximation (MSSFA).

Ionization probability densities

Using plane waves to describe the free electronic states with momen-
tum ~k, the ionization probability density can be calculated as follows:

dP

d~k
= (2π)3

∣∣∣c(~k − ~A(τ), τ
)∣∣∣2 . (10)

The plane wave functions are not orthogonal to the bound wave functions,
thus the ionization probability densities calculated based on Eq. (10)
contain the contribution of the bound states. The results may be improved
by removing these bound states from the time-dependent wave function
using the the Gram-Schmidt algorithm.
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Application of the MSSFA
model

In the first part of this chapter the accuracy of the MSSFA is verified
by applying it to study the ionization of the hydrogen atom by ultrashort
laser pulses. In the second part of the chapter the MSSFA and VOLKOV
models are extended in order to describe the ionization of the hydrogen
type systems. A general scaling law valid for the ionization probability
densities is also derived.

Ionization of the hydrogen atom

Our theoretical approaches, MSSFA and VOLKOV models, were ap-
plied to study the ionization of the hydrogen atom in the over-the-barrier
regime [7]. The ionization process in this regime is considered to be a
classical one, and it is believed that it can be described well by classical
models like the classical trajectory Monte Carlo method (CTMC). Where
“exact” published data [8] are not available, CTMC results will be used
as reference. Beside testing the validity of our MSSFA approach we also
studied the effect of the Coulomb potential during, and after the laser
pulse by analyzing the angular distribution of the free electrons at given
energies and the ionization probability densities.

Results and Discussions

Calculations were performed using laser pulses with duration τ of 3
a.u., 5 a.u. and 10 a.u. at two different field intensities (E0 = 1 a.u. and
E0 = 10 a.u.). The frequency of the carrier wave is fixed at ω = 0.05 a.u.
These pulse parameters limits the value of the Keldysh parameter below
0.05, which are characteristic values for the over-the-barrier ionization.

The double-differential ionization probability densities calculated us-
ing the Volkov model (VOLKOV), MSSFA, and CTMC [7] models are
presented in Fig. 2, where they are plotted as a function of the elec-
tron energy and ejection angle. At first sight one may observe that at
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Chapter 3. Application of the MSSFA model

VOLKOV MSSFA CTMC

Figure 2: Two-dimensional ionization probability density in the yOz positive semi-
plane as a function of the electron energy and ejection angle at fixed laser pulse pa-
rameters: ω = 0.05 a.u., τ = 5 a.u. and E0 = 1 a.u.

a large scale all three models predict the same probability densities. In
each approach the electrons are ejected with maximum probability along
the polarization vector ε̂ with energy around the value ~A(τ)2/2, which is
gained by the momentum transfer ~A(τ) from the external laser field.

After a detailed analysis, however, important differences can be ob-
served. In the case of the MSSFA and CTMC models the maxima of the
predicted probability densities are shifted toward smaller energies. This
shift is caused by the Coulomb attraction during the ionization between
the active electron and the rest of the system.

The ionization spectra are calculated from the double differential ion-
ization probability densities by integrating over the ejection angle. Figure
3 shows the dP/dE probability densities calculated using the MSSFA,
VOLKOV, and CTMC models along with the results of TDSE and CV
calculations obtained by Duchateau et al. [6]. The accuracy of the MSSFA
and CV results is measured by the agreement with the TDSE results con-
sidered to be the best.

A good agreement between MSSFA and TDSE results was found at
high laser field intensities (see figure 3 (a)), where the momentum trans-
fer was high, while at lower intensities with low momentum transfer the
agreement was acceptable (see figure 3 (b)), comparable with the agree-
ment between the CV and TDSE results. It was shown that except for
the case of low momentum transfer, the MSSFA model provides better
results than the CV model. The main deficiency of the MSSFA model is
that in the case of low momentum transfer the plane waves used for the
final state are inaccurate.

14



Chapter 3. Application of the MSSFA model

a) b)

Figure 3: Ionization probability density as function of the electron energy. Solid
line: MSSFA. Dotted line: VOLKOV. Squares: CTMC. Dashed line: TDSE [6].
Dash-dotted line: CV [6].

Dissociation of the positronium

The recent development of the positron physics [9, 10] made available
the experimental investigation of the interaction between the positronium
and short laser pulses [9]. The ionization of positronium in intense laser
fields was studied by several groups [11,12]. These studies are mainly fo-
cusing on the multiphoton and above-threshold ionization (ATI) [12]. The
investigation of the ionization spectra in the collisional regime is a sub-
ject of interest, due to the fact that the underlying ionization mechanism
is completely different from the multiphoton and ATI ionization mecha-
nisms. We have studied theoretically the dissociation of the positronium
using the VOLKOV, MSSFA and CTMC models [13]. In the framework
of the VOLKOV model we have derived the following analytical formula
for the ionization probability density:

dP

d~k
= (2π)3

( q
π

)5 1[
q2 +

(
~k + ~A(τ)

)2
]4 , (11)

where q = µZeff with µ being the reduced mass of the positronium and
Zeff the effective charge of the core. From Eq. (11) two scaling relations
of the ionization probability density can be extracted:

15



Chapter 3. Application of the MSSFA model

Figure 4: Ionization probability densities as a function of electron momentum. Solid
line: MSSFA. Dashed line: VOLKOV. Squares: CTMC

• The photoelectrons are ejected with maximum probability with mo-
mentum ~k = ~A(τ).

• The width of the photoelectron’s distribution is directly proportional
with µ and Zeff

The validity of these scaling law was tested by calculating the ionization
probabilities in the framework of the MSSFA and CTMC models. On
figure 4 can be observed that the first scaling law is no longer valid in
the case of the MSSFA and CTMC models, because the position of the
ionization probability’s maximum is also influenced by the Coulomb po-
tential which was neglected in the VOLKOV model. As shown in table
3.1, the validity of the second scaling law is also confirmed by the MSSFA
and CTMC calculations.

Table 3.1: The FWHM values of the ionization probability curves pre-
sented on Fig. 4.

MSSFA Volkov CTMC
H H/2 Ps H H/2 Ps H H/2 Ps

τ = 3 1.164 0.582 0.632 0.998 0.449 0.507 1.039 0.519 0.515
τ = 5 1.230 0.615 0.668 1.011 0.505 0.508 1.038 0.519 0.506
τ = 10 1.229 0.614 0.692 1.017 0.508 0.509 1.090 0.545 0.512
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Numerical solution of the
TDSE

In the first part of this chapter we have presented the numerical meth-
ods, which we used during the numerical solution of the TDSE. We have
focused on the concept of the FEDVR grid on which the c(~k, t) expan-
sion coefficients are discretized. Along with the numerical grid, we also
discussed the properties of the explicit time propagation methods, which
we used during the propagation of the expansion coefficients. In the last
part of the section the efficiency of the MPI parallelization is presented
along with the performed convergence tests.

The numerical grid

One of the most important part of an “exact” numerical approach
is the underlying numerical grid on which the TDSE is discretized. In
the present approach a finite element discrete variable representation
(FEDVR) grid is used. The FEDVR approach is based on the finite
element (FE) method, which implies the division of the configuration
space into finite elements. In each finite element the wave function is
expressed using a local discrete variable representation (DVR) basis (see
figure 5). This way the flexibility of the FE representation is combined
with the advantages of the DVR. To ensure the continuity of the wave
function the starting and ending points of the neighboring local subgrids
must overlap.

The time propagation

The other important element of the “exact” numerical solution is the
time propagation of the wave function on the chosen numerical grid. In
the present approach the expansion coefficients are propagated in time
using the Kutta-Merson method. The estimated relative error after each
time step in each gridpoint was calculated, and the maximum of these
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Chapter 4. Numerical solution of the TDSE

xmin xmax
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j x(i)

j+1 x(i)

M

Figure 5: One dimensional FEDVR grid

Figure 6: The program’s running time as a function of the number of CPU cores
used for different radial grids. The measurements were performed (a) on a 16 CPU
core machine with shared memory, and (b) on a cluster containing 88 CPU cores where
the individual machines are connected via Myrinet network cards.

values (εm) was considered as the error estimate of the time step. The
length of each time step was chosen in such a way, that the relative error
estimate (εm) was smaller than the fixed error tolerance (εtol).

The parallelization of the numerical code

During the numerical solution of Eq. (5) in each time step the most
CPU time is needed for the calculation of the integral, which couples the
expansion coefficients. For each gridpoint one coupling integral needs to
be calculated. These integrals can be calculated independently of each
other, giving us the possibility of parallelization. In practice these inte-
grals are calculated parallel on different CPU cores, and after that the ob-
tained values are shared between the cores. The communication between

18



Chapter 4. Numerical solution of the TDSE

the cores is realized using the OpenMPI library, which is an open-source
implementation of the MPI-2 standard. The efficiency of the paralleliza-
tion was tested using up to 62 processors (see figure 6).

The convergence of the TDSE results

The reliability of a numerical method is ensured if the produced re-
sults are convergence, i.e. they are not changing by the modification of
the numerical parameters. The most important outcome of a numerical
solution of the TDSE is the time-dependent wave function, which later
is used to calculate physical observables. If the convergence of the time-
dependent wave function is ensured, in our case of the c(~k, t) expansion
coefficients, then the convergence of the calculated physical quantities is
automatically ensured. The precision and the convergence of the expan-
sion coefficients at the end of the simulation, beside the chosen numerical
grid and time propagation method, is mainly influenced by the following
three parameters:

i) εtol - the value of the time propagation error tolerance

ii) kmax - the size of the simulation box

iii) Nfun/dk - the density of the numerical grid with Nfun being the
number of DVR basis functions and dk being the size of the finite
elements.

The convergence of the numerical results is also influenced by the laser
pulse parameters. Longer laser pulse needs more numerical propagation
time steps and it can accumulate more numerical errors. Higher laser
pulse intensity implies higher momentum transfer by the laser field to
the electron, indicating larger simulation box in a numerical treatment.
So, if the convergence of the results is verified for the longest and most
intense laser pulse used in the present calculations, then the convergence
for shorter and/or less intense pulses is automatically ensured.
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TDSE applied to hydrogenic
type systems

In the first part of the chapter our TDSE approach is tested by apply-
ing it to study the excitation and ionization of the hydrogen atom, while
in the second part of the chapter the ionization of the water molecule is
investigated within the framework of the hydrogenic approximation.

The ionization and excitation of the hydrogen
atom

In order to test our numerical approach, we have investigated the
behavior of the hydrogen atom during its interaction with short laser
pulses [14]. In the present TDSE approach the time-dependent wave func-
tion is discretized on a FEDVR numerical grid, while it is propagated in
time using the Kutta–Merson method.

Studying the occupation probabilities of the 2s and 2p orbitals, we
have observed that the 1s → 2p transition occurs much earlier than the
1s → 2s one. This can be explained by the fact, that the 1s → 2s tran-
sition needs minimum two photons, while the 1s → 2p can be produced
by one. Analyzing the occupation probability of the excited bound elec-
tronic states their importance in the ionization process was identified in
accordance with [15].

The ionization probability densities were also calculated and the im-
portant ionization mechanisms were identified. In the case of high intensi-
ties, the electrons were mostly ionized by the tunneling and the over-the-
barrier mechanisms. However, single photon ionization was also observed.

We have compared our calculated ionization probability densities with
other “exact” theoretical calculations, and a good agreement was found.
Some discrepancies occur for electron ejected with low energies, but these
can be corrected by using the exact Coulomb wave functions for the de-
scription of the final state.
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Chapter 5. TDSE applied to hydrogenic type systems

Ionization of the water

Due to the recent development of laser technology ultrashort laser
pulses are widely used in medical research [16] and applications [17]. In
most of these applications the external laser pulse interacts with biological
tissue containing mainly water. Therefore, most of the processes induced
by the ultrashort laser pulses in biological tissues can be explained based
on the investigation of the interaction between the H2O molecule and the
external laser field. It was recently shown experimentally that in the ul-
trashort regime (< 10 fs) the molecular dissociation is negligible [18], and
the dominant process is ionization with recollision. Furthermore, it was
verified [18], that in the ultrashort regime the main ionization process is
the single ionization. The lack of the experimental and theoretical inves-
tigations of the ionization of the water in the ultrashort regime calls for
further studies. In the present work calculations for the ionization of the
water molecule by intense half-cycle electric pulses were presented [19].
Single active electron classical and quantum-mechanical models were em-
ployed in the framework of the hydrogenic approximation. In the hydro-
genic approximation the 1b1 electrons are initialized on a 2pz hydrogenic
orbital. The effective charge of the core (Zeff ) is calculated using the
experimental value of the ionization energy Ei = 0.463 a.u. Calculations
were performed using electric pulses with duration τ of 1 a.u., 3 a.u., and
5 a.u. at two different field intensities (E0 = 0.44 a.u. and E0 = 1 a.u.).
Ionization probability densities are calculated based on Eq. (10) using
the TDSE and VOLKOV c(~k, t) expansion coefficients along with the or-
thogonalized TDSE (TDSE-O model) and Volkov (VOLKOV-O model)
c⊥(~k, t) expansion coefficients. The CTMC ionization probability densi-
ties are calculated from the simulated classical trajectories. The prob-
ability densities predicted by quantum mechanical and classical models
are qualitatively the same (see figure 7). In each approach the electrons
are ejected with maximum probability along the polarization vector with
momentum value around ~A(τ), which is the momentum gained by the
electrons from the external electric field. A double-peak structure in the
ionization probability densities can be observed applying both the Volkov
and TDSE models. This is the imprint of the double lobe structure of
the initial state wave function. In the TDSE-O and VOLKOV-O prob-
ability densities a parallel “ridge” structure was observed, which were
identified as single-photon ionization peaks attributed to the shape of the
half-cycle pulse. The ionization spectra can be calculated from the ioniza-
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Chapter 5. TDSE applied to hydrogenic type systems

Figure 7: Ionization probability densities in the yOz plane as a function of the
electron momentum and ejection angle (measured from the polarization vector ε̂, which
coincides with the Oz axis) for pulse parameters E0 = 1 a.u. and τ = 5 a.u.

tion probability density by integrating over the electron ejection angles.

Figure 8: Ionization probability densities
as a function of electron momentum at laser
pulse parameter E0 = 1 a.u., τ = 5 a.u.

Both the TDSE and VOLKOV
models provide qualitatively the
same results. In both cases,
the dP/dk curve has two max-
ima around the same electron mo-
menta. Beside these similari-
ties, significant discrepancies ex-
ist. In the case of the Volkov
model both maxima have the same
hight, while in the case of TDSE
model the first maximum is con-
siderably smaller than the second
one. This difference in the hight
of the maxima can be also ob-
served for the CTMC model and
can be explained as a result of the

Coulomb interaction between the core and the electron, which is absent for
the Volkov model. We found agreement between the CTMC and TDSE-O
results (see figure 8 ) only for pulses with high net momentum transfer
toward the active electron.
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Ionization of molecules

In this chapter the ionization of the hydrogen molecule and of the hy-
drogen molecular ion are studied in the framework of the single active
electron approximation (SAE) approximation using the VOLKOV and
TDSE models. Due to the two center character of the molecules interfer-
ence effects in the ejected electrons spectra appear. In a simplified picture
the nuclei of the molecule can be considered as electron sources and elec-
trons from these two sources may interfere in the continuum leading to
oscillations in the ionization probability density. These interference ef-
fects for photoionization were first predicted by Cohen and Fano [20] in
1966. Much later, these were experimentally evidenced by Stolterfoht

Figure 9: Ionization probability densities as a function of electron momentum calcu-
lated for the ionization of the H+

2 by ultrashort laser pulses. The electron ejection angle
and the molecular axis orientation (ΘR) is measured from the laser field polarization
vector.
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Chapter 6. Ionization of molecules

Figure 10: Ionization cross sections in the xOz and yOz planes as a function of the
momentum components of the ejected electrons at different molecular axis orientations
θR

et. al. [21] during the ionization of the H2 molecule by charged particle
impact, which triggered the extensive experimental and theoretical inves-
tigation of these interference effects for both photon [22, 23] and charged
particle impact [21, 24, 25] ionization. In our previous works [24, 26, 27]
we have studied these interference effects in the perturbative regime us-
ing different radiation gauges and including partial wave analysis. In this
work we have studied these interference effects in the non-perturbative
regime using the TDSE and VOLKOV models, which were applied to de-
scribe the ionization by both photon and charged particle impact. In the
ionization probability densities calculated using the TDSE and VOLKOV
models deep minima can be observed (see figure 9), which is the direct
evidence of the destructive interference. Here a good agreement between
the TDSE and VOLKOV models was observed in the prediction of the
interference minima. These minima are defined by the zero values of ex-
pression cos

[
~R0 ·

(
~k −∆~p

)]
, which is in agreement with the empirical

formula derived by Stolterfoht et. al. [21]. In the case of charge particle
impact ionization for each impact parameter one electric pulse can be as-
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Chapter 6. Ionization of molecules

sociated [28, 29]. By using these electric pulses the ionization probability
densities can be calculated in the framework of the VOLKOV and TDSE
models. In order to be able to compare our results with experimental data
we need to calculate the ionization cross sections, which is obtained from
the ionization probability densities by integrating over all possible impact
parameters. As we have shown in figure 10 that this impact parameter
integration “destroys” the deep interference minima, with the exception
of the xOz plane defined by the molecular axis and the charged particle’s
impact direction. This result may be usefull in designing new experiments
to investigate the ionization of the H2 molecule with fixed molecular axis
orientation, because it exactly tells where one needs to search for the
direct evidence of the interference effects. All the experiments on the
ionization of the H2 molecule by fast charged particle impact were per-
formed using randomly oriented molecules, which average out the deep
interference minima in the cross sections observable on figure 10. After
this averaging the interference effects can not be observed directly in ion-
ization probability density, but its imprint still exists and indirectly it can
be emphasized by dividing the half of the molecular ionization cross sec-
tion with the atomic cross section. The atomic cross section is calculated
for a model hydrogen atom with effective charge equal with the effective
charge of the nuclei of the molecule.
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Conclusions

In the present thesis we have studied theoretically the direct ionization
of atoms and molecules by intense ultrashort laser pulses. The main
properties of the ionization process, and the theoretical models, which are
commonly used to study this process, are presented in chapter 1. In our
investigations we have used two different theoretical models, which are
based on the solution of the time dependent Schrödinger equation.

The first theoretical model, the MSSFA model, is based on the approx-
imate (first order iterative) solution of the TDSE. The MSSFA model is
presented in chapter 2, while in chapter 3 it is applied to study the ion-
ization of the hydrogen type atomic systems. In the literature the CV
models are considered to be most efficient ones used to describe the direct
ionization in intense laser fields. We found out that our MSSFA approach
provides more accurate results with considerable less computations than
the CV model if the laser pulse is strong and the momentum of the ejected
electrons is high. We also found, that the width of the ionization proba-
bility density is directly proportional with the effective charge of the core
and with the reduced mass of the hydrogen type system.

The second theoretical model, the TDSE model, is based on the “ex-
act” numerical solution of the TDSE in momentum space. The details
of our numerical approach are presented in chapter 4, while its precision
is tested in chapter 5, where it is applied to study the ionization of the
hydrogen type systems, and an excellent agreement was found with other
“exact” calculations [6]. In chapter 7 the TDSE model was applied to
study the ionization of homonuclear diatomic molecules by photon and
charged particle impact. In both cases we have observed deep minima
in the ionization probability densities, which is the clear evidence of the
destructive interference. In the case of the charged particle impact ioniza-
tion we have also shown that in the experimentally measurable ionization
cross section these deep interference minima are averaged out by the im-
pact parameter integration with the exception of the xOz plane defined
by the molecular axis and by the direction of the projectile.
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[27] S. Borbély and L. Nagy. Rad. Phys. Chem. (2007) 76 516.
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[29] V. D. Rodŕıguez, P. Macri, and R. Gayet. J. Phys. B-At. Mol. Opt.

(2005) 28 2775–2791.

28



List of Abbreviations

CTMC classical trajectory Monte Carlo method

CV Coulomb-Volkov

DVR discrete variable representation

FE finite element

FEDVR finite element discrete variable representation

HHG high harmonics generation

MPI multiphoton ionization

MSSFA momentum-space strong-field approximation

OBI over-the-barrier ionization

SAE single active electron approximation

SFA strong-field approximation

TDSE time dependent Schrödinger equation

TI tunneling ionization

VOLKOV Volkov model
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