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Chapter 1

Introduction

The ability to create intelligent machines able to emulate the biological intel-

ligence of homo sapiens has intrigued humans since ancient times. The sound

and fruitful investigation of intelligent machines begun with the advent of the

computer, the rise of a new mathematical theory of information, and with the

major discoveries in neurology. Artificial Intelligence (AI) was established within

computer science, as a major field of research and study, focusing on creating

machines that can engage on behaviors that humans consider intelligent.

Most of the problems in AI can be solved by performing an intelligent search

through many possible solutions (Russel & Norvig, 1995). Alan Turing outlined

three flavors of search that can lead to intelligent behavior: the logic-driven

search approach, the cultural search approach, and the evolutionary search ap-

proach (Turing, 1969).

Many machine learning algorithms apply search algorithms based on opti-

mization. As exhaustive, uninformed search is impractical in real world scenarios

due to the tremendous search space sizes. Informed search procedures use heuris-

tics, and make assumptions to guide the search and reduce the search space by

eliminating choices that are unlikely. Many search bias techniques are inspired

and mimic mechanisms acting in nature.

This dissertation investigates additional aspects of informed search where bias

is introduced in an intelligent manner, as a result of data analysis and exploita-

tion of search experience. In particular, we apply machine learning techniques to

infer information about black box functions. This knowledge is used in conjunc-

tion with optimization techniques to solve hard optimization problems quickly,

reliably, and accurately. The dissertation also analyzes techniques that improve

scalability, for handling complexity and large scale optimization and general prin-

ciples to produce open-ended solutions to given problems.

1



2 CHAPTER 1. INTRODUCTION

1.1 Problem Statement

One of the greatest and most interesting challenges are the problems arising from

the study of Complex Systems. This field studies how relationships between parts

relates to the collective behavior of a system and how the system interacts and

forms relationships with its environment.

These systems are characterized by multiple interactions between many differ-

ent components where local and global phenomena interact in complicated, often

nonlinear ways (Rind, 1999). In many complex systems around us interactions

do not manifest at a single level; they have a hierarchical organization, where

the system is composed from subsystems, each of which is hierarchical by itself

(Simon, 1969). To successfully address large-scale problems in complex systems,

a proper problem decomposition must be used.

The aim of the thesis is to develop principled methodology and a general

framework able to exploit search experience via data analysis and machine learn-

ing techniques, enabling the identification and exploitation of dependencies and

modularity. The learning and adapting component extends simple methods mak-

ing them more efficient, robust and most importantly scalable. Detecting rules

and substructures of the problem on the fly, performing a dynamic decomposi-

tion, can guide the search, and it can render intractable problems tractable and

solve them efficiently.

1.2 Contributions

The main contributions of this dissertation to the field include:

• Introducing the adaptive neighborhood structure in local-search optimizers

where search strategies are extended and can adapt by using data analysis

and machine learning techniques.

• Building the Model Based Local Search framework and showing that is

scales up logarithmically on hierarchical problems.

• Establishing new benchmark functions for testing the influence of neutrality

and massive multimodality and scalability on large-scale problems.

• Demonstrating the sustainability, scalability and reliability of the Model

Based Local Search on problems that are intractable by classical methods.

• Eliminating the costly model search by introducing new automatic linkage

detection methods based on neural networks.

• Introducing memory efficient on-line model building technique.
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• Proposing the efficiency enhancement and the reduction of complexity in

model building methods by incorporating pre-filtering based on pairwise

interaction analysis.

• Development of a model evaluation free, fast, scalable, easily parallelizable

model building method, based on the Markov Clustering Algorithm. The

proposed model building technique can potentially be used to build models

of three different categories: Bayesian networks, overlapping linkage models,

and non-overlapping marginal product models

• Investigating the fundamentals of evolutionary algorithms and outlining

new topological features of fitness landscapes for which crossover is an effi-

cient operator.

• Proposing an unconventional sustainable competent search model based on

cooperation, specialization and exploitation of search experience. The open-

ended synthesis is guaranteed by the non-convergent part of the search,

which endlessly explores for new traits which if found, are fostered by the

convergent mechanism.

The thesis is based on the following publications:

(Iclanzan & Dumitrescu, 2010)David Iclanzan and D. Dumitrescu.

Graph clustering based model building. In PPSN XI - to appear in

Lecture Notes in Computer Science, Krakow, Poland, 11-15 Septem-

ber 2010. Springer. (accepted).

(Iclănzan et al., 2010) D. Iclănzan, D. Dumitrescu, and B. Hirs-

brunner. Pairwise Interactions Induced Probabilistic Model Building.

Exploitation of Linkage Learning in Evolutionary Algorithms, pages

97–122, 2010.

(Iclanzan et al., 2009a) David Iclanzan, D. Dumitrescu, and Béat

Hirsbrunner. Correlation guided model building. In GECCO ’09:

Proceedings of the 11th Annual conference on Genetic and evolution-

ary computation, pages 421–428, New York, NY, USA, 8-12 July 2009.

ACM.

(Szilágyi et al., 2009) László Szilágyi, David Iclanzan, Sándor M.

Szilágyi, D. Dumitrescu, and Béat Hirsbrunner. A generalized c-

means clustering model optimized via evolutionary computation. In

IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’09,

Jeju Island, Korea), pages 451 – 455, 2009.
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(Iclanzan et al., 2009b) David Iclanzan, Béat Hirsbrunner, Michèle

Courant, and D. Dumitrescu. Cooperation in the context of sustain-

able search. In IEEE Congress on Evolutionary Computation (IEEE

CEC 2009), pages 1904 – 1911, Trondheim, Norway, 18-21 May 2009.

(Szilagyi et al., 2009) Sandor M. Szilagyi, Laszlo Szilagyi, David

Iclanzan, and Zoltan Benyo. A weighted patient specific electrome-

chanical model of the heart. In Proc. 5th International Symposium

on Applied Computational Intelligence and Informatics (SACI 2009),

pages 105–110, Timisoara, Romania, 28-29 May 2009.

(Szilágyi et al., 2008) László Szilágyi, David Iclanzan, Sándor M.

Szilágyi, and D. Dumitrescu. Gecim: A novel generalized approach to

c-means clustering. In José Ruiz-Shulcloper andWalter G. Kropatsch,

editors, CIARP, volume 5197 of Lecture Notes in Computer Science,

pages 235–242. Springer, 2008.

(Iclanzan & Dumitrescu, 2008c) David Iclanzan and D. Du-

mitrescu. Large-scale optimization of non-separable building-block

problems. In Günter Rudolph, Thomas Jansen, Simon M. Lucas,

Carlo Poloni, and Nicola Beume, editors, PPSN, volume 5199 of Lec-

ture Notes in Computer Science, pages 899–908. Springer, 2008.

(Iclanzan & Dumitrescu, 2008d) David Iclanzan and D. Du-

mitrescu. Towards memoryless model building. In GECCO ’08:

Proceedings of the 2008 GECCO conference companion on Genetic

and evolutionary computation, pages 2147–2152, Atlanta, GA, USA,

2008. ACM.

(Iclanzan & Dumitrescu, 2008a) David Iclanzan and D. Du-

mitrescu. Going for the big fishes: Discovering and combining large

neutral and massively multimodal building-blocks with model based

macro-mutation. In GECCO ’08: Proceedings of the 10th annual

conference on Genetic and evolutionary computation, pages 423–430,

Atlanta, GA, USA, 2008. ACM.

(Iclanzan & Dumitrescu, 2008b) David Iclanzan and D. Du-

mitrescu. How can artificial neural networks help making the in-

tractable search spaces tractable. In 2008 IEEE World Congress on

Computational Intelligence (WCCI 2008), pages 4016–4023, Hong-

Kong, 01-06 June 2008.
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Chapter 2

Background and Related Work

This chapter gives a brief introduction to global optimization with emphasize

on evolutionary algorithms. The shortcomings of classical methods leading to

premature convergence and the ones of fixed representations and operators are

discussed. The last part presents major ideas behind competent methods, de-

signed for supporting sustainable evolution. It is briefly discussed how and at

what costs can model building alleviate the problem of building block disruption.

2.1 Global Optimization

2.2 Evolutionary Algorithms

2.2.1 Genetic Algorithms

2.2.2 Evolutionary Programming and Evolution Strategies

2.2.3 Genetic Programming

2.2.4 Issues with Classical Evolutionary Methods

2.3 Sustainable Evolutionary Computation and Compe-

tent Methods

2.3.1 Premature Convergence

2.3.2 Building Blocks and Model Building
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Chapter 3

Correlation Guided Model

Building

This chapter presents basic results demonstrating how simple variable correlation

data can be extended and used, to efficiently guide the model search, decreasing

the number of model evaluations by several orders of magnitude and without

significantly affecting model quality.

As a case study, we replace the O(n3) model building of the Extended Com-

pact Genetic Algorithm by a correlation guided search of linear complexity.

3.1 Introduction

3.1.1 General measurement of module-wise interactions

Let MR contain the absolute values from the correlation coefficient matrix but

with self-correlations set to zero, i.e MR(x, x) = 0. The first module-wise metric

simply averages the different pairwise interactions:

d1(X,Y ) =

∑

x∈X

∑

y∈Y MR(x, y)
(

|X
⋃

Y |

2

) (3.1)

As it averages, d1 is influenced by outliers, penalizing the incorporation of non-

correlated components. For quantifying the strong interactions even in subsets

of the modules, we introduce a metric which just sums up interactions:

d2(X,Y ) =
∑

x∈X

∑

y∈Y

σ(x, y) ·MR(x, y) (3.2)

11
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where

σ(x, y) =

{

1 , if MR(x, y) is statistically significant;

0 , otherwise.
(3.3)

In d2 non-correlated components can not heavily bias the outcome. This also

means that too complex module formation are not penalized. The two metrics are

complemental and can be used together. If d2 is high but d1 has a small value,

we should consider splitting the modules in multiple pieces: there are strong

interactions but not all (x, y) variable pairs are correlated.

3.2 Case Study on eCGA

The eCGA (Harik, 1999) is a multivariate extension of the Compact Genetic

Algorithm (Harik et al., 1999) based on the key principle that learning a good

probability distribution of the population is equivalent to the linkage learning

process. The measure of a good distribution is quantified based on minimum

description length (MDL) models. MDL is pillared on the concept that any

regularity in a given set of data can be used to compress the data.

Starting from a random population, the eCGA applies the process of evalua-

tion, selection, MPMs based model-building and sampling until a halting criterion

is met.

Model building in eCGA involves a very expensive computational task as

the determination of MD: based criteria function for each tested model, requires

the model to be fitted against the (large) population. The method has O(n3)

complexity over the combined complexity criterion evaluation.

3.2.1 Hybridization of eCGA

A commonly used efficiency enhancement mechanism is the hybridization with

local-search techniques. In the case of the eCGA, incorporating local-search in

the sub solution search space leads to better results and greater robustness (Lima

et al., 2005).

3.2.2 Guided linear model building

When searching for a proper MPM, eCGA greedily searches the space of possible

models evaluating all pairwise partition merges. The model is extended sequen-

tially with the best possible improvement obtained by joining modules. The main

idea of the proposed search is to not process the list of possible extensions blindly

and exhaustively: the best extension(s) to be considered are based on correlation

analysis between the partitions. The search stops immediately when the model

extension does not improve the combined complexity criterion. The reasoning

behind this is that all other partition merges that are not analyzed would have
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Algorithm 1: Correlation guided model-building

1 Build initial model m where each variable is an independent partition;
2 Compute MR and MT ;
3 if this is the first generation and there are no significant values in MT

then
4 Request a bigger population and suggest performing search for second

order interactions;
5 Halt the search;

6 repeat
7 [p, q]← StrongestInteraction(m,MR, d);
8 Form new model m′ based on m but with p and q merged into a joint

partition;
9 Evaluate combined complexity criterion Cc(m

′);
10 if m′ improves over m then
11 m← m′;

12 until No improvement was found ;

(according to the correlation based measurements) lower degree of interactions

then the last proposed extension. If that extension was rejected by the combined

complexity criterion (Cc) then all the remaining ones would be also discarded,

there is no point to continue the analysis.

The correlation guided model-building is presented in Algorithm 1.

In terms of combined complexity criterion evaluations, the proposed method

is very efficient, being linear.

3.3 Test suite

We test the eCGA with correlation guided model-building on two problems that

combine the core of two well known problem difficulty dimensions:

• Intra-BB difficulty: deception due trap functions.

• Extra-BB difficulty: non-linear dependencies due to hierarchical structure,

which at a single hierarchical level can be interpreted as exogenous noise –

generated by interactions from higher levels.
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3.3.1 Concatenated k-Trap function

3.3.2 Hierarchical XOR

3.4 Results and Discussion

The linear runtime of the correlation guided model-building in eCGA provides

a huge qualitative advantage over the O(n3) classic model-building complexity.

A heuristic based model-building with a O(n2) complexity had been shown to

speed up the eCGA up to more than 1000 times (Duque et al., 2008).

Therefore, instead of providing a quantitative run-time comparison between

eCGA with the proposed and the classical model-building, we concentrate the

empirical investigation on the scaling, model quality – number of generations

until convergence and the effect of hybridization.

3.4.1 Test setup

We tested the correlation guided eCGA with and without local-search hybridiza-

tion (denoted as eCGAh) on concatenated 4-Trap and lhXOR with l = 3 for

problem sizes psize = {32, 64, 256}. Population sizes are 15psize for eCGAh and

55psize for eCGA. These values were not tunned. A number of 10 runs were

averaged for each test case. Results are presented in Figure 6.1 and discussed in

the followings.

3.4.2 Analysis

In all cases the algorithms have found a global optima and the correct structures.

Figure 6.1 shows the number of function evaluations needed per problem size.



Chapter 4

Model Based Local Search

In this chapter we introduce the Model Based Local Search framework, namely

a hill-climber operating over the building block space that can efficiently address

hierarchical problems by learning the problem structure from search experience.

The neighborhood structure is adapted whenever new knowledge about the un-

derlying building block structure is incorporated into the search. This allows the

method to climb the hierarchical structure by revealing and solving consecutively

the hierarchical levels.

We show that for fully non-deceptive hierarchical building block structures

propose approach can solve hierarchical problems in linearithmic time, clearly

outperforming population based recombinative methods.

4.1 Motivation

One of the most important research goal regarding Evolutionary Algorithms

(EAs) is to understand the class of problems for which these algorithms are most

suited. Despite the major work in this field it is still unclear how an EA explores

a search space and on what fitness landscapes will a particular EA outperform

other optimizers such as hill-climbers.

15
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4.2 Hierarchically Decomposable

Functions

4.2.1 Hierarchical Problems

Hierarchical if and only if (hIFF)

Hierarchical XOR (hXOR)

The Hierarchical Trap Function (hTrap)

4.2.2 Hill-climbers and neighborhood structure

4.2.3 Building Block wise search

As already indicated, hierarchical problems are fully deceptive in Hamming space

and fully non-deceptive in the building block space. The problem representation

together with the neighborhood structure defines the search landscape. Recent

local-search literature authors have emphasized the importance of using a good

neighborhood operator (Watson et al., 2003) With an appropriate neighborhood

structure – which operates on building blocks – the search problem can be trans-

ferred from Hamming space to a very nice, fully non-deceptive search landscape,

which should be easy to hill-climb.

While EAs exploit building block structure by probabilistic recombination,

this approach applies a systematic combination and analysis of building blocks.

4.2.4 Online adaptation

It is important for a GA to conserve building blocks under crossover. Theoret-

ical studies denote that a GA that uses crossover which does not disrupt the

building block structure, holds many advantages over simple GA (Thierens &

Goldberg, 1993). To achieve this goal linkage learning is applied and the solution

representation is evolved along with the population, during the search process.

Similarly, in order to be able to hill-climb the building block landscape, the

building block structure of the problem must be learned and the representation

of the individual must be evolved to reflect the current building block knowl-

edge. The changing of representation implies the adaptation of the neighborhood

structure, which is the key to conquer hierarchical problems: by exploring the

neighborhood of the current building block configuration the next level of BBs

can be detected.

4.3 Building Block Hill-Climber

BBHC involves four main steps: (i) initialization of the algorithm with each single

locus as a BB; repeatedly (ii) hill-climb the search space according to a BB-wise
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neighborhood structure; (iii) local optima obtained in (ii) is used to detect link-

ages and extract building block information; (iv) the building block configuration

and implicitly the neighborhood structure are updated. This section describes

the framework of BBHC and details the implementation.

4.3.1 The Model Based Local Search Framework

Figure 4.1 depicts the two main phases of the model based local search, BBHC

optimization. The first one refers to the accumulation of search experience, pro-

vided by the repeated hill-climbing. The second phase concerns the exploitation

of search experience by linkage learning and building block structure update.

The input of the second phase is the search experience stored in memory.

Dependencies are detected and the output consists of an updated building block

structure, which enables the first phase to combine new building blocks. In

hierarchical problems, modeled after the suggestions of the BBH, the assembling

of lower level building blocks leads to the development of higher order ones. Thus

the sequence of phases can effectively overcome hierarchical levels successively by

discovering and incorporating building block knowledge into the search process.

4.3.2 The Building Block hill-climbing

4.3.3 Linkage detection and building block structure

update

As hierarchical problems under study have a nice non-deceptive structure in the

building block space, a very simple method for linkage detection is considered.

The clustering of loci in new building blocks is done by searching for bijective

mappings.

Due to the transitivity property of bijective mappings, all relevant building

blocks are discovered simultaneously. The linkage detection algorithm is pre-

sented in Figure 4.4.

All building blocks linked together by a bijective mapping are united into a

new building block. The candidate configurations of the new building blocks are

extracted from the binary representation of states from the memory. If a building

block can not be linked with any other building block it keeps its original place

and only its possible configurations are updated in the same manner as for the

new building blocks.

4.3.4 The memory size

The proposed model can be summarized by the algorithm presented in Figure

4.5.
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Figure 4.1: The framework of BBHC with the two main phases: accumulation
and exploitation of search experience.

4.4 Results

We tested the scalability of BBHC on 128-bit, 256-bit, 512-bit and 1024-bit shuf-

fled hIFF and hXOR problems, respectively on 81-bit, 243-bit and 729-bit shuffled

hTrap problem instances. Lower problem sizes were not addressed as they may
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be too easy to solve; any conclusion from them may be misleading. For each test

suit a total number of 100 independent runs were averaged.

The arithmetic scaling results with the ratio between neighborhood points is

presented in Figure 6.1. On the test suites, the proposed method scales up almost

linearly with the problem size, with the slope between neighbor points decreasing

towards 2 as the problem size doubles on hIFF and hXOR and towards 3 on hTrap

as problem size is tripled.

The experimental results were approximated with functions of the form f(x) =

axb · log(x) where a and b are determined by the least square error method. In

Figure 4.7 the log-log scaled plot of the test results and approximation functions

are shown. The approximated number of objective function evaluations scales as

O(l0.97 · log(l)) on hIFF and hXOR and O(l0.91 · log(l)) on hTrap, where l is the

problem size. The approximations are very close to the expected linearithmic

time. The best results reported till now scale up sub-quadratically with a lower

bound of O(l1.5 · log(l)) (Pelikan, 2005).

The hBOA, one of the best known optimizers that operate via hierarchical

decomposition, with hand tuned parameters solves the 256-bit shuffled hIFF in

approximately 88000 function evaluations. The BBHC performance on the same

test suit is 20666, approximately four times quicker than the hBOA. Due to the

linearithmic scaling the BBHC is able to solve the 512-bit version of the same

problem approximately twice as fast as the hBOA does the 256-bit one, requiring

only 45793 function evaluations on average!

Similarly to other methods like the DSMGA++, the BBHC uses explicit

chunking mechanism enabling the method to deliver the problem structure. While

DSGMA++ and other stochastic methods have to fight the sampling errors which

sometimes induce imperfections, the BBHC was able to detect the perfect prob-

lem structure in all runs, due to its more systematic and deterministic approach.

The enhanced capability of BBHC to capture the problem structure is also re-

vealed by the fact that hIFF and hXOR are solved approximately in the same

number of steps as their underlying building block structures (a balanced binary

tree) coincide. For the DSGMA++ the time needed to optimize the two prob-

lems differs significantly, being O(l1.84 · log(l)) for the hIFF and O(l1.96 · log(l))

on hXOR.

Figure 4.2: Building block configuration of the 8-bit state.
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HC(s)

1. Choose randomly an unprocessed building block bi from B(s);

2. Choose randomly an unprocessed building block configuration

vj ∈ Vi;

3. Set v(bi) in s to vj;

4. If the change results in a decrease of the objective function

undo the change;

5. If there exists unprocessed building block configuration of Vi

then goto 2 ;

6. If there exists unprocessed building block from BB(s) then

goto 1 ;

Figure 4.3: The pseudo code of the deterministic, greedy building block search.

4.5 Summary

Preliminary scalability test of the proposed method indicates that BBHC holds

not only a quantitative advantage over other methods but also a qualitative one

too: it scales linearithmic with the problem size.



4.5. SUMMARY 21

BBForm(s,M )

1. Choose randomly a building block bi from BB(s) which has not

yet been clustered;

2. Compute the set of building blocks whose configuration from M
are mapped bijectively to bi and denote it by L;

3. If L is empty update the possible configurations Vi to the

configurations encountered in M ;

4. If L is not empty form a new building block bnew = bi
⋃

L from

the union of loci from bi and from building blocks in L. Also

set the possible values Vnew to all distinct configuration

encountered, on the position defined by the bnew, operating on

the binary representation of states from M .

5. Set bi and the building blocks from L as clustered;

6. If there exists building blocks which have not been clustered

goto 1 ;

Figure 4.4: The linkage detection and new building block forming algorithm,
where M is the memory.
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BBHC(x, c, b, k) returns best state

1. Initialize the building block knowledge with each single locus

from x as a building block;

2. Initialize the memory size:

size[M ] := c+ logb(length(x));

3. Generate a random state s according to the

current building block structure knowledge BB(s):
s := RandomState(BB(s));

4. building block hill-climb from s and store the result in

memory: M := M
⋃

HC(s);

5. If the resulted state is better then the best

states seen so far, keep the new state:

s := best(s, best state)

6. If M is not filled up goto 3 ;

7. Learn linkage from memory and update the building block

configuration according to the detected linkages:

BBForm(s,M);

8. Empty memory: M = ∅;

9. Update the memory size:

size[M ] := c+ logb(ℵ(BB(s)));

10. If there was an improvement in the last k epochs and the

number of maximum function evaluations was not exceeded goto

3 ;

Figure 4.5: Outline of the hill-climbing enhanced with memory and linkage learn-
ing. In steps 3–6 we accumulate the search experience (phase 1) which is exploited
in steps 7–9 (phase 2).
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Figure 4.6: Arithmetic scaling of BBHC on hIFF, hXOR and hTrap. The number
of function evaluations scales almost linearly. The ratio between neighborhood
points is decreasing towards 2 as the problem sizes are doubled in the case of
hIFF and hXOR and towards 3 in the case of the hTRap.
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Figure 4.7: The number of function evaluations of BBHC approximately scales
as O(l0.97 · log(l)) on hIFF and hXOR and O(l0.91 · log(l)) on hTrap, where l is
the problem size.



Chapter 5

Overcoming Neutrality and

Deceptiveness

In this chapter we present a competent methodology, capable of efficiently de-

tecting and combining large modules, even in the case of unfavorable genetic

linkage and no intra-block fitness gradient to guide the search or deceptiveness,

relying upon the Model Based Local Search framework introduced in the previous

chapter. This is achieved by investing the function evaluations in a model based

local-search with strong exploratory power and restricting the model building to

a relatively small number of semi-converged samples.

5.1 Introduction

5.2 How Much Is the Fish?

5.2.1 Population Sizes and Model Building Cost in PMBGAs

5.3 Test functions

5.3.1 Extended Shuffled Royal Road Function

5.3.2 Hierarchical Massively Multimodal Deceptive Function

5.4 Model Based Macro-Mutation

The search is based on the MBLS framework presented in chapter 4, using a

macro mutation operator for the local-search.

25
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5.4.1 Module aware representation

5.4.2 Macro-Mutation Hill-Climber

Amethod with great exploratory power, the Macro Mutation Hill-Climber (MMHC)

had been shown to be a very powerful hill-climbing method, which can outper-

form GAs even on problems where each building-block corresponds to a deceptive

trap function, provided that the problem has a tight linkage (Jones, 1995).

5.4.3 Learning the structure

Learning with Self Organizing Maps

We use a Self Organizing Map (SOM) to detect dependent inputs. SOMs are

trained using unsupervised learning to produce a two dimensional, discretized

representation of the input space of the training samples, called a map (Kohonen,

1982).

The interesting feature of SOMs, exploited here, consist in the fact that the

mapping is topology preserving and similar inputs tend to have similar weights.

Dependencies are deduced form the internal representation of the SOM based

on the heuristic that similar inputs should produce similar patterns in their as-

sociated weights i.e dependent inputs have roughly the same values for their

weights.
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Algorithm 2: Model Based Macro Mutation

Data: M,V, nS , z, c2,@stopping cond, ǫ1.
1 while not @stopping cond do
2 n← |M(s)|;

/* Phase I */

3 for i = 1, nS do
/* Generate a random state s according to the current

building-block knowledge M(s) */

4 s← RandomState(M);
/* Apply macro-mutation according to the current model

for c2n
2 evals */

5 s←MBMM(s, [M,V ], c2n
2);

6 mem[i]← s;

/* Phase II */

7 T ← NormalizeDataRanges(mem);
8 F ← 0n×n;
9 for l = 1, z do

10 net← InitializeSOM();
/* Randomly select four samples */

11 S ← ChoseRandomSamples(T, 4);
12 net← Train(net, S);

/* Detect possible modules via weight analysis */

13 nm← GetLinkages(net.Weights, ǫ);
/* Update the frequency matrix */

14 F ← Update(F, nm);

/* Get modules from the frequency matrix */

15 b← GetBaseModules(F, ǫ1);
/* Merge overlapping modules */

16 b← unique({bi = bi
⋃

bj if bi
⋂

bj 6= ∅; ∀i, j});
/* Collapse the search space and update the building-block

configuration according to the detected modules */

17 [M,V ]← UpdateModuleKnowledge(b);

Noise Filtering

The MBMM is summarized in Algorithm 2.

5.5 Results

The performance of the proposed MBMM method was tested on the ESRR

function with even base module sizes from 8 to 16 and on HMMD function

of order 6 and 8. On the ESRR function the parameters that reward certain

block configurations were set to r1 = 1, r2 = 2, r3 = 4. The HMMD functions
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Figure 5.1: Performance and scaling of the MBMM on the proposed test suites.

were used with r1 = 1 and r2 = 2. The ζ threshold for fitness variance in the

model based macro-mutation was dynamically determined: using 100 trials, we

computed the average fitness improvement δ+ of the successful mutations working

on randomly generated states. A major fitness improvement was regarded as one

above this value with more then 50%, thus ζ = 1.5 · δ+.

For test suites with block sizes up to 10, a total number of 100 independent

runs were averaged. For problems with base module sizes of 12 the number of

averaged runs was 30, respectively 10 for block sizes of 14 and 16.

The number of function evaluations used by an epoch of local-search was set

to 5n2. The method showed a very good behavior, with 100% success rate on

every test suite and with a very accurate and prompt model building.

The performance and scalability of the method is depicted in Fig. 5.1. As k

grows, random sampling required to discover blocks grows exponentially. Never-

theless, even for k as large as 16, the proposed method, using objective function

guidance and biased search for module discovery, is able to find and combine all

blocks accurately, within the bounds of 6e6 objective function evaluations.

We repeated our experiments for the ESRR test suite, up to block sizes of

k LS - c2n
c1 Succ. Avg. nr. obj.

(c2 ≤ k) rate func. evals.

8 5n2 100% 3.442e5
10 5n2 100% 1.425e6
12 10n2 100% 7.547e6
14 5n2.39 100% 2.655e7

Table 5.1: Numerical results of the MBMM with the blind version macro-
mutation on the ESRR.
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14, using the simple, blind macro-mutation strategy, without the fitness variance

analysis and preliminary model building. Here, whenever a new state is accepted,

we only perform a simple greedy search upon this state, in order to discover better

solutions, if any, in the close neighborhood of the new state.

The results are summarized in Table 5.1. The first column contains the basic

module sizes. The scaling of function evaluations with regard to the block/problem

size (remember that n = k2), invested by the local-search in a single run in order

to detect correct module settings, is presented in the 2nd column. Column 3

contains the rate of success for each test suite, while the average total number

of function evaluations until global optimum is reached, is reported in the last

column.

ESRR of size 8 and 10 is easily solved again in all cases, allocating the 5n2

function evaluations to the local-search.

Due to the strong exploration performed by the biased model based macro-

mutation, neutrality of ESRR the massive multimodality and average case de-

ceptiveness of the HMMD function is overcame, as shown in the results. The

method correctly identified one of the global optima and provided an exact model

building in all runs. Even if the search space is extremely hard, due to the random

shuffling and because of the astronomical number of aleatory placed local optima,

the MBMM is able to quickly solve this problem by building and exploiting an

accurate problem decomposition.

5.6 Conclusions

Investing the function evaluations into an exploratory local-search can facilitate

the discovery of large modules. The method can also decide between the most

fit module settings and their most competing schemata. Thus, the total number

of samples needs to be just large enough, to make the delimitation of different

modules possible with suitable machine learning techniques.





Chapter 6

Large Scale Optimization

The chapter presents principled results demonstrating how the identification and

exploitation of variable dependencies by means of Artificial Neural Network pow-

ered online model building, combined with the Model Based Local Search, opens

the way towards large-scale optimization of hard, non-separable building block

problems.

6.1 Introduction

In order to solve non-separable problems up to millions of variables, we need a

method that is computationally efficient in terms of model building and also very

efficacious in terms of memory usage.

For meeting these desiderates, we consider the extension of the model based

local-search presented in (Iclanzan & Dumitrescu, 2007b) with an online learning

and model building mechanism. The proposed Online Model Based Local-Search

(OMBLS) framework employs an adaptive neighborhood structure which facil-

itates the operation directly on modules. Nevertheless, this approach does not

use a memory to store semi-converged solutions for later analysis, one point is

sampled at the time and the search experience is accumulated and information

about the problem structure is inferred from a single data structure, resulting in

very low memory requirements.

6.2 The Mixed Hierarchical Test Function

To obtain a single, large, scalable test problem which embeds all the test fea-

tures found in separate suites, we consider the mixing of three standard and well

known hierarchical test functions: the hierarchical IFF (Watson et al., 1998), the

31
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hierarchical XOR (Watson & Pollack, 1999) and the hierarchical trap function

(Pelikan & Goldberg, 2001).

6.3 Online Model Based Local-Search

6.3.1 Employed Local-Search

We use a simple greedy search among these configurations.

6.3.2 Linkage Learning within OMBLS

A network which seeks to preserve the topological properties of the input space is

the Self Organizing Map (SOM) (Kohonen, 1982). The network is trained using

unsupervised learning to produce a two dimensional, discretized representation

of the input space, called a map.

The SOM training algorithm can be very well iteratively updated online with

“live” data, directly inputting the results (locally converged states) of the model

based local-search, rather than training with samples from a memory.

By analyzing the weights of the network, we are able to decide which of the

current variables are linked, but in order to collapse the search space we also

need their context-optimal settings. As a consequence, provided with only the

variable relationships, for each new composite block the method must search all

the possible combinations of sub-modules in the context of randomly generated

states and retain the best λ ones.

6.3.3 Collapsing the Search Space

6.3.4 OMBLS Algorithm

Starting from a representation in concordance with the original problem, in a

first phase, search experience is accumulated by training the SOM online with

the “live” states provided by repeated local-search working on the current rep-

resentation, which always express the most two fit schemata found at a lower

level. The local-search strategy used must be powerful enough to discover fully

optimized modules at a single hierarchical level.

After convergence of the network, in the second phase the structure of the

input space is inferred from the weights of the network and expressed by vari-

able linkages. Furthermore, an exhaustive search is performed according to the

detected linkages, to find the best context-optimal settings for each new module.

Formally the OMBLS is outlined in Algorithm 3.
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Algorithm 3: Online Model Based Local-Search

Data: n, nS , ǫ,@stopping cond.
/* Initially each binary variable is a base module */

1 for i = 1, n do
2 M [i][0]← {0};
3 M [i][1]← {1};

4 while not @stopping cond do
/* Phase I */

/* Build the SOM */

5 net← InitializeSOM(n);
6 for i = 1, nS do

/* Generate a random binary state of length n */

7 s← RandomState(n);
/* Apply module-wise greedy search */

8 s← GreedySearch(s,M);
/* Train the network online using vector quantization */

9 net← Train(net, s);

/* Phase II */

/* Detect possible modules via weight analysis */

10 nm← GetLinkages(net.Weights, ǫ);
/* Identify the two most fit schemata for new modules by

exhaustive search */

11 COset ← RetrieveBestTwoSettings(nm);
/* Collapse the search space and update the building-block

configuration according to the detected modules and

their context-optimal settings */

12 n← |COset|;
13 for i = 1, n do
14 if module i is new then
15 M [i][0]← COset[i][0];
16 M [i][1]← COset[i][1];

6.4 Run-Time and Scaling of the OMBLS

Assuming that the used machine learning technique successfully detects the cor-

rect dependencies, the global convergence of the OMBLS on the studied test suite

can be proven, by showing that there is a path towards global optima on each

component, easily followed by the method.

In the case of the module-wise greedy search, at one hierarchical level, the

number of objective function evaluations is in concordance with the number of

modules l, the number of context-optimal setting λ = 2 for each module and the
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number of epochs used to feed the network nS :

TLS = 2 · nS · l (6.1)

The search for the context-optimal settings will take a number of objective

function evaluations exponential in the size (denoted by ki) of the newly discov-

ered modules M ′ and the number of context-optimal settings:

TCOS =

|M ′|
∑

i=1

2ki (6.2)

For p hierarchical levels, the upper bound is given by the summation of the

model based local-search TLS and the search for context-optimal settings TCOS

on each hierarchical level.

T =

p
∑

i=1

(TLS + TCOS) (6.3)

As we know that the module sizes on hIFF and hXOR equal k1 = 2 and for

hTrap the module size is k2 = 3, we got the following upper bound on hMix for

p hierarchical levels:

ThMixp
= 2 ·

k
p

1
∑

l=k1
l=l∗k1

(2 · nS · l +
l

k1
· 2k1) +

k
p

2
∑

l=k2
l=l∗k2

(2 · nS · l +
l

k2
· 2k2) (6.4)

To empirically confirm this result and to test the efficiency of the SOM based

online linkage detection technique, the scalability of the OMBLS have been tested

on hMix with p = {4, 6, 8, 10, 11} hierarchical levels, with the resulting problem

sizes n = {113, 857, 7073, 61097, 181243}.

The method found one of the four global optima in all cases confirming the

efficiency of the online SOM based linkage learning. The scaling of the method

on hMix is presented in Fig. 6.1. The experimental result was approximated with

a function of the form f(x) = axb · log2(x) where a and b are determined by the

least square error method. As depicted, OMBLS scales on hMix approximately

as θ(x0.909 · log2(x)), where x is the problem size.

In our case, as the cost of the greedy search is linear in the number of modules,

from Eq. (6.4) results a very efficient sub-linearithmic running time, confirmed

empirically by our experiments.

The memory requirement of the OMBLS is very low, being linear in the

problem size.
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Figure 6.1: Sub-linearithmic scaling of OMBLS with module-wise greedy local-
search strategy on hMix: (a) arithmetic plot; (b) logarithmic plot.

6.5 Summary

OMBLS opens the way towards large-scale optimization of hard, non-separable

building-block problems. Further work will focus on probabilistic recoding of the

information (“soft” chunking) in order to tackle problems with more complicated

structure. Another line of research will focus on the parallelization of the pro-

posed framework: instead of sequential epochs, several model based local-searches

can be run concomitantly on different computational units; model building can

be also greatly parallelized as the search for context-optimal settings for each

building-block, respectively the pairwise distance computation of different mod-

ules can be run in parallel.





Chapter 7

Graph Clustering Based Model

Building

The chapter describes a new unsupervised model induction strategy built upon

a maximum flow graph clustering technique. The new approach offers a model

evaluation free, fast, scalable, easily parallelizable method, capable of complex

dependence structure induction. The method can be used to infer different classes

of probabilistic models.

7.1 Introduction

As already disscussed in Chapter 3, model building in EDAs can be computa-

tionally very expensive.

In this chapter we further explore the confluence between clustering algo-

rithms and EDAs, where graph clustering algorithms are applied to pairwise

interaction statistic matrices to reveal dependency structures. We term this class

of methods as Graph Clustering assisted EDAs (GCEDAs). We are especially in-

terested in finding efficient clustering algorithms allowing the induction of various

probabilistic model classes.

Our proposed approach has the advantage of being capable of automatically

delivering a dependency structure, without the need for a model search and costly

goodness-of-fit evaluations.
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7.2 Preliminaries

7.2.1 Graph Clustering assisted EDAs

Good probabilistic models describe which variables interact and how. Model

discriminative metrics, used in multivariate EDAs to guide the incremental model

building, measure variable interactions also quantifying for over fitting.

7.2.2 Graph clustering paradigm, stochastic matrices and flows

Maximum flow clustering algorithms rely on the following core idea: by simulating

a special flow within a graph, which promotes flow where the current is strong,

and reduces flow where the current is weak will reveal the cluster structure within

the graph, as the flow across borders between different groups diminish with time,

while it increases within the group.

7.2.3 Markov Clustering Algorithm

The MCL algorithm van Dongen (2000a) is a fast and scalable unsupervised graph

clustering algorithm, based on simulation of stochastic flow in graphs. It offers

several advantages, like a simple, elegant mathematical formulation, robustness to

topological noise Brohée & van Helden (2006), support for easy paralellization and

adaptation via a simple parameter enables the obtaining of clusters of different

granularities.

MCL iteratively simulates random walks within a graph by applying two

operators called expansion and inflation, until convergence occurs. At the end

of each inflation step a pruning step is also performed, in order to reduce the

computational complexity by keeping M sparse.

7.2.4 Interpretation of MCL clustering as dependency models

MCL iterants Mt are generally diagonally positive semi-definite matrices. Using

the property that minors of a diagonally positive semi-definite matrix are non-

negative, in van Dongen (2000b) it is shown that Mt-s have a structural property

which associates a directed acyclic graph (DAG) with each of them. These DAGs

generalize the star graphs associated with the MCL limits.

We present several approaches on how the information from MCL iterants

can be conveyed in dependency models able to represent and exploit linkages.

In the first approach, the DAGs represented by Mt-s are directly used for

defining the structure for a Bayesian network, with the edges representing the

conditional dependencies between variables. Then, the parameters, which con-

sist of the conditional probabilities of each variable given the variables that this

variable depends on, are extracted from the data in the same way as in BOA

Pelikan et al. (1999) or EBNA Etxeberria & Larranaga (1999). The obtained
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Bayesian network will encode the joint probability distribution of the variables

and can be used to sample the next generation. This approach presents two small

impediments. First, one has to decide from which Mt to construct and use the

Bayesian network, thus a few model evaluations against the data still have to be

computed. The second issue relates to the rare occasions where a MCL iterant

contains cycles. Before performing the parameter extraction, these cycles must

be detected and eliminated.

In a second approach, DAGs are interpreted as clusters by taking as cores all

end nodes (sinks) from the DAG, and by attaching to each core all the nodes that

reach it with a flow amount greater than a threshold. This procedure may result

in clusters containing overlap. The extracted linkages can be used to perform

building block wise crossover like in DSMGA Yu et al. (2003) or DSMGA++ Yu

& Goldberg (2006) or they can be used to build overlapping linkage model based

probability distributions.

The third approach is the cheapest one, as it deals only with the last iterant,

when the stochastic flow matrix M is completely converged. Here, the nodes

have found one “attractor” node to which all of their flow is directed, corre-

sponding to only one non-zero entry per column in M . Nodes sharing the same

“attractor” node are grouped in clusters. This approach is suitable for model-

ing non-overlapping building blocks, by building marginal product models as in

eCGA. Harik (1999).

Excepting the first approach, the dependency structure inferring is completely

autonomous, as its does not need to check the model fit with regard to the data.

7.3 MCL assisted EDA

Wishing to present an EDA with unsupervised model building, capable of model-

ing complicated variable interactions, we employ the second interpretation of the

MCL iterants to obtain a overlapping linkage model based probabilistic model.

We name this algorithm Markov Clustering EDA (MCEDA). The details of the

algorithm are presented in the followings.

7.3.1 Global statistics extraction

In this chapter, the degree of pairwise dependency between variables is calcu-

lated using sampled mutual information between two variables and record into

an adjacency matrix A, which will be the input of the graph clustering algorithm.

The transformation of A in a stochastic Markov matrix is handled by the

MCL algorithm by normalization of the columns to sum up to 1.

M(i, j) =
A(i, j)

∑n
l=1A(l, j)

(7.1)
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Function ExtractBBs(Mlist) returns BBlist

1 BBlist← ∅;
2 //each iterant from the MCL algorithm is processed
3 foreach Mt from Mlist do
4 //for all nodes find significant incoming flows
5 for i← 1 to size(Mt) do
6 pBB ← find(Mt(i, :) > Fmin(i));
7 if length(pBB) > 1 then
8 BBlist← BBlist

⋃

pBB;

9 BBlist← unique(BBlist);

7.3.2 The Overlapping Linkage Model (OLM)

In MCEDA, the multivariate variable interactions are modeled with the use of

overlapping linkage models (OLMs), which closely resembles the marginal prod-

uct model adopted by the eCGA Harik (1999). The difference is that OLMmodels

subsets of variables jointly as clusters, allowing overlaps, in contrast with parti-

tions, which always divides the variables in collectively exhaustive and mutually

exclusive blocks. The clusters can naturally represent building blocks, providing

a direct linkage map of the variables, thus we will use this terms interchangeably

in the context of OLMs. Clusters together with the marginal distributions over

them form the OLMs.

7.3.3 Dependency structure building and sampling

The clusters that form the basis of the OLMs are extracted from the iterants Mt

of the MCL algorithm.

For each node a potential building block is formed, by grouping together all

nodes that reach it with a flow amount greater than a threshold Fmin. Basic

clusters of size 1 are only allowed, if the described single position is not contained

in any other cluster. After all iterants have been processed, the procedure returns

the unique entries of the potential building block list. This sorting must be

performed, as the same cluster may be detected several times from different

iterants, or even from the same Mt in the rare cases when it contains cycles.

The building block extraction is depicted in Function ExtractBBs.

After the building blocks are determined, their probability distribution is

estimated by simply counting the frequencies in the data.

7.3.4 The Markov Clustering EDA

Algorithm 4 summarizes the structure and workings of the method.



7.4. EXPERIMENTS 41

Algorithm 4: The Markov Clustering EDA

1 pop← RandomInit();
2 repeat
3 ps← Selection(pop); //select promising solutions
4 {ps← ReduceEntropy(ps)}; //optionally reduce entropy by LS
5 A←MutualInformation(ps); //extract global statistics
6 Mlist←MCL(A); //apply graph clustering
7 BBlist← ExtractBBs(Mlist); //extract dependency structure
8 freq ← FrequencyCount(BBlist, ps); //compute marginal

probabilities
9 olm← BuildMPM(BBlist, freq); //combine results into a OLM

10 pop← Sample(olm); //generate a new population using the model

11 until convergence criteria is met ;

7.4 Experiments

In this chapter the class of additively decomposable functions (ADFs) with de-

ceptive trap subproblems is considered, a test bed which is widely used in the

literature as benchmarking problemsPelikan et al. (1999); Yu et al. (2005); Correa

& Shapiro (2006).

7.4.1 Test functions

The concatenated trap-5 Pelikan et al. (1999) is an ADF based on unitation (num-

ber of ones from a binary string) measures, exhibiting a single global optimum in

the string formed exclusively from ones. Non-separability can be introduced by

applying a fixed length, circular overlapping scheme between the trap-5 functions

Yu et al. (2005). For example, for a problem with 3 subproblems and overlap

length l = 2, the fitness is given by trap5(y1y2y3y4y5) + trap5(y4y5y6y7y8) +

trap5(y7y8y9y1y2), where yi is a random permutation of the variables xi, meant

to break the tight linkage. Every building block shares 2l variables, l with each

of its two neighbor.

7.4.2 Numerical results

Experiments are performed with the simple concatenated trap-5 function without

overlap (denoted by ctf5o0), with overlap 1 (ctf5o1) and overlap 2 (ctf5o2). In

order to test the scalability, for each ADF the number of subproblems k is scaled

from 6 to 18 by increments of 3, resulting in various problem sizes up to 90

variables.

Figure 7.1 b) presents the scaling of the methods for the different problem

types and sizes. The results show a similar scaling of the two methods. MCEDA
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Figure 7.1: The scaling of MCEDA and DSMGA on the test problems.

uses slightly fewer objective function evaluations and works with smaller popula-

tion sizes than the DSMGA. The performance difference is most likely explained

by the following two factors:

• DSMGA uses a crisp value when dealing with variable interactions. The

mutual information matrix is transformed in a binary matrix according to a

threshold, where two variables are considered fully interacting or completely

independent. In contrast, the MCEDA works directly with the normalized

mutual information values, which can describe more nuanced, weighted

levels or interactions, facilitating the earlier discovery of better models.

• The MCEDA has a better diversity maintenance mechanism as a higher

number of building-blocks are extracted due to the usage of early iterants

of the MCL process. Furthermore, the method samples according to the

exactly observed frequencies in the data. DSMGA may confront the hitch-

hiking phenomena Mitchell & Holland (1993) where some low fitness alleles

are promoted together with high-quality building-blocks in above average

individuals and the right crossover must be performed to eliminate them.

The MCL graph clustering is much faster than the MDL based clustering used

by DSMGA, having a worst case complexity O(nk2) van Dongen (2000a), where

k is the pruning factor (at most how many non-zero entries will be in a row of

the stochastic matrix - a very small number in practice, k << n). Clustering of

5000 nodes by the MCL takes only a few seconds, compared with minutes, in the

case of DSMGA model-building.
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7.5 Summary

Graph clustering offers a broad and flexible set of opportunities for model build-

ing as several dependency structure types can be inferred from the results. They

offer the possibility to entirely bypass the model fit-to-data evaluations or they

can be applied in a controlled mode, where they only guide the search. In the sec-

ond scenario, model evaluations are still applied, albeit much more infrequently,

with the role to guard against over fitting, discriminate between potential model

candidates.





Chapter 8

Crossover Utility

Historically, attempts to capture the topological fitness landscape features which

exemplify this intuitively straight-forward process, have been mostly unsuccessful.

Population-based recombinative methods had been repeatedly outperformed on

the special designed abstract test suites, by different variants of mutation-based

algorithms.

Departing from the Building Block Hypothesis, this chapter’s work seek to

exemplify the utility of crossover from a different point of view, emphasizing the

creative potential of the crossover operator. We design a special class of abstract

test suites, called Trident functions, which exploits the ability of modern GA

to mix good but significantly different solutions. This approach has been so far

neglected as it is widely believed that disruption caused by mating individuals

that are too dissimilar may be harmful.

However, hybridizing different designs induces a complex neighborhood struc-

ture unattainable by trajectory-based methods which can conceal novel solutions.

In this chapter we demonstrate that the proposed class of problems can be solved

efficiently only by population-based panmictic recombinative methods, employing

diversity maintaining mechanisms.

8.1 Introduction

8.2 Historical Background

8.3 Hybridization of Differences

We reason that in order to defeat hill-climbers, problems must contain a degree

of deception, which can not be overcome by a neighborhood operator induced

45
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by one point in the search space. This of course will hinder GAs performance

also, as the mutation works in the neighborhood of one individual and short-term

selection may favor deceptive search paths. However, EAs possess a great asset by

having a more complex neighborhood structure generated by the recombination

operator, which takes into account at least two individuals. This may help the

methods to escape the local optima and overcome deceptiveness.

The problem representation together with the neighborhood structure defines

the search landscape. We argue that there are problems where only search land-

scapes transformed by crossover may be efficiently exploitable. In the followings

we give an example for such a class of problems called the Trident functions (TF).

8.3.1 The Trident Function

TF accepts bit strings of the length 2k where k ≥ 2 and uses a function of

unitation (which depends on the number of ones in a bit string, and not on their

positions) as underlying structure:

base(x) = ‖2 · u(x)− |x|‖ (8.1)

where u(x) is the unitary of x (the number of ones) and |x| is the length of x.

The base function has its minimum in 0 which is generated by strings with

an equal number of 1’s and 0’s: u(x) = |x| − u(x). The maximum is attained by

strings formed by all 1’s or all 0’s with a corresponding value of |x|.

The next component of the TF is a contribution function which rewards cer-

tain configurations of strings that have an equal number of 1’s and 0’s. Let

L = x1, x2, . . . , xn
2

be the first half of the binary string x of length n and

R = xn
2
+1, xn

2
+2, . . . , xn the second one. Then, we define the contribution func-

tion based on the exclusive OR (XOR) relation:

contribution(x) =

{

2 · |x| , if L = R̄;

0 , otherwise.
(8.2)

where R̄ stands for the bitwise negation of R.

Please note that the contribution function does not have a basin of attraction;

it rewards fully an input or it does not reward it at all. Finding the maxima of

such a function is equivalent to the needle in the haystack problem. As there are

no better search methods for this class of function than the random-search, these

function are also resistant to biased mutation-based search.

The TF is defined as the sum of the base and the contribution function:

trident(x) = base(x) + contribution(x) (8.3)

Figure 8.1 presents the graphical interpretation of the Trident function.
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TF has its maximum in the points rewarded by the contribution function.

Here it takes the value 2 · |x| as the base function in these points attends the

minimum 0.

TF is very hard for mutation-based algorithms because the base function leads

away the search from the region where global optima lay. Even if a random state

is generated with equal number of 1’s and 0’s, it is very unlikely for large problem

instances that the contribution function will reward that string. If the algorithm

does a biased search, it will be immediately drawn away from the minimum of

the base function, towards regions with higher base function fitness.

The TF can defeat macromutation hill-climbers also, as local and global op-

tima are very distant in the Hamming space. The chance of jumping from local

optima to a global one is minimal as n
2 bits must be changed simultaneously.

Also, there are no “hidden” structures which could be easily exploited. The

“building-blocks” L and R are rewarded if and only if their context i.e. the

counterpart half of the string is compatible. As TFs have 2
n
2 global solutions, the

probability of this happening for randomly generated strings is Phit =
2
n
2

2n = 1

2
n
2

.

What about GAs? Global optima can be found quite easily if the GA is mixing

good but different solutions. Let us take the example where n = 8 and we have

two strings at each local optimum: s1 = 00000000 and s2 = 11111111. The one-

point crossover between s1 and s2 will produce the optimal strings s3 = 00001111

and s4 = 11110000 with the probability P = 1
n−1 = 1

7 . When using two-point

crossover, we have n
2 − 1 = 3 favorable cases. The favorable crossing points pairs

are {(1, 7), (2, 6), (3, 5)}. Optimal strings may not result only from the breeding

of individuals located at local optima. For example, the one-point crossover

between s5 = 00100001 and s6 = 11111101 between loci 4 and 5 will also produce

an optimal solution s7 = 00101101. The important aspect is to combine different

candidate solutions.

The TF portray the problems where several highly different good solutions

exist, and hybridizing these solutions may result in a completely new, valuable

design. Even if crossover does not produce above average individuals on a regular

basis, it may create occasionally an exceptional organism. Thus, crossover has a

generative potential which we believe should not be neglected by restricting the

recombination to genotypically similar individuals.
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Figure 8.1: The Trident Function. u is the unitary of the input string. The base
function is deceptive, leading away the search from the area which contains global
optima. The contribution function has no basin of attraction so its maximum
is very hard to detect. Note that the contribution function does not reward all
strings with u = n

2 ; only special configurations are rated.

8.3.2 Natural Metaphor

8.4 Results

8.4.1 Random Mutation Hill-Climber

8.4.2 Macro Mutation Hill-Climber

8.4.3 Simple Genetic Algorithm

8.4.4 Deterministic Crowding

8.4.5 Numerical Results

The numerical results of the experiments are summarized in Table 8.1. On the

64 and 128-bit versions of the TF, only the results of the DC are reported as the

hill-climbers and the SGA failed in all runs on these suites.

As expected, the worst behavior on the TFs was shown by the RMHC. Even

for the very easy 16-bit version of the problem, the success rate is only 85%.

Similar to the other hill-climber, the MMHC, solutions are found at very high

cost and only due to the random restart mechanism. The number of function

evaluations required to identify optima, exceeded by orders of magnitude the

amount that would be required by random-search. As the problem size increases,

becoming unaddressable by random sampling, the hill-climbers fail in all runs

due the deceptive nature of the TF.

When SGA succeeded, its performance was the fastest, being much better

then it would be required by random-search. This shows that even simple recom-

binative algorithms have the potential to exploit the features of the TF landscape.
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Table 8.1: Performance of the studied algorithms on the TFs. Column “Succ.
rate” contains the number of successful runs where the methods find global op-
tima. Column “Avg. nr.” contains the number of average function evaluations
needed to find the global optima and “Max. nr.” counts the maximum number
of evaluations needed, provided that all runs were successful. In the case of the
population-based methods, column “Nr. opt.” contains the average number of
different optima within the correctly converged population.

TF size 16

Succ. rate Avg. nr. Max. nr Nr. opt.

RMHC 85% 400020 - /
MMHC 100% 4213 33528 /
SGA 100% 241 1390 1.46
DC 100% 250 2111 23.94

TF size 32

Succ. rate Avg. nr. Max. nr. Nr. opt.

RMHC 3% 337136 - /
MMHC 37% 471018 - /
SGA 25% 8435 - 1.56
DC 100% 15771 23883 6.69

TF size 64

Succ. rate Avg. nr. Max. nr Nr. opt.

DC 100% 46816 61366 6.02

TF size 128

Succ. rate Avg. nr. Max. nr. Nr. opt.

DC 100% 112557 157890 4.32

However, as the problem size increases, the SGA fails to find optima due to the

lack of improper initial sampling. Therefore, the population is quickly shifted

towards the basin of attraction of a single local optimum. A significant increase

of the population could address this problem but then success would come at

high costs.

The only competent algorithm on the TFs was the DC. It succeeded in ab-

solutely all runs, being able to identify global optima within a maximum of 16%

of the allowed function evaluations. In all cases, several optimum points were

detected. The success of the algorithm derives from its diversity maintaining

mechanism combined with the panmictic population.

We once again emphasize the importance of the capability to mix different
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designs; only then recombination can become creative. An algorithm with diver-

sity maintaining mechanism, but with crossover restricted to similar individuals,

would also fail on the TFs.

8.5 Summary

The TFs may represent design problems where several good, locally optimal drafts

are easy to find, dominating the search space (deception) and the real good de-

signs result from the hybridization of different drafts. Furthermore, the complex

layouts defining the best solution only emerge in “reactive regions” where the cor-

rect particular features appear simultaneously; there is no sequence of improving

designs to these solutions (needle in the haystack). Nevertheless, crossover pos-

sesses the creative potential i.e the more complex neighborhood structure, which

enables it to identify these solutions by mixing features from different drafts, until

the correct configuration is detected.



Chapter 9

Strongly Non Convergent,

Cooperative, Specialized Search

Many current EA suffer from a tendency to prematurely lose their capability to

incorporate new genetic material, resulting in a stagnation in suboptimal points.

To successfully apply these methods on increasingly complex problems, the ability

to generate useful variations leading to continuous improvements is vital. Nev-

ertheless, there is a major difficulty in finding computational extensions to the

evolutionary paradigm that ensures a continuous emergence of new qualitative

solutions, as the essence of the Darwinian paradigm – the natural selection – acts

as a stabilizing force, keeping the population into an evolutionary equilibria.

In this chapter we propose a new approach, replacing the survival of the

fittest paradigm with a cooperative framework, where individuals are highly spe-

cialized on different exploring and exploitive strategies. This results in a highly

efficient, non-convergent, sustainable search process, where new optima emerge

continually.

9.1 Introduction

A major problem experienced when running EAs on complex, high dimensional

problems is that as selection pressure increases, the population tends to converges

to a local optima as no further improvements can be made as the method lost its

ability to discover and incorporate new genetic material.
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SEARCH

Algorithm 5: Exploring individuals

input : A state s and a set of exploring strategies pES

output: A new state
1 begin

// Choose probabilistically an exploring strategy

2 @ES ← ProbabilisticallyChoose(pES);
// Explore. The method may or may not take use of the

provided seed

3 s← @ES(s);
// Return the result

4 report s;

9.2 Cooperative Paradigm

EAs mimic the complex schemes involved in the transmission of biological infor-

mation in dynamic and complex ecosystems. However, as applications of EAs

mostly consider fixed fitness landscapes, a major criticism of EAs is that biolog-

ical metaphors may be unnecessarily complex and not even highly efficient.

the performance of EAs, especially in the framework of static optimization.

A cooperative paradigm can help to alleviate these phenomena.

9.2.1 Selection

Natural Selection is not a Strong Optimizing Force

Selection is a Stabilizing Force

9.2.2 Cooperative Search

Every metaheuristic approach should be designed with the aim of effectively and

efficiently exploring a search space (Blum & Roli, 2003).

Consequently, we propose a framework where exploration and exploitation

are regarded as completely separated but complementary subtask of the search

process and their proper solving is targeted by different techniques and specialized

individuals.

Exploration

The search may contain several, different exploring techniques, which are chosen

and applied with a certain, fixed or adaptive, probability in each epoch as depicted

in Algorithm 5.

The role of exploring individuals is to locate above average and unvisited re-

gion of the search space. The first goal can be achieved by simple broad sampling.



9.2. COOPERATIVE PARADIGM 53

Algorithm 6: Exploiting individuals

input : A starting state s and a set of exploiting strategies pIS
output: State after exploitation
Data: sold
// Original state of the individual

1 begin
// Choose probabilistically an exploiting strategy

2 @IS ← ProbabilisticallyChoose(pIS);
// Apply lamarckian operator starting from s

3 s′ ← @IS(s);
// Deterministic crossover between new and old state

4 s′ ← Merge(s′, sold);
5 report s′;

The second objective requires techniques that divide the search space or learn its

topology to be able to favor unvisited regions.

The starting states and regions proposed by the exploring individuals are

recorded in a data structure that provides the communication channel, informa-

tion sharing with the exploiting individuals.

If the computation time of the objective function requires many resources,

the exploration subtask is highly tolerant to the computing of an approximate

fitness value, as it has to decide only which states are above average. This can be

answered without knowing the exact value of the sampled states. A proxy fitness

function, which is positively correlated with the original function, but much easier

to compute may be enough.

Exploitation

Exploiting individuals apply local-search strategies to quickly identify high qual-

ity solutions, starting from states reported by the other group via the shared data

structure. Different local-search strategies are applied in the same probabilistic

manner as the in the case of exploring individuals as shown in Algorithm 6.

The presented general cooperative framework contains many degrees of free-

dom. Next subsection present the method used in our experiments.

An Instance of the Proposed Paradigm

To make a strong case that a simple non-convergent cooperative behavior is

enough to qualitatively advance the search performance, we do not use the pos-

sibilities offered by the framework that can intelligently bias the search by per-

forming some sort of analysis.
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Algorithm 7: Deterministic crossover

input : Two states s1 and s2
output: Deterministically improved s1

1 begin
2 for i=1:length(s1) do
3 if s1[i] == s2[i] then
4 continue;

5 s′ ← s1;
6 s′[i]← s2[i];
7 if s′ better than s1 then
8 s1 ← s′;

9 return s1;

Algorithm 8: Cooperative, specialized search

Data: pop, pop size, pES , pIS ,@stopping cond.
1 begin
2 pop← InitPop();
3 while not @stopping cond() do
4 parfor i = 1, pop size do

// Apply Alg. 5 to explore

5 s← Explore(pop[i], pES);
// Apply Alg. 6 to exploit

6 s← Exploit(s, pIS);
7 if s better than pop[i] then
8 pop[i]← s;

// Synchronization

9 pop←MultiParentCrossover(pop);

We do not implement any bias towards unvisited regions, therefore improve-

ments over the time line of the search can not be accounted to biased sampling

towards unexploited regions.

As depicted in Algorithm 8, simply exploration and exploitation are applied

in a sequential manner. This corresponds to a FIFO list used for communication

between exploring and exploiting individuals.

In the synchronization procedure (Algorithm 8, line 9) a deterministic multi-

parent crossover is used. This is very similar to Algorithm 7 with the difference

that here a systematic greedy search is performed in the entire gene pool of the

exploiting subpopulation. The resulting super individual replaces the individual

with highest fitness from the subpopulation.

Exploring individuals apply one of the following techniques with fixed prob-
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Figure 9.1: 3D map of the functions for two dimensions.

ability: (i) random sampling within the bounds of brs objective function evalu-

ations and (ii) quick simulated annealing (Kirkpatrick et al., 1983) to identify a

good starting point for exploitation. The idea behind the second method is to

quickly freeze (by using a large cooling factor) the sampling point in the basin of

attraction of a local optima.

Exploiting individuals randomly choose with equal probability between using

(i) pattern search (Torczon, 1997) and (ii) Shor r-Algorithm (Shor et al., 1985).

These techniques are known as good local search algorithms for non-smooth,

non-differentiable functions.

9.2.3 Conceptual Relation to Other Metaheuristics and Paradigms

9.3 Experimental Setup

In (Tang et al., 2007) benchmark functions are given for high-dimensional op-

timization, providing means for systematic evaluation and comparison of the

scalability of different search techniques and paradigms. All of them are scalable

for any size of dimension. These problems were used at the IEEE CEC 2008

Competition on Large Scale Global Optimization and are regarded by the com-

munity as an adequate test suite due to the many feature and function properties

covered.
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Considered functions are of the form F (x) : [a, b]D → R, where a, b ∈ R are

the bounds of the domain of definition and x = [x1, x2, . . . , xD] usually operate

on z = x− o where o = [o1, o2, . . . , oD] is the shifted global optimum.

Our results are reported on four out of the seven functions but our finding

extend to the other functions also. The mathematical formulas and properties of

the functions used are described in the following subsections. Their 3D plot is

presented in Fig. 9.1.

9.3.1 Shifted Sphere Function

9.3.2 Shifted Griewanks Function

9.3.3 Shifted Ackleys Function

9.3.4 FastFractal “DoubleDip” Function

9.3.5 Parameterization of the Methods

In the exploring phase, the algorithm uses 1000 objective function evaluations

with random search, respectively 3500 with the quick simulated annealing to lo-

cate an above average point. The simulated annealing use an exponential cooling

schedule with a cooling factor of 0.7.

Exploitation methods used:

• Pattern search

• Shor r-algorithm

• Both known as good local search algorithms on non-smooth, non-differentiable

functions.

The exploiting local-search procedures run for a maximum of 500 iterations

each time they are used.

For comparison we use a genetic algorithm with roulette wheel selection a

population size of 1000, crossover rate of 0.8 and Gaussian mutation. This pop-

ulation size showed better results like a larger population of 10000 individuals,

providing a good compromise between the number of individuals and number of

generations.

We run the algorithms on each test problems with dimensions of 10, 100

respectively 1000. Both methods performance is recorded within the bound of

one million function evaluations for each test suite and the results are averaged

over 25 independent runs.
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9.4 Experimental Results

The results are presented in Fig. 9.2. For functions F1, F5 and F6 where the exact

x∗ global optima is known, we have semi-logarithmic plots with log(F (xbest) −

F (x∗)) vs. FES, showing the evolution in time of the so far best solution xbest

on a logarithmic scale. For F7 the simple evolution of the best solution is showed.

For the small dimensionality of 10 the final results of the two methods are

very close for functions F1, F6 and F7. Qualitatively the results do not differ,

their absolute difference being less than 0.01, nevertheless with a small advantage

for the genetic algorithms which exploits the basin of attraction of the optima

more thoughtfully.

For function F5 the genetic algorithm is not able to locate the global optima,

not even in the case of only 10 dimensions, probably due to the strong interde-

pendence of variables. Crossover is not able to promote linked variables provided

that their linkage is not tight.

As dimensionality increases, one can observe that the performance of the ge-

netic algorithms worsens, not being able to make improvements for long times

even in the case of the unimodal sphere function. The method, due to the high

selection pressure is unable to move to another region of the space, which may

contain better (local) optima. Due to the dimensionality explosion, useful varia-

tions are hardly discovered. This worsening may imply a change of several orders

of magnitude in the quality of the solutions as in the case of F1, F5.

On the F7 “FastFractal ‘Double Dip’ ” function we can observe a longer

improvement phase of the genetic algorithm. Here as new levels of detail emerge

at every resolution, the method does not need to move to new regions of the

search space to be able to make improvements. Furthermore, as large part if

not any member of the population is concentrated in the basin of attraction of

the best found local-optima, the exploitation is quite effective. Nevertheless, the

resolution of the function is still finite and after a high enough number of function

evaluations the same behavior emerges: as the local-optima is “depleted”, the

algorithm can hardly make any additional improvements as this would require

to move in into a new region of the search space. Selection pressure allows this

only if the newly generated points (which much lay in the basin of attraction of

another optima) already have competitive fitness value. This beneficial random

variation is very unlikely for hard search spaces.

On the other hand, the cooperative search shows a more robust behavior on

the whole spectrum of problems. Even as dimensionality increases it is able to

quickly find very good solutions and can make sustained progress toward the

global optima most of the time.

For the functions F1, F5, F6 of dimensions 10 and 100 the solutions are always

global optima or are located very close to them, satisfying the F (xbest)−F (x∗) ≤

0.1 relation.
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The only certain case where the cooperative search does not find the global

optima and also it does not exhibit a perpetual improvement is the F6 functions

for 1000 dimensions. Here, the bound of one million function evaluations is

simply not enough for the method to overcame the massive multimodality of the

function even if new regions are continuously explored. We can not state for

certain what happens in the case of the F7 function of dimension 10 where no

improvements are made, as the value of the global optima is not known for this

function. Nevertheless, as for the harder cases of the same function, our method is

capable of sustained improvement, it is very likely that the found value represents

the global or a very strong local optima.

The F7 function of dimensionality 100 and 1000 characterizes the cooperative

search method in the best way as in this cases it is known that the global optima is

not found within the bound of one million objective function evaluations (longer

experiments have revealed better solutions). On these functions one can observe

that the quickly identified low energy states are progressively improved during

the search process with an ever descending slope. This contrasts the prematurely

converged, constant line, which characterizes the genetic algorithm performance

on the test functions of higher dimensions.

While genetic algorithm may get easily stuck in local optima due to the se-

lection pressure the cooperative, specialized search offers a competent alternative

as confirmed by the experiments.
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Figure 9.2: Results on the test suite for dimensions 10, 100 and 1000.





Chapter 10

Conclusions and Future Work

This chapter presents a summary of the investigations of this dissertation toward

improving sustainability and scalability of evolutionary algorithms as well as

efficient building block identification and mixing. Some future research directions

are also presented.

10.1 Summary of Results

This dissertation is composed of two parts within the same context of improving

scalability of competent search and optimization methods.

The first part introduces a machine learning and data analysis assisted local-

search framework. Assisted by some novel, neural-network based, automatic,

(online) model building techniques. Proposed framework can efficiently scale up

to large problem and building block sizes as:

• There is no model search.

• Building blocks identification are a result of systematic search, not only

initial random sampling.

The second part addresses one of the fundamental problems in EA, namely the

convergent nature of the traditional evolutionary computation framework, which

is the root of the premature convergence phenomena. To eliminate this issue and

to be able to provide a sustainable, continuous development, an unconventional

competent search model is proposed, based on cooperation, specialization and

exploitation of search experience.

In Chapter 3 we suggest the usage of correlation analysis to assist model

building. When branching from a current model in search for a better one,

correlation analysis is employed to quickly identify the most promising extension,

61
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while all other extension options are pruned. This can alleviate the model search

cost by orders of magnitudes without affecting the quality of the delivered model.

In a case study the model building complexity of the eCGA is reduced form O(n3)

to linear, while still inferring the perfect problem structures on hard, hierarchical

problems.

Chapter 4 advances the concept of model based local search, namely a building

block hill-climber. This is a generic method for solving problems via (hierarchical

- recursive) decomposition. Here resources are invested in finding good solutions,

which are later analyzed by machine learning techniques for building block iden-

tification. The proper mixing of building blocks is assured by the local search

strategy, which operates in the building block space, where it combines build-

ing blocks in a systematic and exhaustive manner. The continuous update of the

building block representation of the individual results implicitly in the adaptation

of the neighborhood structure to the combinative neighborhood of the current

building blocks. In hierarchical problems – where building block hypothesis holds

– moving the search to the combinative vicinity of the current building block rep-

resentation facilitates the discovery of new building block, as low-order building

blocks can be combined to form higher-order ones.

As they use only random sampling to supply initial building-blocks, classical

probabilistic model building GA are lower bounded in the population size by the

exponential of the order of dependencies covered by the probabilistic model. For

larger order of dependencies, the cost of model building from the exponentially

growing populations, quickly exceeds feasible limits and uprise beyond economical

practicality.

In consequence, Chapter 5 introduces a new paradigm and method )Model

Based Macro-Mutation Hill-Climber), where initial building-blocks supply is achieved

by employing strong exploration techniques, which nevertheless follow objective

function guidance whenever available. The macro-mutation based search used,

has the capability of sampling a wast portion of the search space, howbeit greatly

differs from random sampling by being a hill-climber. It does a biased search by

never accepting states with lower fitness. Furthermore, by analyzing objective

function variance it can filter out detrimental mutations which destroy already

formed blocks. Investing the function evaluations into an exploratory local-search

can facilitate the discovery of large modules. The method can also decide between

the most fit module settings and their most competing schemata. Thus, the total

number of samples needs to be just large enough, to make the delimitation of

different modules possible with suitable machine learning techniques.

Chapter 6 analyzes scale up on very large problems of the model based lo-

cal search framework. A variant of the model based trajectory framework is

described, namely the Online Model Based Local-Search (OMBLS) that learns

the problem structure online by means of topology preserving SOMs. OMBLS
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operates via hierarchical decomposition, detected modules are used to collapse

the search space and reformulate the optimization problem with discovered mod-

ules and their context-optimal settings as new search variables. For boundedly-

difficult, non-overlapping, non-separable building-block problems, the cost of the

OMBLS is upper bounded by the number of hierarchical levels, multiplied with

the running complexity required by the module-wise local-search to converge to

context-optimal settings at one hierarchical level. If context-optimal settings can

be discovered by a strategy in linear time and the order of dependencies is lim-

ited to small k, the proposed framework holds a qualitative advantage over other

methods as it scales at most linearithmicaly.

An unsupervised model learning, based on a graph clustering algorithm is

described in Chapter 7. Beside its speed, the great advantage of the technique is

that it allows the induction of various probabilistic model classes.

Chapter 8 re-examines some questions concerning the fundamentals of EA.

The shortcomings of existing building block style test functions are surveyed and a

view which promotes and emphasizes the generative potential of EAs is discussed.

According to this conception, the great strength of the crossover operator lays

in its capability to hybridize different designs, rather than in that of promoting

similarity among the population.

Consequently, a new class of test problems, called Trident functions (TF) is

introduced. The TF is dominated by a fully deceptive base function as global

optima coincide with the minima of this function. The discrete optimal solutions

are defined by a contribution function which rewards points from the search

space where certain different genotypical features appear concomitantly. As the

contribution function does not have an attractor basin, the deceptiveness of the

base function can not be overcome using only simple neighborhood structures.

To alleviate the problem of premature convergence, Chapter 9 proposes a non-

convergent cooperative search framework. For a balanced search, the exploration

and exploitation are regarded as different subtask of the search process and their

proper solving is targeted by different techniques and specialized individuals.

Test results confirm the ability to identify high quality solutions and to generate

and exploit useful variations in a continuous manner, that eventually lead to the

global optima in most of the cases.

Methods built on the competent optimization techniques presented in this

thesis, have been applied to real-world problems including ECG signal approxi-

mation (Iclanzan & Dumitrescu, 2006b; Iclanzan et al., 2006), learning clustering

parameters (Szilágyi et al., 2008, 2009) and heart model optimization (Szilagyi

et al., 2009).
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10.2 Future Research

Future work will consider applying correlation guidance to enhance and quali-

tatively improve model-building in other competent EDA. Also the devising of

new techniques that can efficiently use the information obtained by analyzing

restricted groups of binary variables in feature space is of great interest.

Upcoming work will also advance the study and exploration of the GCEDA

framework by interpreting clusterings as directed acyclic graphs, in order to build

Bayesian networks. Other research will focus in the development of highly parallel

model building and large scale optimization.

We look to exploit the fast automatic model building and low memory re-

quirement of the proposed methods in Chapter 6 on problems with million(s)

of variables, where the classical solving with population based methods would

imply very large memory requirements and huge computational costs for model

building.

Also instantiation of the proposed model based local search framework with

probabilistic models will be investigated.

Future work will also focus on exploiting the advantages and possibilities

offered by the cooperative paradigm described in Chapter 9. Lines of research

include:

• Favoring the exploration of the whole search space by dividing it in sub-

regions or by learning its topology. An intelligent exploration can prove

effective on highly deceptive functions.

• Incorporating analysis and machine learning techniques that can reveal and

exploit search space characteristics. Linkage learning and model building

may be employed or the search strategies used may be adaptively altered.

• Take advantage of the naturally parallel nature of the framework.

• Use proxy function evaluation in the exploring subtask of the search.
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