Vulcanii noroioși din estul și centrul Depresiunii Transilvaniei

Rezumatul tezei de doctorat

Doctorand
Gál Andrea

Conducător științific
Prof. dr. Virgil Surdeanu

Cluj-Napoca, 2010
Cuprins

CAPITOLUL 1 ..6
INTRODUCERE ...6
 1.1. INTRODUCERE ȘI obiective ..6
 1.2. METODE DE LUCRU ..7
CAPITOLUL 2 ...10
FUNDAMENTARE TEORETICĂ ...10
 2.1. VULCANII NOROIOȘI ÎN GENERAL ..10
 2.2. GENEZA VULCANILOR NOROIOȘI LEGAȚI DE GAZELE NATURALE ..16
 2.3. STRUCTURA VULCANULUI NOROIOS ...22
 2.4. PRODUSE DE EMISIE..24
 2.5. CLASIFICĂRIILE EXISTENTE ALE VULCANILOR NOROIOȘI...29
 2.6. VULCANII NOROIOȘI CA FACTOR DE RISC ..38
 2.7. VULCANII NOROIOȘI DIN ROMÂNIA ...43
CAPITOLUL 3 ...49
VULCANII NOROIOȘI DIN ESTUL ȘI CENTRUL DEPRESIUNII TRANSILVANIEI ...49
 3.1. FACTORI FAVORIZANȚI PENTRU GENEZA ȘI EVOLUȚIA VULCANILOR NOROIOȘI DIN ESTUL ȘI CENTRUL DEPRESIUNII TRANSILVANIEI ..49
 3.1.1. Factorul geologic ..49
 3.1.2. Factorul hidrogeologic ...54
 3.1.3. Factorul geomorfologic ...55
 3.1.4. Factorul meteorologic ...59
 3.1.5. Factorul antropic ...59
 3.2. STUDII DE CAZ ..61
 3.2.1. Morăreni (județul Harghita) ..61
 3.2.2. Mihăileni (județul Harghita) ..63
 3.2.3. Cobătești (județul Harghita) ..65
 3.2.4. Filiaș (județul Harghita) ..70
 3.2.5. Porumbenii Mici (județul Harghita) ...74
 3.2.6. Sângereciov de Pădure (județul Mureș) ..76
 3.2.7. Atid (județul Harghita) ...78
 3.2.8. Forțeni (județul Harghita) ..79
 3.2.9. Bâile Seiche (Odorheiu Secuiesc) (județul Harghita) ..81
 3.2.10. Corund (județul Harghita) ..82
 3.2.11. Goagiu (județul Harghita) ..83
3.2.12. Dârjiu (județul Harghita) ..84
3.2.13. Bâile Homorod (Homorod, județul Brașov) ..85
3.2.14. Bâile Dungo (Crăciunel) (județul Harghita) ..88
3.2.15. Sânpaul (județul Harghita) ..89
3.2.16. Sânger (județul Mureș) ..90
3.2.17. Vălișoara (Gloduri) (județul Mureș) ..91
3.2.18. Cându (județul Mureș) ..93
3.2.19. Maia (județul Mureș) ..94
3.2.20. Monor (județul Bistrița-Năsăud) ..95

CAPITOLUL 4 ..99
STUDIU MORFOLOGIC .. 99

CAPITOLUL 5 ..111
ANALIZA MATERIÁLULUI VULCANIC NOROIOȘI ..111
5.1. ANALIZE GRANULOMETRICE ...111
5.2. ANALIZE MINERALOGE...122

CAPITOLUL 6 ..131
TIPOLOGIA VULCANILOR NOROIOȘI DIN ESTUL ȘI CENTRUL DEPRESIUNII TRANSILVANIEI131
6.1. BAZIN NOROIOS ...131
6.2. CON NOROIOS ..134
6.3. DOM NOROIOS ...136
6.4. CALDERĂ NORIOASĂ ..139

CAPITOLUL 7 ..141
MODEL PENTRU MECANISMUL DE FORMARE AL DIFERITELOR TIPURI MORFOLOGICE DE VULCANI NOROIOȘI DIN ESTUL ȘI CENTRUL DEPRESIUNII TRANSILVANIEI141

CAPITOLUL 8 ..145
CONCLUZII ..145

BIBLIOGRAFIE ..149

ANEXĂ - LOCALIZAREA VULCANILOR NOROIOȘI ..163
Cuvinte cheie: vulcan noroios, tipuri morfologice, model, Depresiunea Transilvaniei

Introducere

Vulcanii noroioși sunt unele dintre cele mai dinamice și instabile fenomene din lume, fiind foarte răspândiți atât pe suprafața terestră cât și în domeniul marin în diferite condiții tectonice. În România cei mai spectaculoși vulcani noroioși se găsesc în Subcarpații Buzăului, la Berca, Arbănași, etc. [SENCU, 1985]. În literatura de specialitate s-au semnalat vulcani noroioși în 65 de localități din Depresiunea Transilvaniei, dintre care mulți nu pot fi identificați în prezent (mai ales cei din orașe sau din perimetrul locuit).

Scopul acestui studiu este prezentarea și sintetizarea fenomenelor de vulcanism noroios din estul și centrul Depresiunii Transilvaniei, studierea diverselor morfologii și a structurii interne (cu ajutorul unor foraje de mică adâncime), stabilirea unei noi tipologii și realizarea unui model pentru mecanismul formării diferitelor tipuri morfologice de vulcani noroioși din zona studiată.

Fundamentare teoretică

Geneza vulcanilor noroioși a ridicat numeroase probleme, neclarificate în totalitate până în prezent. În primul rând se pune întrebarea dacă vulcanii noroioși legați de zonele și procesele hidrotermale (de ex. vulcanii noroioși din Yellowstone, SUA) pot fi considerați ca atare? Conform opiniei mai multor cercetători [de ex. ETIOPE și MARTINELLI, 2009b] doar acele fenomene sunt considerate vulcani noroioși care sunt rezultatul procesului de vulcanism noroios. Astfel, fenomenele din ariile postvulcanice care emit noroi ca un rezultat al dezagregării locale a rocilor de la mică adâncime sub influența apelor hidrotermale acide pot fi numite mofete [după ETIOPE și MARTINELLI, 2009a, b] (vulcani noroioși hidrotermali sau postvulcanici după SENCU [1985]), dar nu vulcani noroioși. Alți autori rămân la denumirile clasice, diferențierind 2 sau 3 grupe fundamentale din punct de vedere al genezei. Astfel se deosebesc în primul rând vulcanii noroioși legați de depozite de hidrocarburi și cei asociați cu complexe magmatice (procese hidrotermale postvulcanice) [MAZZINI, 2009], la care se mai adaugă cei de origine seismică. Vulcanii noroioși datorați erupției gazelor hidrocarbure sunt considerați vulcani noroioși în sensul strict [ex. ETIOPE și MARTINELLI, 2009a, b]. Aceștia apar în zonele bogate în zăcămintele de hidrocarburi, ca urmare a eliminării prin curgere sau erupție a unui material suprapresurizat, alcătuit din 3 componente: apă, gaze și partea solidă reprezentată prin noroi sau brecie noroioasă.
Vulcanii noroioși din estul și centrul Depresiunii Transilvaniei

Prezența Vulcanilor noroioși în Bazinul Transilvaniei este favorizată în primul rând de prezența acumulărilor de gaze și a apelor de zăcământ, de structura cutată și falietă și nu în ultimul rând de depozitele sedimentare potențiale care serveau ca strat sursă de material pentru vulcanii noroioși. Condițiile geologice și importanța celorlalți factori este sintetizată în subcapitolul „Factori favorizați pentru geneza și evoluția Vulcanilor noroioși din estul și centrul Depresiunii Transilvaniei”.

În estul și centrul Depresiunii Transilvaniei s-au semnalat manifestări de vulcanism noroios în 33 localități dintre care au fost studiați cei din Atid, Băile Homorod, Băile Seiche, Cobâțești, Corund, Crăciunel, Dârjiu, Filiaș, Forțeni, Goagițu, Vălisoara (Gloduri), Măhaleni, Morăreni, Porumbeni Mici, Sânpaul, Sângeorgiu de Pădure, Cându, Maia, Monor și Sânger. În totalitate s-au identificat aproximativ 72 microforme de vulcani noroioși dar numărul lor rămâne doar aproximativ, deoarece unii pot fi derivații sau manifestări al unui singur vulcan noroios mai complex. În subcapitolul „Studii de caz” s-au prezentat observațiile, datele morfometrice și constatațiile referitoare la structura internă a Vulcanilor noroioși identificați în estul și centrul Bazinului Transilvaniei în perioada 2002-2010.

Studiul morfologic

Cu scopul de a studia și compara varietatea de morfologii ale Vulcanilor noroioși s-a creat o bază de date cu dimensiunile subiecților, informațiile legate de structura internă a acestora (până la o adâncime maximă de 8,5 m) și datele referitoare la suprafața pe care apar, eventualele influențe antropice, gradul de activitate și acoperirea cu vegetație (tabelul 1.)

Dimensiunile luate în considerare au fost următoarele: lungimea, lățimea și înălțimea Vulcanilor noroioși și diametrul craterului.

Referitor la structura internă s-au diferențiat 3 cazuri în funcție de forma și mărimea canalului de evacuare, existența sau lipsa intruziunilor noroioase (pungi noroioase) din apropierea suprafeței:
1. canal de evacuare ingust (<15 cm), reprezentat printr-o fâșură;
2. canal de evacuare care se lărgeste în pungi noroioase;
3. canal de evacuare lărgit sub formă unei pâlnii.

În cazul Vulcanilor noroioși neforați sau când forajul avea rezultate neconcluzionate, în tabelul 1. apare semnul întrebării.

Din punct de vedere al înclinării suprafeței pe care au apărut Vulcanii noroioși s-au definit două cazuri: încline și plane, gradul de înclinare influențând simetria formei rezultate și
în unele cazuri (pe teren foarte înclinat) chiar și forma.

S-au definit 5 nivele de activitate:
1. curgeri noroioase active sau bolborosiri în cazul formelor plate sau negative;
2. material aparent proaspăt, neacoperit de vegetație, fără curgeri sau bolborosiri active;
3. forme acoperite cu vegetație care se reactivează, eliminând material vulcanic noroios dacă se înălțură stratul vegetal sau crusta ce obtură canalul de evacuare;
4. forme acoperite cu vegetație, fără nici o urmă de activitate vizibilă dar care se clatină sub picior, indicând prezența de noroi foarte dens sub cruta uscată, specific vulcanilor norioși în fază latentă;
5. fosili, care nu prezintă nici un semn de activitate, doar forma trădează existența unui vulcan noroios.

S-au separat trei tipuri de acoperire cu vegetație:
1. lipsit de vegetație sau cu vegetație ierboasă scundă;
2. vegetație scundă cu portiuni mici de vegetație înaltă, unde se contourază bine morfologia;
3. cu vegetație înaltă pe toată suprafața vulcanului noroios, ceea ce îngreunează studierea morfologiei.

Din punct de vedere al influențelor antropice s-au luat în vedere trei cazuri:
1. evoluția vulcanilor norioși n-a fost deloc influențată de procese antropice;
2. influențe antropice cu consecințe minore în evoluția diverselor microforme;
3. influențe antropice intense, care au dus la schimbarea radicală a formei sau evoluției lor.

<table>
<thead>
<tr>
<th>Denumire</th>
<th>Lungime (m)</th>
<th>Latime (m)</th>
<th>Înălțime (cm)</th>
<th>Crater (cm)</th>
<th>Canal de evacuare *</th>
<th>Grad de activitate *</th>
<th>Înclinarea suprafeței</th>
<th>Influențe antropice *</th>
<th>Vegetație *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mărășeni 1</td>
<td>12</td>
<td>10</td>
<td>130</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>Plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mărășeni 2</td>
<td>15</td>
<td>15</td>
<td>60</td>
<td>0</td>
<td>?</td>
<td>5</td>
<td>Plat</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Mărășeni 3</td>
<td>3.5</td>
<td>3</td>
<td>30</td>
<td>0</td>
<td>?</td>
<td>4</td>
<td>Plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mihăileni 1</td>
<td>20</td>
<td>0.4</td>
<td>20</td>
<td>?</td>
<td>?</td>
<td>1</td>
<td>înclinat</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Mihăileni 2</td>
<td>15</td>
<td>15</td>
<td>150</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>înclinat</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Cobătești 1</td>
<td>9</td>
<td>7</td>
<td>30</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>înclinat</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cobătești 2</td>
<td>20</td>
<td>16</td>
<td>80</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>înclinat</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cobătești 3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>100</td>
<td>3</td>
<td>4</td>
<td>plat</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cobătești 4</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>plat</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cobătești 5</td>
<td>4</td>
<td>0.5</td>
<td>10</td>
<td>?</td>
<td>?</td>
<td>1</td>
<td>plat</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Cobătești 6</td>
<td>4</td>
<td>4</td>
<td>100</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>plat</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cobătești 7</td>
<td>9</td>
<td>8</td>
<td>50</td>
<td>70</td>
<td>?</td>
<td>?</td>
<td>plat</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cobătești 8</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>300</td>
<td>3</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cobătești 9</td>
<td>1.5</td>
<td>1.5</td>
<td>0</td>
<td>100</td>
<td>3</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Filaș 1</td>
<td>28</td>
<td>24</td>
<td>150</td>
<td>1200</td>
<td>3</td>
<td>1</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Denumire</td>
<td>Lungime (m)</td>
<td>Lățime (m)</td>
<td>Înălțime (cm)</td>
<td>Crater (cm)</td>
<td>Canal de evacuare *</td>
<td>Grad de activitate *</td>
<td>Înclinarea suprafeței</td>
<td>Influențe antropice*</td>
<td>Vegetație*</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Filiaș 2</td>
<td>18.5</td>
<td>14</td>
<td>200</td>
<td>60</td>
<td>2</td>
<td>1</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Filiaș 3</td>
<td>15.5</td>
<td>12.5</td>
<td>350</td>
<td>2</td>
<td>?</td>
<td>2</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Filiaș 4</td>
<td>8</td>
<td>4.5</td>
<td>0</td>
<td>150</td>
<td>3</td>
<td>2</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Filiaș 5</td>
<td>5</td>
<td>3.5</td>
<td>0</td>
<td>100</td>
<td>3</td>
<td>2</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Filiaș 6</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Porumbeni 1</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Porumbeni 2</td>
<td>13</td>
<td>9</td>
<td>250</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Porumbeni 3</td>
<td>6</td>
<td>3.5</td>
<td>0</td>
<td>300</td>
<td>3</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Porumbeni 4</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>200</td>
<td>3</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Porumbeni 5</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td>50</td>
<td>3</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sângerești 1</td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>1000</td>
<td>?</td>
<td>5</td>
<td>plat</td>
<td>?</td>
<td>2</td>
</tr>
<tr>
<td>Atid</td>
<td>14</td>
<td>12</td>
<td>150</td>
<td>1000</td>
<td>3</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Forteni 1</td>
<td>12.5</td>
<td>8</td>
<td>60</td>
<td>0</td>
<td>?</td>
<td>4</td>
<td>plat</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Forteni 2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>150</td>
<td>3</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Seică</td>
<td>10</td>
<td>4</td>
<td>15</td>
<td>?</td>
<td>1</td>
<td>2</td>
<td>înclinat</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Corund</td>
<td>12.2</td>
<td>12</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Goaia 1</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>10</td>
<td>?</td>
<td>1</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Goaia 2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>200</td>
<td>3</td>
<td>2</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dârjiu</td>
<td>5</td>
<td>5</td>
<td>120</td>
<td>0</td>
<td>?</td>
<td>5</td>
<td>plat</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Homorod 1</td>
<td>17</td>
<td>15</td>
<td>110</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>plat</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Homorod 2</td>
<td>15</td>
<td>15</td>
<td>140</td>
<td>0</td>
<td>?</td>
<td>5</td>
<td>plat</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Homorod 3</td>
<td>5</td>
<td>4</td>
<td>50</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>plat</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Homorod 4</td>
<td>1.6</td>
<td>1.4</td>
<td>0</td>
<td>150</td>
<td>3</td>
<td>1</td>
<td>plat</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Homorod 5</td>
<td>10</td>
<td>1.5</td>
<td>0</td>
<td>20</td>
<td>3</td>
<td>2</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Homorod 6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dungo 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>?</td>
<td>4</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dungo 2</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td>50</td>
<td>?</td>
<td>5</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dungo 3</td>
<td>100</td>
<td>50</td>
<td>1000</td>
<td>0</td>
<td>?</td>
<td>5</td>
<td>plat</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Sângere 1</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>?</td>
<td>2</td>
<td>plat</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sângere 2</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>100</td>
<td>3</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sângere 3</td>
<td>1.5</td>
<td>1</td>
<td>0</td>
<td>120</td>
<td>3</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sângere 4</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>200</td>
<td>3</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sângere 5</td>
<td>8</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>?</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Gloduri 1</td>
<td>4</td>
<td>2.5</td>
<td>0</td>
<td>250</td>
<td>3</td>
<td>2</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gloduri 2</td>
<td>6.5</td>
<td>4</td>
<td>50</td>
<td>450</td>
<td>3</td>
<td>2</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cându</td>
<td>4</td>
<td>3</td>
<td>30</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>înclinat</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Maia 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>?</td>
<td>4</td>
<td>plat</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Maia 2</td>
<td>0.5</td>
<td>0.5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 1</td>
<td>23</td>
<td>18</td>
<td>200</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 2</td>
<td>25</td>
<td>22</td>
<td>250</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>înclinat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 3</td>
<td>5.5</td>
<td>4</td>
<td>85</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 4</td>
<td>7</td>
<td>5.5</td>
<td>130</td>
<td>0</td>
<td>?</td>
<td>3</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Tab. 1. Baza de date cu dimensiunile vulcanilor noroioşi, informaţiile referitoare la morfologia canalului de evacuare şi datele cu privire la suprafaţa topografică preexistentă, influenţele antropice, gradul de activitate şi acoperirea cu vegetaţie;

* explicaţie în text

Dintre cele 72 de microforme de vulcani noroioşi studiate au fost excluse din studiul morfologic cele care au fost puternic influenţate de intervenţii antropice şi cele care sunt fenomene legate de vulcanism noroios dar nu vulcani noroioşi în sens strict (9 subiecţii în total).

Pe baza înălţimii (tabelul 1.) s-au separat în primul rând vulcanii noroioşi cu forme negative sau plate (inclusiv cei de până la 10 cm înălţime) – bazine noroioase – şi cei care au un relief pozitiv. Astfel s-au diferenţiat 27 de bazine noroioase. Dintre cei 36 de vulcani noroioşi cu relief pozitiv, 19 subiecţii sunt lipsiţi de un crater evident. Alţii, în număr de 13 au cratere mici de câţiva cm (de obicei 2–5 cm, dar în unele cazuri chiar şi 60–70 cm), şi doar 4 subiecţii dintre cei cu relief pozitiv au cratere foarte largi comparativ cu dimensiunile lor. În acest ultim caz, raportul diametru crater–diametru maxim al bazei vulcanilor noroioşi este de 0,37–0,71 în comparaţie cu valorile mai mici de 0,03 în cazul celorlalţi subiecţii. Cei 4 vulcani noroioşi se aseamnă din punct de vedere morfologic cu vulcanii de tip Maar. Cei 32 subiecţi întruchipează diverse forme: conuri, movile, domuri, conuri de împrăştiere, etc.

Pentru studierea mai amănunţită a acestora s-a desenat conturul secţiunilor transversale a diferitelor forme. Acestea s-au realizat în mediul grafic CorelDraw pe baza măsurătorilor şi observaţiilor din teren, folosind şi fotografiiile executate din profil. Din această analiză au fost excluşi subiecţii a căror morfologii nu s-au evidenţiat clar.

Conturul secţiunilor evidenţiază existenţa a două morfologii distincte: una asemănătoare unui con şi alta unui dom (vezi figurele 1., 2., 3. şi 4.).

<table>
<thead>
<tr>
<th>Denumire</th>
<th>Lungime (m)</th>
<th>Lăţime (m)</th>
<th>Inălţime (cm)</th>
<th>Crater (cm)</th>
<th>Canal de evacuare*</th>
<th>Grad de activitate*</th>
<th>Înclinarea suprafeţei</th>
<th>Influenţe antropice*</th>
<th>Vegătaţie*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monor 5</td>
<td>4</td>
<td>4</td>
<td>55</td>
<td>0</td>
<td>?</td>
<td>3</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 6</td>
<td>16</td>
<td>13</td>
<td>60</td>
<td>2</td>
<td>?</td>
<td>1</td>
<td>plat</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Monor 7</td>
<td>22</td>
<td>10</td>
<td>70</td>
<td>800</td>
<td>3</td>
<td>4</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 8</td>
<td>13</td>
<td>10</td>
<td>120</td>
<td>0</td>
<td>?</td>
<td>4</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 9</td>
<td>21</td>
<td>10,5</td>
<td>110</td>
<td>0</td>
<td>?</td>
<td>4</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 10</td>
<td>11,5</td>
<td>11</td>
<td>110</td>
<td>0</td>
<td>?</td>
<td>4</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 11</td>
<td>3</td>
<td>3</td>
<td>25</td>
<td>?</td>
<td>2</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 12</td>
<td>2,5</td>
<td>1,7</td>
<td>20</td>
<td>?</td>
<td>2</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 13</td>
<td>7,5</td>
<td>6</td>
<td>30</td>
<td>?</td>
<td>2</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 14</td>
<td>14</td>
<td>7</td>
<td>15</td>
<td>?</td>
<td>2</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 15</td>
<td>8</td>
<td>6</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 16</td>
<td>7</td>
<td>5</td>
<td>30</td>
<td>?</td>
<td>2</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 17</td>
<td>8,5</td>
<td>4,5</td>
<td>50</td>
<td>?</td>
<td>2</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monor 18</td>
<td>30</td>
<td>25</td>
<td>10</td>
<td>300</td>
<td>3</td>
<td>2</td>
<td>plat</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Fig. 1. Conturul secțiunilor vulcanilor norocioși (partea 1)
Fig. 2. Conturul secțiunilor vulcanilor noroioși (partea 2)
Fig. 3. Conturul secțiunilor vulcanilor noroioși (partea 3)
Fig. 4. Conturul secțiunilor vulcanilor noroioși (partea 4)
Într-o secțiune transversală, vulcanii noroioși în formă de con cu flancuri aproximativ drepte au forma (idealizat) a unui triunghi, iar cei de dom au formă bombată, având o inflexiune pe flancuri. Pentru evidențierea diferențelor între profilele secțiunilor, acestea au fost înscrise într-un triunghi prin trasarea laturilor acestuia tangent la flancurile vulcanilor noroioși.

Pentru a accentua diferențele dintre cele două morfologii (con și dom) s-au măsurat ariile secțiunilor vulcanilor noroioși și diferența dintre acestea și ariile triunghiurilor minime în care se poate înscrie secțiunea fiecăruui vulcan noroios. La unii subiecți laturile triunghiului (trasate tangențial pe flancuri) separă doar o singură suprafață (fig. 5/a), iar la alții 3 suprafețe (suprafețele A, B și C din fig. 5/b). Cuantificarea diferențelor dintre cele două morfologii a fost realizată prin calculul raportului dintre aria suprafaței B+C față de suprafața totală rămasă (aria suprafaței A+B+C).

![Diagram](image)

Fig. 5. Evidențierea suprafețelor formate între secțiunea vulcanului noroios și triunghiul minim în care acesta se poate înscrie (a. vulcani noroioși cu formă conică; b. vulcani noroioși cu morfologie de dom)

Astfel s-au diferențiat cei la care acest raport dă valoarea de 0 și ceilalți subiecți, în cazul cărora această valoare se include în intervalul 2–98. Valoarea de 0 se prezintă în cazul vulcanilor noroioși cu flancuri drepte, iar valorile mari demonstrează existența inflexiunilor de pe flancuri și respectiv forma de dom. Valorile mai scăzute (2–21) din cazul vulcanilor noroioși de la Monor se justifică prin faptul că creasta acestora este foarte plată, fiind supuși unui proces de aplatizare pe de o parte natural, și pe de altă parte antropic.

Analiza materialului vulcanic noroios

Rezultatele analizelor granulometrice arată că materialul emis de vulcanii noroioși este de obicei prăfos-nisipos fin, fracțiunile de argilă sunt prezente doar în 4 cazuri în proporție de 15–30 % din volumul total al probei. Se poate observa o corelație ușoară între gradul de sortare și uni- sau polimodalitatea curbelor și distribuția probelor pe cele 4 tipuri. Această relație poate fi în funcție de ponderea materialelor străine, provenite din eroziunea rocilor gazdă și în același
timp și de mărimea suprafeței de contact cu factorii externi. Rezultatele analizelor granulometrice vor deveni mai relevante prin îmbunătățirea metodei de prelevare a probelor cu ajutorul unor investigări microgeofizice, în scopul de a nimeri cu precizie mai mare canalul de evacuare a materialului vulcanic noroios.

Din analizele mineralogice se poate observa faptul că componentele minerale predominante sunt cuarțul, clinoclorul, muscovitul, calcitul, dolomitul și albitul, fără să existe o legitate în distribuția lor.

Tipologia vulcanilor noroioși din estul și centrul Depresiunii Transilvaniei

În urma studierii informațiilor prezentate în capitolul „Studiu morfologic”, în ciuda marii diversități în ce privește manifestările exterioare ale vulcanilor noroioși (formă și activitate) s-au observat trăsături caracteristice în morfologia și structura microformelor, ceea ce permite stabilirea unei noi tipologii. Astfel s-au separat patru categorii: bazin noroios,-con noroios, dom noroios și calderă norioasă.

În categoria **bazin noroios** au fost incluse toate formele negative, plate, inclusiv cele care au în incinta lor un mic con embrion de maxim 10 cm, cu caracter efemer. Bazinele noroioase apar ca niște bălți în cadrul unor suprafețe măștinoase. Materialul din bazin este mai lichid în cazul în care acesta are activitate mai intensă și mai dens și vâscos în cazul bazinelor noroioase cu activitate slabă sau cele în stare latentă. Tot în funcție de gradul de activitate, materialul din bazin poate fi acoperit de o crustă solidă și vegetație. În cazul în care bazinul noroios are o crustă solidă (de obicei acoperită cu vegetație), aceasta se clatină sub picior, fără să bolborosească vizibil decât după înlăturarea covorului vegetal și/sau a crustei noroioase. În cazul bazinelor norioase active, neacoperite de vegetație, noroiul fluid bolborosește și gazele emanate se aprind ușor.

![Fig. 6. Exemplu de bazin noroios (Gloduri 1)](image)

14
Dimensiunile lor variază de la mai puţin de 1 m până la aproximativ 15 m, iar adâncimea (măsurată!) de la 3 m până la peste 8,5 m. Forezele s-au „scufundat” în materialul lichid care se continuă în adâncime. Roca gazdă înconjurătoare fiind îmbibată cu apă norioasă, marginile nu se delimitează întotdeauna clar.

![Schita bazinului norioios](image)

Fig. 7. Schița bazinului norioios

În categoria **con norioios** au fost incluse toate acele forme vulcanice norioioase cu forme pozitive, care rezultă din evacuarea (printr-un canal de evacuare îngust) și depunerea particulelor solide din apa norioasă pe suprafața topografică preexistentă. Suprapunerea multiplelor curgeri norioioase radiale conduce la înălțarea conului norioios, asemănător vulcanilor scut [SIGURDSSON et al., 1999]. Deoarece în cazul tuturor vulcanilor norioși studiați materialul eliminat este foarte fluid și de viscozitate redusă, conul rezultat este foarte plat (se ridică doar la câțiva zeci de centimetri de la suprafață).

![Exemplu de con norioios](image)

Fig. 8. Exemplu de con norioios (*Cobătești 1*)

Gradul de înclinare a terenului influențează semnificativ forma și simetria conului. În cazul în care evacuarea noroiului se realizează pe o suprafață plană, acesta va avea formă de con. Pe o suprafață slab înclinată va fi un con asimetric cu un flanc mai alungit în direcția de înclinare, iar dacă apare pe un versant abrupt, forma rezultată va fi asemănătoare unui con de dejectie. Cei cu influențe antropice însemnate apar sub forma unor curgeri norioioase.
Privind într-o secțiune transversală, conul noroios are forma unui triumghi, versanții acestuia fiind aproximativ drepti. Bolborosirea gazelor este evidentă doar când conul dispune de un crater bine conturat, în care se acumulează apa norioasă.

În literatura de specialitate termenul de dom noroios se folosește pentru desemnarea fenomenelor de vulcanism sedimentar din domeniul marin, care sunt expresiile superficiale ale diapirelor norioase fără evacuări de materiale pe subasmentul marin [BARBER et al., 1988; HUGUEN et al., 2004]. În lucrarea de față acest termen a fost folosit pentru acei vulcani norioși care au forma unor domuri cu sau fără crater evident și care au, sub crusta solidă, noroi fluid acumulat în forma unor intruziuni norioase (puneri norioase), care se formează asemănător domurilor vulcanice endogene [WILLIAMS și McBIRNEY, 1979 citat de WOHLETZ și HEIKEN, 1992].

Forma exterioară a domului noroios diferă de forma conului noroios în primul rând prin forma bombată și prin inflexiunea existentă pe flancurile domului, în comparație cu flancurile aproximativ drepte ale conurilor norioase.

Și în acest caz bolborosirea gazelor se poate observa numai dacă există un crater în care se acumulează materialul lichid care urmează să se reverse pe flancurile vulcanului noroios.

Fig. 9. Schița conului noroios, a) pe o suprafață plană, b) pe o suprafață înclinată

Fig. 10. Exemplu de dom noroios (Filiaș 3)
Structura interioară a domului noroios se individualizează prin lărgirea canalului de evacuare în apropierea suprafeței în forma unor intruziuni noroioase – pungă noroioasă – în care se acumulează materialul lichid. Craterul domului noroios poate fi reprezentat printr-un orificiu mic de 1–2 cm sau de până la aproximativ 60 cm ori acesta poate fi închis.

Fig. 11. Schița domului noroios

Termenul de **calderă noroioasă** este utilizat în cazul vulcanilor noroioși cu depresiuni formate în urma colapsului edificiului vulcanic noroios sau ca rezultatul unei erupții. [PLANKE et al., 2006; JUDD și HOVLAND, 2007]. Această grupă include vulcanii noroioși cu cele mai mari cratere, cu morfologie și morfogeneză asemănătoare calderelor vulcanice. Ca dimensiune, calderele noroioase reprezintă cele mai mari structuri vulcanice noroioase din Depresiunea Transilvaniei. Acestea au cele mai mari cratere în raport cu dimensiunea bazei vulcanului noroios, raportul diametru crater–diametru maxim fiind de 0,37–0,71, în comparație cu 0,03 în cazul celorlalți subiecți.

Fig. 12. Exemplu de calderă noroioasă (*Filiaș 1*)

Flancurile calderei noroioase se caracterizează printr-o ușoară inflexiune, iar partea superioară a acestora se prezintă sub forma unei suprafețe ușor negative. Materialul noroios acumulat este mai dens și vâscos în comparație cu cel din celelalte tipuri de vulcani noroioși, probabil și din cauza suprafeței mari de evaporare.
În funcție de characteristicile materialului, conținutul de apă și condițiile meteorologice acesta poate fi acoperit de o crustă semisolidă, pe alocuri solidă, sau una care se elatină sub picioare, și poate fi acoperit de un covor vegetal sau chiar și arborescent.

![Fig. 13. Schița caldrei noroioase](image)

În ce privește structura internă, caldera noroioasă are un canal de acumulare lărgit sub forma unei pâlnii. În funcție de intensitatea activității vulcanului, flancurile caldrei noroioase pot fi alcătuite din curgeri noroioase proaspete sau pot fi acoperite cu vegetație.

Model pentru mecanismul de formare al diferitelor tipuri morfologice de vulcani noroioși din estul și centrul Depresiunii Transilvaniei

În ceea ce privește dezvoltarea și evoluția diverselor morfologii ale vulcanilor noroioși se poate spune că pe lângă condițiile geologice și geomorfologice locale, aceasta este definită și de mărimea și morfologia canalului de evacuare al vulcanilor noroioși și natura materialului ce urmează a fi eliminat. Pe baza tipologiei stabilită s-au elaborat două modele pentru mecanismul formării celor patru tipuri morfologice de vulcani noroioși.

Modelele au ca punct de plecare existența materialului sursă și a unui canal de circulație (canal de alimentare/evacuare) prin care se realizează transferul materialului vulcanic noroios spre suprafață. Acest canal poate fi materializat prin falii, fisuri, strate permeabile înlinate, trunchiate prin eroziune.

Modelele se referă doar la mecanismul formării diferitelor morfologii, definite prin 4 tipuri, și nu la mecanismul vulcanismului noroios. Aceste modele se raportează la partea superficială a vulcanilor noroioși până la o adâncime maximă de 8,5 m.

Primul model deosebește două cazuri din punct de vedere al raportului apă–particule solide și presupune că diferitele morfologii coincid cu diferite faze de evoluție.

În cazul în care materialul este foarte fluid, având un conținut de particule solide
foarte redus, prin îmbibarea cu apă noroioasă și eroziunea rocilor gazdă rezultă un bazin noroios (fig.14, cazul A, faza 1) pe care se pot dezvolta mici conuri embrion, efemere (fig.14, cazul A, faza 2).

În cazul în care canalul de evacuare este reprezentat de o fisură îngustă și materialul emis are un procent mai mare de particule solide, acestea se depun pe suprafața terestră în straturi succesive, asemănător vulcanilor scut rezultând un con noroios plat (fig.14, cazul B, faza 1).

Dacă activitatea conului noroios se întrerupe temporar, conul se consolidează ceea ce permite acumularea noroiului sub forma unor intruziuni noroiioase (fig.14, cazul B, faza 2).
cauza presiunii acumulate întregul edificiu va fi bombat, rezultând un dom noroios (fig.14, cazul B, faza 3), pe care se pot forma mici fisuri prin care se va realiza evacuarea materialului din punga noroioasă.

În urma unei erupții sau prăbușiri, domul se transformă într-o calderă noroioasă (fig.14, cazul B, faza 4).

Fenomenele din natură rareori pot fi supuse unui întreg model sau unor legități stabilite de om. Din această cauză propunem un alt model pentru mecanismul formării diverselor morfologii ale vulcanilor noroioși din estul și centrul Bazinului Transilvaniei.

Al doilea model presupune dezvoltarea diferitelor forme, independent unele de altele. Bazinul noroios (fig.15, cazul A) și conul noroios (fig.15, cazul B) iau naștere în mod identic cu cel din primul model. Domul noroios (fig.15, cazul C) se formează prin deformarea stratelor de suprafață de către materialul noroios acumulat sub forma unor intruțiuni noroioase, aflate în mișcare ascendentă – asemănător diapirelor argiloase sau domurilor vulcanice endogene. Caldera noroioasă (fig.15, cazul D) ia naștere prin mișcarea ascendentă a unei mase de material noroios aflat sub presiune ce străpunge stratul de suprafață (inclusiv prin erupție).

![Diagram](image_url)

Fig. 15. Modelul 2 pentru mecanismul de formare al diferitelor tipuri morfologice de vulcani noroioși

Concluzii

În concluzie, vulcanii noroioși studiați prezintă evoluții foarte dinamice, cu schimbări însemnate, uneori chiar radicale în evoluția lor chiar și în scurtă perioadă a studiului realizat – între anii 2002-2010. Considerând caracterul dinamic al vulcanilor noroioși trebuie precizat că observațiile și concluziile trase se referă doar la perioada studiului.

Dimensiunile vulcanilor noroioși studiați variază de la mai puțin de 1 m la 28 m în diametru
și de la 0 la 3,5 m înălțime, dominând vulcanii noroioși plați sau ușor concavi. Cei care ating înălțimea de 1 m sunt prezenți într-un procent de 25 %. De obicei craterele lor au dimensiuni foarte mici (2–5 cm) sau lipsesc total, însă există 4 subiecți cu craterare foarte largi (4,5–12 m).

Cei mai răspândiși sunt cei cu forme negative (bazinele noroioase) în proporție de 39 % dintre toți vulcanii noroioși studiați. Dintre formele pozitive, domurile noroioase apar în cel mai mare număr (35 %), fiind urmați de conurile noroioase (14 %) și de calderele noroioase, tipul cel mai slab reprezentat (6 %). Din cauza morfologiilor și manifestărilor distincte, a stării avansate de fosilizare și a intervențiilor antropice, 6 vulcani noroioși studiați nu au putut fi asociată nici unui tip.

Cele patru tipuri stabilește corespund aproximativ cu cele patru cazuri definite ca diferite faze (în primul model) sau mecanisme (în al doilea model) de formare ale diferitelor tipuri morfologice de vulcani noroioși.

Apariția vulcanilor noroioși cu preponderență în văi, luneci sau în unele cazuri pe versanți glacizați se referă la o relație tectonică secundară, pentru că dezvoltarea văilor a fost de cele mai multe ori determinată tectonic, fapt care prelejuieste și apariția vulcanilor noroioși. În același timp localizarea lor este legată și de arealele în care straturile impermeabile au fost înlăturate prin eroziune fluvială.

Din punct de vedere al vegetației s-a constatat că gradul de activitate al vulcanilor noroioși este oglindit și în tipul vegetației. În cazul în care vulcanii noroioși activi sunt acoperiți de vegetație, pe acestea se vor dezvolta specii helofite, cel mai bun indicator de vulcan noroios activ fiind pipirigul (Schoenoplectus lacustris).

Conform hârților geologice și a profilelor seismice din zona studiată [KRÉZSEK, 2008, com. pers.], din punct de vedere geologic vulcanii noroioși pot fi legați de structuri gazeifere, prin anticlinale flexurale cu fălii extensionale; limite litologice (în cadrul Sarmațianului și Pannonianului) sau de sistemul de fălii Odorhei.

Considerăm lucrarea de față ca pe o bază de plecare pentru studiile noastre viitoare (cu tehnici de investigare microgeofizice moderne), în ideea că vulcanii noroioși au o importanță nu doar științifică dar și economică prin indicații legate de structurile gazeifere din adâncime, și nu în ultimul rând turistică.

Bibliografie selectivă

