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Chapter 1. Introduction

1.3. Computational details

Starting geometries of fullerenes were obtained using the CaGe [47, 48] software
package, while the geometries of the junctions were built manually or by the aid of the
Nanos Studio [49] software package (used for attaching nanotubes). Full geometry
optimizations with and without symmetry constraints were performed using the PM3 [50]
and PM6 [51] semiempirical methods.

Fullerenes, tetrahedral and octahedral junctions were re-optimized at the DFT level
of theory using the popular B3LYP [52] exchange-correlation density functional (Becke 88
exchange functional [53] and the correlation functional of Lee, Yang and Parr [54]). Although
the structures were also optimized with smaller basis sets (3-21G* and 4-31G) in the present
work only the single point calculation results obtained with the 6-31G(d,p) [55, 56] basis set
are presented.

Y-junctions only at the semiempirical level were studied because of the size of the
molecule.

Geometry optimizations performed with and without symmetry constraints and
resulted in identical structures. Vibrational frequencies were calculated at the same
theoretical level at which the optimization was done, to ensure that a true minima was
found.

All calculations were performed using Gaussian 09 package [57].

Omega polynomials were computed using the Nano Studio package [49]. Map

transformations of selected structures was performed using the CVNet program [58].



2.1. Tetrahedral graphitic junctions

2.1.2. Classes of tetrahedral fullerenes

Tetrahedral fullerenes can be classified according to the structural fragment that
appears in the tetrahedral orientation (along the C3 symmetry axis) as depicted in Figure 12.
Each of these fragments contain three pentagons: in pattern A they are adjacent to each
other (pentagon triple), in pattern B they share the central hexagon and are at one bond
distance, while in pattern C they are connected to the central atom and they share pairwise
one hexagon.

It is obvious that fullerenes of type A do not obey the isolated pentagon rule,
however the smaller members of the other fullerene classes also have adjacent pentagons.
Some of the fullerenes have pentagonal arrangements such that they belong to more than

just one class, as is the case of fullerenes Cy4 (T), Cs2 (T) and Cz6 (Ty).

A B C

Figure 12 Structural patterns that appear in tetrahedral fullerenes. The center of each
fragment is oriented along the C; symmetry axis.

All tetrahedral fullerenes with the number of atoms smaller than 120 were generated.
While some of the fullerenes show more than one structural pattern, they were sorted

according to the structural relationship to the tetrahedral junction (see below).



2.1.4. Structure of tetrahedral junctions

Tas™ (T) Tj7e (T)

Figure 20 Tetrahedral junctions Tj(3,3) with opening chirality (3,3) viewed along the threefold
axis from the top.



As it was previously presented, all possible fullerenes with tetrahedral symmetry and
a number of atoms smaller than 120 were generated and classified according to the
structural pattern they present. From the fullerenes belonging to class B tetrahedral
junctions with armchair openings were built by homeomorph transformation of the three
edges which are shared between the core hexagon and the pentagons in the structural
fragment.

Attempts to build tetrahedral junctions from the other tetrahedral fullerenes (class A
and C) resulted in the same structures that were obtained from the class B fullerenes. The
correspondence which was found between the junctions and fullerenes is summarized in
Table 3. It is obvious that the structures from a row of Table 3 can be transformed between
each other by modifying (inclusion/extrusion of carbon atoms) the topology of the structural
fragment.

Notice that in the last column no structure is given in the first two rows. This is
because although there is a corresponding structure, it is not a classical fullerene (the
number of atoms is smaller than 20). It must be mentioned that two structures have
icosahedral symmetry (Cso and Cgo), however they fit into the series not just by their

structure but also energetically (see below).



Table 3 The correspondence between the tetrahedral junctions Tj(3,3) and the tetrahedral fullerenes from each class.

Tetrahedral junctions* Tetrahedral fullerenes

! Tj.-TU[3,3]/ f,=12 Cn.s / pattern A Cp24 / pattern B Cp-32 / pattern C
1 Tis2" (T) / (D) Caa () Cas" (Ta) -

2 Tiea" (Ta) / (D20) Cse (Ta) Cao” (Ta) -

3 Tize (T)/ (D) Ces (T) Cs2" (T) Caa (T)
4 Tisa () Cre' (T) Coo (In) Csz" (T)
5 Tiro  (Ta) / (Daa) Coz (Ta) Crs' (Ta) Ces™ (Ta)
6 Tiz0s (Ta) Co0” (T4) Css (T4) Cre (T4)
7 Tz () /(D) Caoa (T) Css™ (T) Cso™ (In)
8 Tisaa" (T) / (D) Caae (T) Cioo" (T) Coz (T)
9 Tjsaa (Ta) Cazs (Ta) Caz0 (Ta) Caa" (Tq)
10 Tisas" (T) / (D) Caao (T) Ciza" (T) Ca1s (T)

*Symmetry of the negatively charged tetrahedral junction is given first, and second the symmetry of the neutral molecule (singlet state is

considered).



2.1.5. Stability of tetrahedral junctions

All structures were optimized at the B3LYP/6-31G(d,p) level of theory in singlet state.

The junctions were optimized in hydrogenated form. In case of some structures charges

were added as required to be able to optimize with the highest possible symmetry.

Optimization of these structures in a neutral form lead to a lower symmetry structure: D,y

and D, for the structures having Ty and T topological symmetry, respectively.
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Figure 21 Plot of the total energy (a.u.) the fullerenes with structural pattern A, B and C as
function of the total energy (a.u.) of the tetrahedral junctions Tj(3,3) obtained from B3LYP/6-
31G(d,p) single point energy calculations.
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In Figure 21 the total energy (Ei in a.u.) of fullerenes from each class is plotted as
function of the total energy (Ei in a.u.) of the corresponding tetrahedral junction. Statistical
data confirms that there is a perfect linear correlation between the total energies. This

concludes that a relationship exists between the junction and the parent fullerene.

Table 4 Single point energy results (total energy Ei: and gap energy Eg,,) obtained at the
B3LYP/6-31G(d,p) level of theory for the neutral and negatively charged tetrahedral junctions.
For a better estimation the total energy difference AE. is given in kcal/mol.

Ecor (au) AEor Egap (€V) AEg,p

neutral charged (4-)  (kcal/mol)  neytral  charged (4-) (eV)
Tjs2 (T) / (D3) -1995.456 -1994.957 -313.249 1.433 2.167 -0.734
Tiea (Tg) / (D2g) -2452.628 -2452.215 -259.077 1.291 2.199 -0.908
Tj76 (T) / (D5) -2910.149 -2909.807 -214.850 1.260 2.330 -1.070
Tj00 (Tg) / (D2g) -3824.692 -3824.371 -201.644 0.976 1.104 -0.128
Tj12 (T) / (D) -4282.120 -4281.851 -168.892 0.905 1.091 -0.187

The stability of the neutral tetrahedral junctions with lowered symmetry (D,4 and D,)
and the negatively charged ones were evaluated at the B3LYP/6-31G(d,p) level of theory and
are compared in Table 4. The energy difference AE: (presented in kcal/mol) shows that the
neutral structures have a lower energy, the energy gain however decreases with the
increase of the structure’s size. Therefore from a thermodynamic point of view the neutral
junctions show a better stability. The gap energy as a measure of kinetic stability gives a
reversed order of the structures, as the last column shows in Table 4 the charged tetrahedral
junctions have a larger gap. This stability difference is more pronounced in the case of the
first three junctions, where AEg,, is almost one eV.

The plot in Figure 22 presents the total energy per number of carbon atoms (Ei.t/N in
au) and the gap energy (Egap in au) of the tetrahedral junctions as function of the number of
carbon atoms. It can be seen that the energy increases with the size of the system, although

after a given size (Tj100) the decrease in stability is slightly smaller.
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The neutral junctions show a better kinetic stability, having a much larger energy gap

than the charged structures, especially the large charged structures have a very low energy

gap. However the first three charged junctions also have a relatively high gap. While there is

no certain rule of stability, judging from the results it can be concluded that the first two

tetrahedral junctions Tjs," (T) and Tjes (T4) are good candidates for synthesis. Notice that the

junction resulted from the Cgo fullerene shows the best kinetic stability.
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Figure 22 Plot of the tetrahedral junctions Tj(3,3) total energy per number of carbon atoms in
a.u. and gap energy in a.u. as function of number of carbon atoms obtained from B3LYP/6-

31G(d,p) single point energy calculations.
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2.2. Octahedral graphitic junctions

2.2.2. Structure of octahedral junctions

C288 (Oh) nge (O)

Figure 24 The octahedral junctions with (4,4) opening chirality viewed along the fourfold axis.
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2.2.3. Stability of octahedral junctions

The plot in Figure 25 presents the variation of the total energy per carbon atom of

the octahedral junctions as a function of the number of carbon atoms. A similar trend exists

in the variation of the total energy as previously observed in the case of tetrahedral

junctions, the energy rises with the size of the system. The gap energy however presents a

different stability ordering. The neutral junctions have the highest gap energy. In contrast to

the case of tetrahedral junctions, the smallest members of these structures have a low

kinetic stability.
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Figure 25 Plot of the octahedral junctions Oj(4,4) total energy per number of carbon atoms in
a.u. and gap energy in a.u. as function of number of carbon atoms obtained from B3LYP/6-

31G(d,p) single point energy calculations.
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Figure 26 Plot of the total energy of octahedral junctions 0j(4,4) (E.: in a.u.) as function of
the total energy of the corresponding tetrahedral junctions Tj(3,3) (Ei: in a.u.) obtained from
B3LYP/6-31G(d,p) single point energy calculations.

The plot of the total energy (a.u.) of the octahedral junctions 0j(4,4) as function of
the total energy (a.u.) of tetrahedral junctions Tj(3,3) reflects that there is a strong linear
relationship between the two set of structures (Figure 26). There is a perfect correlation
between their energies (r value equals 1), and it must be noted that the slope equals almost
2, while the intercept is almost zero, meaning that the energy of the octahedral junction is
twice the energy of the tetrahedral ones. This is in good agreement with the fact that the

number of structural fragments is also twice in case of the octahedral junctions.
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2.3. Tetrahedral junctions with attached nanotubes

To study the effect of the attached nanotube length on the stability of the junction
[71], four series of tetrahedral junctions (3,3) with open ends were investigated by
calculating the total energy and HOMO-LUMO gap energy for structures with different tube
length.

The plot of the total energy per number of atoms (Eit/N in kcal/mol) and gap energy
(Egap in @.u.) is presented in Figure 27 for the set of structures with the core junction Tjs;, Tjga,
Tji00 and Tjips, respectively. In case of two series (Tjs; and Tjip0) neutral and charged
structures were compared.

The results show that in all cases the gap energy decreases in an oscillating manner,
while the total energy per number of atoms increases with the size of the nanotube. Thus
the stability decrease is confirmed both kinetically and thermodynamically. Notice however
that in the case of Tjs, junction set the total energy first slightly decreases within the series.

The neutral junctions have a much larger gap energy compared to the charged ones,

also there is only a slight decrease along the series.
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Figure 27 Plot of the total energy per number of atoms (E./N in kcal/mol) and the gap
energy (Eg.p in a.u.) of the series of neutral and charged tetrahedral junctions Tjs, as function
of the number of atoms, obtained from PM6 single point energy calculations.
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2.4. Multiterminal junctions from Ceo fullerene

Starting from the Cgo fullerene set of junctions with one to four arms were built,
where the length of the attached armchair nanotube was varied [71].

The total energy per atom (presented in Figure 32) increases with the nanotube
length in all four series, however after a certain tube length the energy increment is very
small. The stability increases with the number of the attached nanotubes (the number of
terminals), thus the tetrahedral junctions are the most stable one.

Figure 33 presents the gap energy as function of the tube length, which in an
oscillating manner decreases with the structure size, once again the most stable structures

are the four-terminal junctions with the highest HOMO-LUMO gap values.
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Figure 32 Plot of the total energy per number of atoms (E./N in kcal/mol) of the series of
junctions with one to four arms built from the Cgo-/,, fullerene as function of the attached
nanotube length, obtained from PM3 single point energy calculations.
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Figure 33 Plot of the gap energy (Eq, in V) of the series of junctions with one to four arms
built from the Cgo-I,, fullerene as function of the attached nanotube length, obtained from
PM3 single point energy calculations.

2.5. Conclusions

Tetrahedral fullerenes were generated and classified by the structural fragment and
the correspondence with the derived tetrahedral junctions. A structurally corresponding
series of octahedral junctions were built using structural fragments from the tetrahedral
junctions. All molecules were optimized at the B3LYP/6-31G(d,p) level of theory. A linear
correlation was found to exist between the total energies of the molecules. It was found that
the energy per atom increases with the junction size. Kinetic stability favors the neutral
junctions.

The increase in the length of the attached armchair (3,3) nanotube decreases the
stability of the structure confirmed both kinetically and thermodynamically. The number of
openings has a strong effect on the stability as compared within sets of multiterminal

junctions. The stability increases with the number of terminals.
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3.3. Computational study of armchair Yj(n,n) junctions

To study the effect of attached carbon nanotube on the stability of the Y junction,
several series of structures were built where the length of the nanotube varies. Both opened,
with hydrogenated openings, and closed (by nanotube caps) Y junctions were considered.
For the closed structures two different nanotube caps was used. Only armchair symmetric
junctions was studied, where the chirality of the opening is (4,4), (6,6) and (8,8), respectively.
Each studied junction includes six heptagons, needed for the negative curvature where two
tubes are joined, they are distributed in a symmetric way, each structure has D3, symmetry.

In the case of Yj(6,6) nanotube junctions three different junction topologies was
studied, which are different by the position of heptagons, and also by the number of carbon

atoms. All heptagons are isolated, surrounded only by hexagons.

3.3.1. Opened symmetrical armchair Yj(n,n) junctions

Yj(6,6)a - TU(6,6,3) Yj(6,6)b - TU(6,6,3) Yj(6,6)c - TU(6,6,3)

Figure 46 Three symmetric Y-type junctions with D3, symmetry with (6,6) armchair openings,
at each opening an armchair nanotube of length 3 is connected. The structures are viewed
along the threefold axe C; (left), twofold axe C, top (center), and twofold axe C, bottom
(right), respectively.

19



Yj(4,4)a-TU(4,4,2) Yj(8,8)a - TU(8,8,2)

Figure 47 Symmetric Y-type armchair junctions with D3, symmetry Yj(4,4)a (top) and Yj(8,8)a
(bottom), with chirality (4,4) and (8,8), respectively. To each junction an armchair nanotube
of length 2 with matching chirality is attached, the structures are viewed along the threefold
axe C; (left), twofold axe C, top (center), and twofold axeC, bottom (right).

In Figure 46 the symmetric armchair Y junctions are shown, with the opening chirality
being (6,6) and an armchair nanotube of length 3 is attached. As it can be observed, the
heptagons positions are different which gives the junction a different geometry. In the
figures the optimized geometries are presented (hydrogen atoms are not shown), according
to the junction geometry the shape of the attached nanotube changes, in one case it
preserves its original circular shape, while in the other two cases the nanotube has an elliptic
shape.

The Y junctions related to Yj(6,6)a are shown in Figure 47, they have (4,4) and (8,8)
armchair chirality. Only in the case of Yj(6,6)a the attached nanotube preserves the circular
shape, the other two junctions deforms it into an elliptical geometry.

The geometry optimization and single point energy calculations were performed at
the PM6 semiempirical level of theory. As stability criterion two parameters were followed:
the total energy divided by the number of carbon atoms, and the HOMO LUMO energy gap.

The results obtained for the series of Y junctions Yj(4,4)a, is presented in Figure 48,
respectively. It can be observed that with the increment of the attached nanotube both the
total energy and the gap energy oscillate with a periodicity of three. There is a good
correlation between the kinetic and thermodynamic parameter, along the series both
parameters sort order matches. In every case the gap energy decreases, however the total
energy per atom in the case of Yj(4,4)a increases with the length of the tube. In the other

two cases the tube length increases the stability of the structure.
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Figure 48 Plot of the total energy (kcal/mol) per number of carbon atoms (E.:/N) and the
HOMO-LUMO gap energy (Eg,p in au) as function of the number of atoms, obtained with the
PM6 semiempirical method for the series of opened Y-type junction Yj(4,4)a.
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Figure 51 Plot of the total energy (kcal/mol) per number of carbon atoms (E.:/N) as function
of the attached nanotube length, obtained with the PM6 semiempirical method for the three
series of opened Y-type junction Yj(4,4)a, Yj(6,6)a and Yj(8,8)a, respectively.
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In Figure 51 the total energy per atom between the three series is compared. The
highest values correspond to the Yj(4,4)a series, while the lowest on to the Yj(8,8)a junction
series. It can be concluded that the nanotube diameter contributes to the stability of the
junction, therefore the junction with the attached nanotube with largest diameter (8,8) is
the most stable one.

This sort order however is not preserved when comparing gap values between the
series as it can be seen in Figure 52. Notice however that the along one series the sort order
cannot be related to the nanotube length. It can be observed that in each series the most
stable structures correspond to a different nanotube length.

The periodic oscillation in the gap energy with the nanotube length was observed in
case of opened or closed armchair nanotubes [31, 35-37, 97-103]. However no oscillation in

the values of the total energy per atoms was observed.
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Figure 52 Plot of the HOMO-LUMO energy gap (Eg,p in au) as function of the nanotube length,
obtained at the PM6 semiempirical level of theory, for the three series of opened Y-type
junctions: Yj(4,4)a, Yj(6,6)a and Yj(8,8)a, respectively.

The three opened armchair Yj(6,6) junctions stability is compared in Figure 53 (gap
energy) and Figure 54 (total energy), respectively. The gap energy oscillation is almost

identic along the three series, and the Yj(6,6)a has the highest gap values. This stability
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ordering is contradicted by the next plot, however the total energy per atom values are very
close at a given nanotube length. Notice that only in the case of Yj(6,6)a the total energy
decreases with the tube length, at least in the structured considered in this study. It is
possible that with a longer attached nanotube, the tube contributes more to the stability of
the structure. The increase in energy can be attributed to the fact that the geometry of this

short nanotube is distorted, and strain is introduced.
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Figure 53 Plot of the HOMO-LUMO energy gap (Eg,p in au) as function of the nanotube length,
obtained at the PM6 semiempirical level of theory, for the three series of opened Y-type
junctions: Yj(6,6)a, Yj(6,6)b and Yj(6,6)c, respectively.
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Figure 54 Plot of the total energy (kcal/mol) per number of carbon atoms (E:/N) as function
of the attached nanotube length, obtained with the PM6 semiempirical method for the three
series of opened Y-type junctions Yj(6,6)a, Yj(6,6)b and Yj(6,6)c, respectively.

3.3.2. Symmetric capped Yj(n,n) armchair junctions

To study the cap effect on the stability of the junction, the three armchair junction
series Yj(6,6)a, Yj(6,6)b and Yj(6,6)c were closed a the opposing end of the nanotube with
respect to the junction (Figure 57). The nanotube cap is a half fullerene, which includes 6
pentagons and has a positive curvature. One nanotube cap can fit to only on kind of
nanotube, however a nanotube can be enclosed by more than one cap (depends on the size
of the opening) [37, 104, 105]. To preserve the junction high symmetry only two symmetrical
caps were chosen to close the structure, their structure viewed along the symmetry axe can

be seen in Figure 58.
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Figure 57 Construction of a closed Y-type junction Yj(6,6) from three fragments: the junction
region (central) is characterized by negative curvature introduced by the heptagons, the
three attached armchair nanotubes to the openings of the junction, and the nanotube caps
that enclose the opposite send of the nanotube with respect to the junction, and which are
characterized by the positive curvature introduced by the pentagons. The chirality of each
structural element must be the same.

Figure 58 Armchair (6,6) carbon nanotube caps (half-fullerenes), with six-fold Cg (left) — cap 1,
and three-fold C; (right) —cap 2 rotational symmetry axe, respectively. Each cap contains 6
pentagons which gives a positive curvature to the structure.

Yj(6,6)a capl Yj(6,6)a capl Yj(6,6)a cap2 Yj(6,6)a cap2

even number of rows odd number of rows even number of rows odd number of rows
Figure 59 Y-type junction Yj(6,6)a closed at each end with the same nanotube cap.

Depending on the attached nanotube length (odd or even) the cap changes its position
relative to the junction.
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Yj(6,6)b1 Yj(6,6)b1 Yj(6,6)c1 Yj(6,6)c1

even number of rows odd number of rows even number of rows odd number of rows

Figure 60 Closed symmetric Y junctions, Yj(6,6)b and Yj(6,6)c, capped at each opening using
the same cap. The cap position varies depending on the length of the nanotube between the
junction and cap (even and odd number of atom rows).

Series were constructed by increasing the length of the tube between the junction
and the cap. Depending on the length of the nanotube (even or odd number of rows of
atoms) the cap changes its position relative to the junction. Figure 59 presents the Yj(6,6)a
capped with both nanotube caps, while Figure 60 shows the geometry of the Yj(6,6)b and
Yj(6,6)c closed with cap 1.
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Figure 61 Plot of the total energy (kcal/mol) per number of carbon atoms (E«/N) as function
of the length of the (6,6) armchair nanotube attached to the junction obtained with the PM6
semiempirical method for the series of closed Y-junctions: Yj(6,6)aC, Yj(6,6)bC, and Yj(6,6)cC.
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Figure 62 Plot of the HOMO-LUMO energy gap (Eg.p in au) as function of the nanotube length,
obtained at the PM6 semiempirical level of theory, for the three series of closed Y-type
junctions: Yj(6,6)aC, Yj(6,6)bC si Yj(6,6)cC.

The plot of the total energy per atom as function of the nanotube length is presented
in Figure 61. The stability ordering corresponds to that of the opened Y junctions. The only
difference is that in all cases the total energy decreases with the increase of the attached
nanotube.

As in the previous study the ordering of the three series changes in the case of the
energy gap, as it can be seen in Figure 62. Once again the three curves are almost parallel,
the structures with the largest gap corresponds to the Yj(6,6)a series.

In the Figure 64 the total energy per atom and the gap energy is plotted versus the
nanotube length, respectively, in the case of the two series of closed Yj(6,6)a junctions
capped with cap 1 and 2. It can be seen that although there is some minor energy difference,
however they have almost the same stability. The periodicity in the gap values is present,

the series closed with the higher symmetry cap is somewhat more stable.
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Figure 64 Plot of the HOMO-LUMO energy gap (Eg,p in au) as function of the nanotube length,
obtained at the PM3 semiempirical level of theory, for the two series of capped Y junctions:
Yj(6,6)aC1 and Yj(6,6)aC2, respectively.

3.3.3. Closed asymmetric Yj(n,n) armchair junctions

Starting from the Yj(6,6)a junction four series of junctions were constructed by
keeping constant two of the arms of the junctions, and increasing only one of the attached
nanotube’s length. Each nanotube was closed at the end with cap 1. An example is given in
Figure 65 where two arms are of length 3, while the third nanotube is of length 8. The

geometries were optimized with the PM3 semiempirical method.
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Figure 65 An example of asymmetric junction Yj(n,n): all attached nanotubes have the same
chirality, but the length of one arm is different from the others.

Calculation results obtained at the same theoretical level are presented in Figure 66
and Figure 67, where the total energy per atom and the HOMO-LUMO gap energy are
plotted as the function of the tube length, respectively. The first plot gives a similar answer
as was previously observed in the case of closed Y junctions, which is the energy decreases
with the tube length in all four series.

Notice however that in the second plot, not all series have the same stability ordering.
Only the structures where the length of the tubes was zero and three, show a periodicity in
the energy gap values. The two series stability is almost the same, with the exception of the
first two members of the series. This could be explained by the fact, that every third member

of these two series is a leapfrog structure [106-109].
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Figure 66 Plot of the total energy (kcal/mol) per number of carbon atoms (E./N) as function
of the attached (6,6) nanotube length, obtained with the PM3 semiempirical method for the
four series of closed asymmetric Y-junctions.
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Figure 67 Plot of the HOMO-LUMO energy gap (Eg,p in au) as function of the nanotube length,
obtained at the PM3 semiempirical level of theory, for the four series of closed and
asymmetric Y junctions.

3.4. Conclusions

To study the effect of the attached nanotubes on the stability of Y junctions, several
series were modeled, where the nanotube length is increased. Also the opened junctions
were closed by a nanotube cap, to study the cap effect. Geometry optimizations followed by
single point energy calculations at the PM3 and PM6 semiempirical level of theory showed,
that the nanotube length and diameter has a big influence on the stability. The closing cap
didn’t alter the stability sort order.

Similar to the armchair opened and closed nanotubes, an oscillating periodicity can
be observed in the gap values of each series as function of the tube length. No direct
relationship could be found between the stability and nanotube length, however the

increase of the tube diameter decreases the total energy.
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4.2. Topological description of nano dendrimers

Tetrapodal junctions were connected by identification (a procedure implemented in
our software Nano Studio) to build dendritic molecules. Nano-dendrimers, at the first and

second generation stages, respectively, are illustrated in Figure 68.

First dendrimer level Second dendrimer level

Figure 68 Dendrimer at first (left) and second (right) level built from Cg, ( Le(Op(Le(Le(T)))))
tetrapodal junctions.

As above mentioned, a set of opposite or topologically parallel edges within the same
face/ring eventually forming a strip of adjacent faces, is called a goc or an ops. The number
of ops of length c is given by the polynomial coefficients of terms at exponent c¢; the number
of distinct c exponents equals the number of equivalence classes of opposite edges in G.

Analytical formulas of the Omega and Sadhana polynomial in tetrapodal junctions
were derived [119]; in every formula, m represents the number of monomers. Examples of
Omega, Sadhana polynomials and derived indices, in the case of dendrimers built up from

tetrapodal junctions are presented in the tables below.
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Cgs-Ty4-junction

v=108, fs = 28, f, = 12, e = 150

Le, (S,(Leyy(Le,(T)))) TU3.3.0

Omega Polynomial

Cl index

Sadhana Polynomial

Css-Ty-junction

Q=122m+D X" +24mXx 3 +6mX’
Q'(G,1) =138m +12
Cl =138% . m? +2778m+132; Example: m=3;Cl =179862

Sd =12(2m +1) X 8™ 4 24mX 1389 4 gmX 1Mo

v=132,f,=40f,=12,e=186

Le, (S,(Le,(Le,(T)))) TU3.3.1

Omega Polynomial

Cl index

Sadhana Polynomial

Cso-td-junction
Le, (S,(Ca,(T))) TU3.3.0

Omega Polynomial

Cl index

Sadhana Polynomial

Cso-td-junction
Le,(S,(Ca,(T))) TU3.3.1

Omega Polynomial

Cl index

Sadhana Polynomial

Q=6(m+1)X* +12(m+1)X? +(30m-6) X * + 6mX°
Q'(G,1) =174m +12
Cl =174° -m? +3366m +144 ; Example: m =5;CI = 773874

Sd — 6(m + l) X 174m+11 + lz(m + 1) X 174m+10 + (30m _ 6) X 174m+9 + 6mX 174m+3

v=284,6f;=16,f,=12,e=114

Q=122m+1) X' +12mX? +18mx?
Q'(G,1)=102m +12
Cl =102 -m® + 2214m +132 ; Example: m = 2;Cl = 46176

Sd 212(2m+l)102m+11+12mx102m+10 +18mx102m+9

v=108,f;=28f;=12,e =150

Q=6(m+1)X* +12(m+1)X?* +6(6m-1)X>
Q'(G,1) =138m +12
Cl =138°-m” +2934m + 144 ; Example m = 4;C| =316584

Sd = 6(m +1) X ™M 112(m +1) X #™90 1 6(6m —1) X
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Ciz0-td-junction v=144,fc=46f,=12,e =204
Le, (S, (Le, (Q,,(T)))) TU3.3.0
Omega Polynomial  Q=12(2m+1)X* +12mX® +6mX* +12mX °® + 3mx*
Q'(G,1) =192m +12

Clindex Cl =192% . m? +3516m +132; Example: m = 2;Cl =154620

Sadhana Sd =12(2m +1) X 2™ 1 12mX 2™ 4 emX 1M £ 12mX 1EMe 4 3mx 1T
Polynomial

Ciz0-td-junction v=168,fc=58f;=12,e =240

Ley,; (S,(Le,y(Q,0(T)))) TU3.3.1

Omega Q=6M+DX" +12(M+DX> +6(Bm-1) X > +18mX° + 3mX*

Polynomial Q'(G,1) =228m+12
Clindex Cl =228% - m? + 4176m +144 ; Example: m =7;Cl = 2576592

Sadhana Sd = 6(m +1) X 2™ 112(m +1) X 22™10 4 6(3m —1) X 2™ 4.18mX Z28™8 4 3mX 228"

Polynomial

Cs6-td-junction TU3.3.0 v=100, f¢=24f;=12,e=138
Omega Polynomial Q=122m+1) X" +12mX? + 6mX* +12mx°
Q'(G,1) =126m +12

Cl index Cl =126°-m? + 2598m +132; Example: m = 2;CI = 68832
Sadhana Polynomial Sd =12(2m +1) X o™ £ 12mX 2o 1 gmx 1OmE 4 12mx e
Cs6-td-junction TU3.3.1 v=124,fc=36f;=12,e=174
Omega Polynomial Q=6(m+1)X* +12(2m+1) X ? +6(m-1) X * +18mX°

Q'(G,1) =162m +12
Clindex Cl =162 -m? +3282m +144 ; Example: m =3;Cl = 246186

sadhana Polynomial Sd =6(m+1)x162m+11+12(2m+1)x162m+10 +6(m_1)x162m+9 +18mx162m+7
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The first derivative of Omega polynomial gives the number of the edges in G. The first
derivative of Sadhana polynomials in x=1 is a multiple of the number of the edges, as shown
above. The Cluj-limenau Cl index is a topological index, useful in correlating properties with
molecular structures.

By construction, the “negative” polygon is 7 (an odd ring, with no opposite edges), so
that the strip remains at the level of a single monomer unit and the polynomials are additive
in their coefficients. In the above, “negative” refers to polygons inducing the negative
curvature at the junction of tetrapodal units. The terms at c=1 (in Omega polynomial)
account for the non-opposite edges or the odd rings.

Remark in these tables the simplicity at exponents of Omega vs Sadhana
polynomials; the polynomial order increases as the size of fullerenes increases. The first
derivative is 1°* and 2" order in m, for Omega and Sadhana, respectively. The value in x=1 is
the same for both polynomials and accounts for the total number of strips. For the first three

units, the same values Q(G,1);Sd(G,1) are obtained, telling about their structural

relatedness.

4.3. Topological description of networks built from P-type

junctions

The studied P-type networks are periodic graphitic arrangements with hexagonal and
heptagonal rings of carbon. They are a series of open networks made of sp® carbon atoms
only. To the structures under study can connect six (4, 4) armchair carbon nanotubes,
therefore a genus three. The topology of such P-type networks can be described by the aid
of some counting polynomial, called Omega polynomial. Analytical formulas for counting
polynomial, and derived indices, in P-type networks are given.

The unit cell of the Schwarz P (primitive) triply periodic minimal surface can be
described as the intersection of six tubes coming through the faces of a cube, that meet into
a 6—coordinated octahedral junction (also known as the “plumber’s nightmare”).

Two networks of 6-coordinated junctions were studied. The repeat units are

obtained by a sequence of map operations starting from the cube, Le(Op(Le(Le(C)))) and
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Le(Op(Le(Q(C)))) hereafter notated P216 and P288, respectively. Both the leapfrog Le and
the chamfering Q transformations preserve the symmetry of the parent map, therefore the
resulted junctions have the octahedral symmetry of the cube. By the introduction of one
bivalent vertex on each edge of the 4-membered rings the structure is opened in six
directions, indicating that it has genus 3. By the homeomorph transformation 24 hexagons
became heptagons, which are all rotated in the final step (Le), resulting an opening with
armchair (4,4) chirality.

In the P-type structures the number of ops of length c is given by the polynomial
coefficients of terms at exponent c; the number of distinct c exponents equals the number

of equivalence classes of opposite edges in G. Figure 71 illustrates gqoc/ops.
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Figure 71 Examples of Omega polynomial strips in case of Le(Op(Le(Q(C)))).

When two P-type junctions are connected the two ¢ = 4 strips forms a continuous
strip of length 8.When four junctions are connected in the shape of a square they will form a
torus on the inside belt of the torus the two ¢ = 8 strips will result a new strip of length 16.

This strip is actually formed from the four c = 4 strips of the four junctions.
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A complete network of P-type junctions can be defined in terms of three integers a, b,
and ¢, their values represent the number of units along the three translation directions.
Assigning numbers to these parameters is completely arbitrary and describes the same
network (1x2x3 = 2x1x3). A single unit is defined when all three integers are equal to one,
denoted 1x1x1. Depending on the values of the parameters one can distinguish three cases
of network types: 1. the structure is linear if only one parameter is greater thanone (a>1, b
= ¢ =1); 2. the structure is two-dimensional if only one parameter equals one (a, b> 1, c=1);
3. when all the parameters have a value larger than one (a, b, ¢ > 1), a three-dimensional
structure is described.

An attempt to derive the Omega polynomial solely from the number of units
(notated u) failed, because two distinct structures, although they have the same number of
units (for example 1x1x8, 1x2x4 and 2x2x2 are all built from eight units), their polynomials
are different. The case is similar when only the number of junctions (notated j) is taken into
account.

The number of units (u), junctions (j), and tori (t) can be defined in terms of the

structural parameters a, b, and c, the corresponding relationships are equations (8)-(12):

u=a-b-c (44)
ji=(a-1)-b-c+a-(b-1)-c+a-b-(c-1)= 45
=3.a-b-c—(a-b+b-c+a-c)=3-u—(a-b+bh-c+a-c) (45)
(a-b+b-c+a-c)=j-3-u (46)
t=a-(b-1)-(c-1)+b-(a-1)-(c-1)+c-(a-1)-(b-1)= -
=3-a-b-c-2-(a-b+b-c+a-c)+(a+b+c)=4-j-3-u+(a+b+c) (47)
(a+b+c)=t—4-j+3-u (48)

Analytical formulas of Omega polynomial in case of Le(Op(Le(Q(C)))):

Q(X)=(72u-20j) X" +8X? +24uX> +4(3u—2j+t) X* +24uX® +4( j—t) X® +tX*® + 4uX*®
Q'(X)=72u-20j+16 jX +72uX? +16(3u—2j +t) X +144uX® +32( j—t) X" +16tX* + 72uX*’
Q'(1)=408u-4j

o

'(X) =16 +144uX +48(3u -2 +t) X2 +720uX * +224( j —t) X ® + 240tX™* +1224uX *®
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Q"(1) = 2232u +144 j + 64t

Cl =(408u—4j)" —2640u —140 j — 64t

Analytical formulas of Omega polynomial in case of Le(Op(Le(Le(C)))):
Q(X)=(72u-20j)- X' +8j-X*+48u-X®+4bc- X"* +4ac- X" +4ab- X
Q'(X)=72u-20j+16]- X +144u- X* + 28abc( X"+ X"+ X )
Q'(1)=300u—4]

Q"(X)=16]+288u- X +28abc((7a—1)x7a’z +(7Tb—1)X ™2 +(7c—1)X7°’2)
Q"(1)=(196(a+b+c)+204)u+16

Cl =(300u—4j)" —(196(a+b+c)+504)u-12]

4.4. Conclusions

Nano dendrimers built from two different tetrahedral junctions, and P-type networks
built from octahedral junctions were characterized by means of Omega polynomial.
Analytical formulas were derived in terms of repeat unit in case of dendrimers, and using

three structural descriptors (number of units, junctions, tori) in case of the P-type networks.
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