THEORETICAL STUDY OF MAIN GROUP ELEMENTS AND THEIR COMPLEXES WITH TRANSITION METALS

Ph.D. Thesis Abstract

Scientific advisors
Prof. Dr. Ioan Silaghi-Dumitrescu
Prof. Dr. Luminiţa Silaghi-Dumitrescu
Prof. Dr. Evamarie Hey-Hawkins

Ph.D. student
Menyhárt-Botond Sárosi

Cluj-Napoca
−2011−
THEORETICAL STUDY OF MAIN GROUP ELEMENTS AND THEIR COMPLEXES WITH TRANSITION METALS

Ph.D. Thesis Abstract

Jury

President:
Conf. Dr. Castelia CRISTEA
Babeș-Bolyai University

Reviewers:
Prof. Dr. Ion GROSU
Babeș-Bolyai University
Prof. Dr. R. Bruce KING
The University of Georgia
CȘI Dr. Ioan TURCU
I.N.C.D.T.I.M. Cluj-Napoca

Graphical abstract

1. Carbaborane-Substituted 1,2-Diphosphetanes

\[\text{rac-3: } R = \text{C(CH}_3\text{)}_3, \quad \text{rac-4: } R = \text{N(CH}_3\text{)}_2\]

\[\text{a-b-P}^+ \text{ or a-b-I}^+ \text{ theoretical ionic reaction intermediates} \]

2. Transition metal carbonyl sulfides

\[\text{alkylthio iron carbonyls, alkylthio cobalt carbonyls} \quad R = \text{CH}_3, \text{CF}_3 \]

3. Transition metal nitrosyl sulfides

\[\text{alkylthio iron nitrosyls, alkylthio cobalt nitrosyls} \quad R = \text{CH}_3, \text{CF}_3 \]

4. Unsymmetrical dinuclear rhodium complexes

\[d_{\text{Rh}} \rightarrow p^*_{\text{Rh}} \text{ hyperconjugation} \]
Abstract

This Ph.D. thesis presents results in selected areas of main group element and transition metal chemistry, where theoretical investigations lead to a deeper understanding of the proposed problems. In the first chapter, the substituent dependent diastereoselective behavior of carbaborane-substituted 1,2-diphosphetanes is addressed. The second and third chapters present results and highlight unsolved topics in the long known field of organosulfur transition metal carbonyl derivatives and transition metal nitrosyl sulfides. And last, but not least, the electronic structure and intramolecular interactions of arsanylaryl- and phosphanylarylthiol ligated transition metal complexes are discussed in the fourth chapter.

Keywords: 1,2-diphosphetanes, carbaboranes, iron, cobalt, alkylthio metal carbonyls, alkylthio metal nitrosyls, dinuclear rhodium complexes, density functional theory
1. Carbaborane-Substituted 1,2-Diphosphetanes

1.1. Introduction

Compounds 3 and 4 react with elemental iodine to give the first 1,2-bis(iodophosphanyl)-1,2-dicarba-closo-dodecaborane(12) compounds 5 and 6 (Figure 1). In the case of 3, the ring-opening reaction is diastereoselective to give the rac diastereomer 5 exclusively while the reaction of 4 with iodine results in formation of both diastereomers. This different diastereoselective behavior has been investigated with density functional theory (DFT) methods.

![Figure 1 - Synthesis of 1,2-diphosphetanes rac-3 and rac-4 and their subsequent ring-opening reactions.](image)

1.3. Original contributions

Table 3 summarizes the B3LYP/6-311G** relative energies for all of the optimized structures. The rac forms of 3 and 4 are clearly energetically favored by approximately 10 kcal mol⁻¹, which is in agreement with the experiments. However, the energy difference between the rac/meso forms of 5 and 6 is too insignificant (around 1 kcal mol⁻¹) to suggest an energetic preference for one of the isomers.

The transition states (TSs) corresponding to the pyramidal inversion of one of the P atoms for both reagents (TS3, TS4) and products (TS5, TS6) lie at significantly
higher relative energy values, suggesting a considerable energy barrier (Table 3). Thus, the conformational rearrangement must occur at the reaction intermediates, which can reasonably be considered as one of the ionic compounds depicted in Figure 5. The energy difference between the trans/cis forms of both alkyl- and amido-substituted intermediates is again insignificant (Table 3).

Table 3 – B3LYP/6-311G** relative energies (with zero-point energy corrections, kcal mol\(^{-1}\)) and imaginary frequencies (cm\(^{-1}\)) of the studied carbaborane-substituted 1,2-diphosphetanes.

<table>
<thead>
<tr>
<th>Reactants</th>
<th>Products</th>
<th>Theoretical intermediates</th>
</tr>
</thead>
<tbody>
<tr>
<td>R = C(CH(_3))(_3)</td>
<td>R = N(CH(CH(_3))(_2))(_2)</td>
<td></td>
</tr>
<tr>
<td>rac-3</td>
<td>rac-5</td>
<td>trans-a P(^+)</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>meso-3</td>
<td>meso-5</td>
<td>cis-a P(^+)</td>
</tr>
<tr>
<td>10.0</td>
<td>1.5</td>
<td>3.1</td>
</tr>
<tr>
<td>TS3</td>
<td>TS5</td>
<td>cis-a I(^+)</td>
</tr>
<tr>
<td>35.5 [299(i)]</td>
<td>51.3 [198(i)]</td>
<td>9.7</td>
</tr>
<tr>
<td>rac-4</td>
<td>rac-6</td>
<td>trans-a I(^+)</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>10.6</td>
</tr>
<tr>
<td>meso-4</td>
<td>meso-6</td>
<td>TSa P(^+)</td>
</tr>
<tr>
<td>11.9</td>
<td>1.1</td>
<td>27.9 [240(i)]</td>
</tr>
<tr>
<td>TS4</td>
<td>TS6</td>
<td>TSa I(^+)</td>
</tr>
<tr>
<td>35.9 [294(i)]</td>
<td>34.0 [311(i)]</td>
<td>50.2 [353(i)]</td>
</tr>
</tbody>
</table>

Figure 5 – The theoretically considered ionic intermediates.

The energy barriers to inversion obtained for the amido-substituted intermediates TSb P\(^+\) and TSb I\(^+\) are almost three times lower than the barriers predicted for the alkyl-substituted intermediates (TSa P\(^+\) and TSa I\(^+\)). It seems that the conformational rearrangement can take place at the amido-substituted intermediates, resulting in the experimentally observed rac/meso mixture of 6, while the alkyl-substituted intermediates possess higher energy barriers to such conformational changes. It cannot be excluded that the present n\(_N\) → \(\sigma^*\)\(_{P-A}\) hyperconjugations (Figure 9) are responsible for the observed lowering of the inversion barrier.
1. Carbaborane-Substituted 1,2-Diphosphetanes

Figure 7 – Transition state geometries for the inversion at one of the P atoms of the ionic intermediates. (H atoms are not shown).

Figure 9 – Hyperconjugation of the occupied lone pair at nitrogen (n_N) with the unoccupied anti-bonding orbital between the adjacent phosphorus and its substituent ($\sigma^*(P-A)$) for the amidok-substituted intermediates. Numbers represent the second-order energy-lowering values in kcal mol$^{-1}$ (contours at isovalue 0.07; hydrogen atoms are not shown).

1.4. Conclusions

Theoretical calculations indicate that the rac to meso conformational rearrangement can take place at the amido-substituted intermediates, resulting in the experimentally observed rac/meso mixture, while the alkyl-substituted intermediates possess higher energy barriers to such rearrangement.
2. Transition metal carbonyl sulfides

2.2.1. Experimental and theoretical data on iron carbonyl sulfides *(literature data)*

2.2.2. Original contributions

The six initial singlet geometries for $\text{Fe}_2(\text{CO})_6(\mu$-$\text{SCH}_3)_2$ were optimized (Figure 15) and their vibrational frequencies were calculated according to the methodology described in chapter 2.4. The predicted energy differences between the corresponding non-planar structures with eclipsed and staggered $\text{Fe}(\text{CO})_3$ units are 6.5 ± 1 kcal mol$^{-1}$, which is much lower than the 13.0 kcal mol$^{-1}$ determined by Tye *et al.*42 Both basis sets predict very similar trends for the relative energies of the six $\text{Fe}_2(\text{CO})_6(\mu$-$\text{SCH}_3)_2$ isomers (Figure 18).

Figure 15 – BP86/6-31G(d) optimized $\text{Fe}_2(\text{CO})_6(\mu$-$\text{SR})_2$ geometries with out-of-plane carbonyl moieties. The hydrogen and fluorine atoms have been omitted for the sake of clarity.
2. Transition metal carbonyl sulfides

![Image](137x243 to 240x318)

<table>
<thead>
<tr>
<th>Structure</th>
<th>6-31G(d)</th>
<th>FDZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂(CO)₆(µ-SCH₂)₂</td>
<td>1-trans</td>
<td>15.2</td>
</tr>
<tr>
<td>Fe₂(CO)₆(µ-SCF₂)₂</td>
<td>1-trans</td>
<td>22.3</td>
</tr>
</tbody>
</table>

Figure 18 – Relative energies in kcal mol⁻¹ of the optimized Fe₂(CO)₆(µ-SR)₂ singlet geometries.

Additionally, two high energy singlet Fe₂(CO)₆(µ-SCH₂)₂ structures were also located by both methods (Figure 16). The relative energies of the 1-trans and 1-cis structures are significantly higher, than the relative energies of the corresponding 1-ud-e global minima.

![Image](355x243 to 459x318)

Figure 16 – BP86/6-31G(d) optimized Fe₂(CO)₆(µ-SR)₂ geometries with in-plane carbonyl moieties. The hydrogen and fluorine atoms have been omitted for the sake of clarity.

The transition states for the inversion of the non-planar Fe₂S₂ butterfly structures with both eclipsed and staggered carbonyl groups were identified as the triplet 3-TS-e and 3-TS-s structures (Figure 17). Both transitions states are predicted as the highest relative energy isomer.
Geometry optimization of \(\text{Fe}_2(\text{CO})_6(\mu-\text{SCF}_3)_2 \) structures yielded the same relative energy ordering of the isomers (Figure 18) and very similar structural parameters as the methyl-substituted compounds (Table 10). This indicates that the electronegativity of the RS group has little effect on the relative energies of the stereoisomers. However, in contrast to its methyl-substituted pair, the \textbf{1-dd-s} \(\text{Fe}_2(\text{CO})_6(\mu-\text{SCF}_3)_2 \) structure with staggered \(\text{Fe}(\text{CO})_3 \) moieties is now predicted by BP86/FDZ as a local minimum. This might indicate that, the more electronegative SR group provides additional stability for the \(\text{Fe}_2(\text{CO})_6(\mu-\text{SR})_2 \) structures with staggered \(\text{Fe}(\text{CO})_3 \) moieties.

Using the global minima for both methyl- and trifluoromethyl-substituted \(\text{Fe}_2(\text{CO})_6(\mu-\text{SR})_2 \) structures (\textbf{1-ud-e}), bond dissociation energies for the loss of one carbonyl group have been calculated (Figure 19).
The predicted single carbonyl dissociation energy for the Fe\(_2\)(CO)\(_6\)(μ-SCH\(_3\))\(_2\) 1-ud-e structure is around 55 kcal mol\(^{-1}\) by BP86/6-31G(d) and around 50 kcal mol\(^{-1}\) by BP86/FDZ. The dissociation energy for the corresponding Fe\(_2\)(CO)\(_6\)(μ-SCF\(_3\))\(_2\) 1-ud-e structure is predicted to be very similar: around 52 kcal mol\(^{-1}\) by BP86/6-31G(d) and around ~48 kcal mol\(^{-1}\) by BP86/FDZ. The energy required for further carbonyl dissociation from (SR)\(_2\)Fe\(_2\)(CO)\(_5\) to give (SR)\(_2\)Fe\(_2\)(CO)\(_4\) + CO is considerably lower for both methyl- and trifluoromethyl-substituted species. It is predicted to be roughly 38 kcal mol\(^{-1}\) by BP86/6-31G(d) and around 34 kcal mol\(^{-1}\) by BP86/FDZ (Table 12).

Thus, (SR)\(_2\)Fe\(_2\)(CO)\(_6\) appears to be more stable with respect to extrusion of a carbonyl ligand, than the pentacarbonyl derivatives are.

Table 12 – Dissociation energies (kcal mol\(^{-1}\)) for the successive removal of carbonyl groups from the (SR)\(_2\)Fe\(_2\)(CO)\(_n\) (n = 4, 5, 6) derivatives based on the lowest energy structures (BP86/6-31G(d) values in normal font; BP86/FDZ values in *italics*).

<table>
<thead>
<tr>
<th></th>
<th>Me</th>
<th>CF(_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SR)(_2)Fe(_2)(CO)(_n) → (SR)(_2)Fe(_2)(CO)(_n)-1 + CO</td>
<td>54.3</td>
<td>50.1</td>
</tr>
<tr>
<td>1-ud-e → ax-ud-e + CO</td>
<td>54.3</td>
<td>50.1</td>
</tr>
<tr>
<td>1-ud-e → eq1-ud-e + CO</td>
<td>53.9</td>
<td>47.9</td>
</tr>
<tr>
<td>1-ud-e → eq2-ud-e + CO</td>
<td>56.6</td>
<td>50.7</td>
</tr>
<tr>
<td>(SR)(_2)Fe(_2)(CO)(_n) → (SR)(_2)Fe(_2)(CO)(_n)-1 + CO</td>
<td>53.9</td>
<td>47.9</td>
</tr>
<tr>
<td>ax-ud-e → 4CO-trans + CO</td>
<td>38.5</td>
<td>33.9</td>
</tr>
<tr>
<td>eq1-ud-e → 4CO-trans + CO</td>
<td>38.9</td>
<td>36.1</td>
</tr>
<tr>
<td>eq2-ud-e → 4CO-trans + CO</td>
<td>36.1</td>
<td>33.3</td>
</tr>
</tbody>
</table>

2.2.3. Conclusions

Structures with central planar Fe\(_2\)S\(_2\) units and 180° S–Fe–Fe–S dihedral angles were also found for Fe\(_2\)(CO)\(_6\)(μ-SR)\(_2\) derivatives, but always at significantly higher energies than the butterfly structures. Additionally, the transition states for the inversion of the non-planar Fe\(_2\)(CO)\(_6\)(μ-SR)\(_2\) structures through planar geometries were also located. Their relative energy range of 26 to 32 kcal mol\(^{-1}\) suggests a considerably inversion barrier.
The FDZ basis set was able to identify subtle differences between methyl- and trifluoromethyl-substituted Fe$_2$(CO)$_6$(µ-SR)$_2$ systems.

The bond dissociation energies for the successive loss of one carbonyl group from the Fe$_2$(CO)$_n$(µ-SR)$_2$ structures, suggest that the hexacarbonyl derivatives are more stable with respect to extrusion of a carbonyl ligand, than the pentacarbonyl derivatives.

2.3.1. Experimental and theoretical data on cobalt carbonyl sulfides (literature data)

2.3.2. Original contributions

The optimized Co$_2$(CO)$_6$(SR)$_2$ (R = CH$_3$, CF$_3$) geometries are shown on Figure 25. All of these structures have very similar energies, lying within 8 kcal mol$^{-1}$ of each other (Figure 26). All calculations were carried out as described in chapter 2.4. However, only the results obtained with the BP86/FDZ method will be presented.

The Co$_2$(CO)$_6$(SCF$_3$)$_2$ system is rather different from the Co$_2$(CO)$_6$(SCH$_3$)$_2$ system since the lowest lying structure is not one of the open geometries but instead the B-ud butterfly isomer. There thus appears to be a greater preference for metal–metal bonding in the Co$_2$(CO)$_6$(SCF$_3$)$_2$ structures than in the Co$_2$(CO)$_6$(SCH$_3$)$_2$ structures. However, the electronegativity of the SR group does not seem to have a high impact on the geometrical parameters of both the butterfly and open Co$_2$(CO)$_6$(SR)$_2$ stereoisomers, as indicated by the very similar Co···Co and Co–S distances in both Co$_2$(CO)$_6$(SCF$_3$)$_2$ and Co$_2$(CO)$_6$(SCH$_3$)$_2$ structures (Table 14). However, the effect of the SR groups nature is felt in the atomic charge distributions.
Figure 25 – The 11 optimized Co$_2$(CO)$_6$(SR)$_2$ structures (R = CH$_3$ or CF$_3$). The hydrogen and fluorine atoms have been omitted for the sake of clarity.

Figure 26 – Relative energies in kcal mol$^{-1}$ for the investigated Co$_2$(CO)$_6$(SR)$_2$ structures.
Table 14 – Calculated Co–Co and Co–S distances (Å), imaginary frequencies (cm$^{-1}$) and HOMO-LUMO gaps (eV) for the Co$_2$(CO)$_6$(SR)$_2$ structures.

<table>
<thead>
<tr>
<th>Co–Co</th>
<th>Co–S</th>
<th>imag. freq.</th>
<th>HOMO-LUMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>R=CH$_3$</td>
<td>R=CF$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-ud-s</td>
<td>3.359</td>
<td>3.387</td>
<td>2.314, 2.323, 2.342, 2.362</td>
</tr>
<tr>
<td>O-ud-e</td>
<td>3.402</td>
<td>3.417</td>
<td>2.292, 2.369</td>
</tr>
<tr>
<td>B-ud</td>
<td>2.523</td>
<td>2.523</td>
<td>2.242, 2.289, 2.363</td>
</tr>
<tr>
<td>B-dd</td>
<td>2.514</td>
<td>2.514</td>
<td>2.272, 2.288, 2.356</td>
</tr>
<tr>
<td>O-dd-s</td>
<td>3.392</td>
<td>3.457</td>
<td>2.326, 2.351</td>
</tr>
<tr>
<td>O-dd-e</td>
<td>3.412</td>
<td></td>
<td>2.299, 2.373</td>
</tr>
<tr>
<td>O-uu-s</td>
<td>3.342</td>
<td>3.433</td>
<td>2.320, 2.354</td>
</tr>
<tr>
<td>O-TS</td>
<td>3.472</td>
<td>3.469</td>
<td>2.325, 2.347</td>
</tr>
<tr>
<td>O-uu-e</td>
<td>3.396</td>
<td>3.436</td>
<td>2.305, 2.362</td>
</tr>
<tr>
<td>B-uu</td>
<td>2.518</td>
<td>2.510</td>
<td>2.271, 2.296, 2.303</td>
</tr>
<tr>
<td>B-du</td>
<td>2.522</td>
<td>2.515</td>
<td>2.240, 2.311, 2.309</td>
</tr>
</tbody>
</table>

Figure 27 – Energies (eV) and contours at the 0.03 isovalue of the HOMO and LUMO of some relevant Co$_2$(CO)$_6$(SR)$_2$ structures (R = CH$_3$ or CF$_3$). + values: yellow; – values: blue.
Not only the geometries are not affected significantly by the nature of the SR group, but also the electronic structure of the corresponding conformers is influenced only weakly by it. Both the highest occupied (HOMO) and the lowest unoccupied molecular orbitals (LUMO) of the corresponding methyl or trifluoromethyl substituted \textbf{O-ud-e} and \textbf{B-ud} structures have very similar shapes and compositions (Figure 27).

Using the \textbf{O-ud-e} and \textbf{B-ud} structures, bond dissociation energies for the loss of one carbonyl group have been calculated for both methyl- and trifluoromethyl-substituted \(\text{Co}_2(\text{CO})_6(\text{SR})_2 \) species (Figure 28).

![Figure 28](image-url) – Decarbonylation of the \textbf{O-ud-e} and \textbf{B-ud} \(\text{Co}_2(\text{CO})_6(\text{SR})_2 \) derivatives.

The predicted bond dissociation energy for the loss of one carbonyl group from the \(\text{Co}_2(\text{CO})_6(\text{SR})_2 \) \textbf{O-ud-e} structure is 14 kcal mol\(^{-1}\) for the methyl-substituted species and 17 kcal mol\(^{-1}\) for \(R = \text{CF}_3 \). The energy required for further carbonyl dissociation from \((\text{SR})_3\text{Co}_2(\text{CO})_3 \) \textbf{B-ud-e} to give \((\text{SR})_3\text{Co}_2(\text{CO})_4 + \text{CO}\) is considerably higher for both methyl- and trifluoromethyl-substituted species (Table 16).

<table>
<thead>
<tr>
<th>Process</th>
<th>Me</th>
<th>CF(_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{SR})_2\text{Co}_2(\text{CO})_6) \textbf{O-ud-e} (\rightarrow) ((\text{SR})_2\text{Co}_2(\text{CO})_5) \textbf{B-ud-e} (+) CO</td>
<td>14.0</td>
<td>17.0</td>
</tr>
<tr>
<td>((\text{SR})_2\text{Co}_2(\text{CO})_6) \textbf{B-ud} (\rightarrow) ((\text{SR})_3\text{Co}_2(\text{CO})_3) \textbf{B-ud-e} (+) CO</td>
<td>14.0</td>
<td>19.2</td>
</tr>
<tr>
<td>((\text{SR})_3\text{Co}_2(\text{CO})_6) \textbf{B-ud-e} (\rightarrow) ((\text{SR})_3\text{Co}_2(\text{CO})_4) \textbf{O-4CO} (+) CO</td>
<td>27.7</td>
<td>29.0</td>
</tr>
</tbody>
</table>

Table 16 – Dissociation energies (kcal mol\(^{-1}\)) for the successive removal of carbonyl groups from the \((\text{SR})_n\text{Co}_2(\text{CO})_n \) \((n = 4, 5, 6)\) derivatives based on the lowest energy structures.
2.3.3. Conclusions

Density functional calculations on the Co$_2$(CO)$_6$(SR)$_2$ compounds (R = CH$_3$, CF$_3$) predict two different competing structure types. The lowest energy Co$_2$(CO)$_6$(SCH$_3$)$_2$ structure is an open isomer. However, this open isomer lies only 0.4 kcal mol$^{-1}$ below the corresponding butterfly isomer. For the corresponding fluorinated derivative Co$_2$(CO)$_6$(SCF$_3$)$_2$ a greater preference towards direct metal–metal bonding exists.

The electronegativity of the RS group in the Co$_2$(CO)$_6$(SR)$_2$ structures has little effect on the main geometric parameters and the electronic structure of the corresponding conformers. However, it exerts a higher influence on the atomic charge distribution.

The bond dissociation energies for the successive loss of one carbonyl group from the (SR)$_2$Co$_2$(CO)$_6$ structures suggest that the hexacarbonyl derivatives are unstable with respect to extrusion of a carbonyl ligand, but most importantly, the resulting pentacarbonyl (SR)$_2$Co$_2$(CO)$_5$ derivatives are exclusively butterfly type structures with a direct Co–Co bond.

2.4. Theoretical methods

All of the optimizations were carried out in the gas phase using the BP86 density functional77,78 of the Gaussian 0386 and Gaussian 0926 program packages. The first type of calculations were carried out using the standard 6-31G(d) basis set82 for all atoms, while the second type of calculations used a custom basis set obtained by combining the Wachters primitive set83 for Fe and Co, with the Dunning-Huzinaga basis set85 augmented with a d polarization function for all other atoms. This combination of basis sets will be referred to as FDZ.
3. Transition metal nitrosyl sulfides

3.2. Theoretical methods

The general recommendation for conducting a DFT study of transition metal spin state energetics, is to compare at least a couple of different functionals including one of the nonhybrid type, which generally favor more covalent, spin-coupled descriptions, plus another from among the hybrid functionals, which typically favor more spin-polarized descriptions. A functional giving intermediate results should also be considered. Thus, the following three functionals are used: (1) the pure BP86 functional,77,78 (2) the hybrid B3LYP method,24,25 and (3) the meta-GGA M06-L functional.108,109 The 6-311G(d) basis set was used for all calculations.

3.3.1. Experimental and theoretical data on iron nitrosyl sulfides (literature data)

3.3.2. Original contributions

The nitrosyl analogue of the neutral Fe\textsubscript{2}(CO)\textsubscript{6}S\textsubscript{2}, namely Fe\textsubscript{2}(NO)\textsubscript{4}S\textsubscript{2}, has not yet been synthesized although it might be expected to be an oxidation product of Roussin’s red dianion Fe\textsubscript{2}(NO)\textsubscript{4}S\textsubscript{2}2–.

The optimized geometries are shown on Figure 37, while their relative energies are summarized in Figure 38. As expected, BP86 and B3LYP give very different relative energy ordering for the structural isomers. The most obvious contradiction between the two methods is the predicted singlet–triplet splitting of the Fe- and S-butterfly structures. Not surprisingly, BP86 prefers the singlet state over the triplet one, while B3LYP predicts quite the opposite.
3. Transition metal nitrosyl sulfides

Figure 37 – B3LYP optimized singlet and triplet geometries of Fe$_2$(NO)$_4$S$_2$.

Figure 38 – Relative energies in kcal mol$^{-1}$ of the optimized Fe$_2$(NO)$_4$S$_2$ geometries.

The M06-L results agree with the B3LYP ones. The M06-L functional also predicts the triplet diradical S-but-3 isomer as the Fe$_2$(NO)$_4$S$_2$ ground state (Figure 38) and was able to predict the same antiferromagnetically coupled broken symmetry solution as B3LYP (Figure 41).
Since the M06-L functional confirms the B3LYP results, it is more probable that the correct theoretical ground state of the neutral species is the triplet diradical \textit{S-but-3} and not the singlet diradical \textit{Fe-but-1}. The presence of a triplet diradical ground state for the neutral \textit{Fe}\textsubscript{2}(NO)\textsubscript{4}\textit{S} \textsubscript{2} system could explain why it has not yet been synthesized.

3.3.3. Conclusions

Density functional calculations on the experimentally unknown \textit{Fe}\textsubscript{2}(NO)\textsubscript{4}(\mu-S)\textsubscript{2} systems were carried out in an attempt to provide a clue to the chemical properties of this compound and why it has not yet been synthesized.

The results obtained using the B3LYP and M06-L functionals predicted a triplet S-butterfly structure as the \textit{Fe}\textsubscript{2}(NO)\textsubscript{4}(\mu-S)\textsubscript{2} ground state. The presence of a triplet diradical ground state could play an important role in the extensively studied aggregation chemistry of the \textit{[Fe}\textsubscript{2}(NO)\textsubscript{4}\textit{S} \textsubscript{2}]^{2-} dianion, which leads to \textit{Fe}\textsubscript{4}(NO)\textsubscript{7}S\textsubscript{3} - and even higher Fe/NO/S clusters.125,131,132
3.4.1. Experimental and theoretical data on cobalt nitrosyl sulfides *(literature data)*

3.4.2. Original contributions

The chemistry of the cobalt analogs of Roussin’s red salt esters, namely \(\text{Co}_2(\text{NO})_4(\mu\text{-SR})_2 \), has received much less attention than the chemistry of the related \([\text{Fe}_2(\text{NO})_4\text{S}_2]^{2-}\) and \(\text{Fe}_2(\text{NO})_4(\text{SR})_2 \) derivatives.

The BP86 optimized geometries of the most relevant isomers are shown on Figure 46, while their relative energies predicted by all three functionals are summarized on Figure 48 in order to compare the performance of the three different methods.

![Figure 46](image)

In contrast to the results obtained for the related neutral \(\text{Fe}_2(\text{NO})_4\text{S}_2 \) (chapter 3.3.2) and \(\text{Fe}_2(\text{NO})_4(\mu\text{-SCH}_3)_2 \) species (chapter 3.2), the M06-L method agrees with the other non-local functional, namely the BP86, and not with the hybrid B3LYP for the
Co$_2$(CO)$_6$(SR)$_2$ derivatives. Both BP86 and M06-L predict isoenergetic singlet open structures as the ground state. The corresponding triplet spin state isomers have significantly higher relative energy values (Figure 48).

<table>
<thead>
<tr>
<th></th>
<th>BP86</th>
<th>B3LYP</th>
<th>M06-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iso-1</td>
<td>40.1</td>
<td>42.2</td>
<td>40.5</td>
</tr>
<tr>
<td>O-TS-1</td>
<td>40.1</td>
<td>42.2</td>
<td>40.5</td>
</tr>
<tr>
<td>O-ud-1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>B-d-1</td>
<td>8.2</td>
<td>11.9</td>
<td>10.6</td>
</tr>
<tr>
<td>B-u-1</td>
<td>13.4</td>
<td>12.7</td>
<td>12.2</td>
</tr>
<tr>
<td>O-ud-3</td>
<td>18.7</td>
<td>15.7</td>
<td>15.7</td>
</tr>
<tr>
<td>B-d-3</td>
<td>16.1</td>
<td>10.6</td>
<td>15.3</td>
</tr>
<tr>
<td>M = 0</td>
<td>0.7</td>
<td>1.3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Figure 48 – Relative energies (in kcal mol$^{-1}$) of the selected optimized Co$_2$(NO)$_4$(SCH$_3$)$_2$ geometries.

Since the M06-L method supports the BP86 results, further discussions will focus only on the data obtained with the later functional, in order to make reasonable comparisons with the related Co$_2$(CO)$_6$(SR)$_2$ derivatives discussed earlier. The discussion of the triplet species will also be omitted, because they lie at significantly higher relative energies than the corresponding singlet structures.

For both the Co$_2$(NO)$_4$(SCH$_3$)$_2$ and Co$_2$(NO)$_4$(SCF$_3$)$_2$ derivatives, the lowest energy structures are of the **O-ud-1** open type. The corresponding Co$_2$(NO)$_4$(SCH$_3$)$_2$ and Co$_2$(NO)$_4$(SCF$_3$)$_2$ butterfly structures are both predicted to lie at higher relative energy values than the open Co$_2$(NO)$_4$(SR)$_2$ isomers. Furthermore, there is a difference in the relative energy order of the two butterfly structures. This different relative energy trend can be explained by the electrostatic interactions between the terminal sulfur atom and the R substituent of the bridging sulfur (Figure 50). However, the general trends in the relative energies of the respective Co$_2$(NO)$_4$(SCH$_3$)$_2$ and Co$_2$(NO)$_4$(SCF$_3$)$_2$ isomers
remain the same when replacing the electron-releasing CH₃ groups with the electron withdrawing CF₃ groups. The isonitrosyl linkage isomer (Iso-1) is predicted by all three functionals to lie with ~40 kcal mol⁻¹ above the corresponding global minimum structure.

![Figure 49](image.png)

Figure 49 – BP86 optimized Co₂(NO)(µ-SCF₃)₂ geometries and relative energies (in kcal mol⁻¹). The relative energies of the CH₃-substituted species are repeated only for comparison.

![Figure 50](image.png)

Figure 50 – Electrostatic interactions between the terminal sulfur atom and the R substituent on the bridging sulfur in the Co₂(NO)₂(SR)₂ species (R = CH₃, left; R = CF₃, right; natural charges are in bold).

The electronic structure of the corresponding Co₂(NO)₄(SR)₂ conformers is only weakly influenced by the nature of the SR group. Both the HOMO and the LUMO of the corresponding methyl or trifluoromethyl substituted O-ud-1 structures have very similar shapes and compositions (Figure 51).
3. Transition metal nitrosyl sulfides

3.4.3. Conclusions

Density functional calculations on the Co₂(NO)₄µ-SR₂ compounds (R= CH₃, CF₃) predict a highly fluxional system with a preference for structures without a direct Co–Co bond.

The electronic structure of the Co₂(NO)₄(SR)₂ conformers is only weakly influenced by the nature of the SR group, as indicated by the similar HOMO/LUMO shapes and compositions of the corresponding methyl or trifluoromethyl substituted open and butterfly structures. On the other hand, the atomic charge distributions of both structure types are noticeably influenced by the nature of the SR group.
4. Unsymmetrical dinuclear rhodium complexes

4.1. Introduction

The experimental Rh···Rh distances in 1 and 2 are at the limit of the sum of the covalent radii of two rhodium atoms, i.e. 2.84 Å, which already can be taken as an indication for a strong interaction between the two transition metal centers. However, according to the simple 16 electron rule applied to these systems and the previous theoretical results for similar thiolato-bridged dimeric Rh complexes, one would not expect a single bond between the two rhodium atoms of 1 and 2. However, a $d_z^2 \rightarrow p^*$ metal-metal interaction, as described for d^8 transition metal dimeric systems, can be present in 1 and 2. Density functional calculations were carried out to characterize the rhodium-rhodium interactions in these [Rh(μ-S-2-EPh$_2$C$_6$H$_4$κ2S,E)$_2$Rh(cod)] compounds.

![Figure 53 – Solid-state molecular structure of 1 and 2.](image)

4.2. Theoretical methods

Geometry optimizations in the gas phase were carried out with the Gaussian 09 suite of programs, using the M06-L pure functional and using the DZQ basis set recommended by Schultz et al. for the rhodium atoms, the standard 6-31G(d) basis for As, P, S and C, and 6-31G for hydrogen. The DZQ basis set uses the relativistic
effective core potentials (ECP) of Stevens et al.172,173,174 along with a valence electron basis set of the (8s8p6d)/[4s4p3d] size.175

4.3. Original contributions

Both geometries obtained from the X-ray diffraction data and geometries with the fold angle θ constrained to 180° were optimized. As expected, in both cases the planar forms lie at significantly higher relative energies (Table 27).

<table>
<thead>
<tr>
<th>Fold angle θ [°]</th>
<th>Rel. E [kcal mol$^{-1}$]</th>
<th>Rh···Rh [Å]</th>
<th>Rh···Rh WBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>99.7 (exp: 105.4)</td>
<td>0</td>
<td>2.837</td>
</tr>
<tr>
<td></td>
<td>180.00</td>
<td>30.96</td>
<td>3.643</td>
</tr>
<tr>
<td>2</td>
<td>98.5 (exp: 102.6)</td>
<td>0</td>
<td>2.837</td>
</tr>
<tr>
<td></td>
<td>180.00</td>
<td>30.34</td>
<td>3.614</td>
</tr>
</tbody>
</table>

Since $d \rightarrow p^*$ donor–acceptor interactions between the two metal atoms have been determined to make the main contribution to bending of these compounds,169 natural bond orbital (NBO)29 calculations were carried out in order to identify them (Figure 57). As expected no direct Rh–Rh bonding NBOs were found, which is in agreement with previous theoretical studies for similar thiolato-bridged dimeric Rh complexes.166

In the case of the bent structure not only the d_{z^2}, but also the other d-type orbitals interact with the empty p^* lone pairs, and the NBO overlaps are found to be both in-phase and out-of-phase. The planar form of 1 also exhibits similar $d \rightarrow p^*$ donor–acceptor interactions (Figure 57). However, the in-phase $d \rightarrow p^*$ hyperconjugations are clearly predominant in the bent form of 1, and thus they must play an important role in the stabilization of this structure type.
4. Unsymmetrical dinuclear rhodium complexes

4.4. Conclusions

Density functional calculations were carried out to characterize the rhodium-rhodium interactions in the dinuclear rhodium complexes \([\text{Rh}(\mu-S-2\text{-EPh}_2\text{C}_6\text{H}_4-\kappa^2\text{S}_2\text{E})\text{Rh(cod)}])\) (1: \(E = \text{As}\); 2: \(E = \text{P}\)).

The presence of a Rh···Rh interaction was confirmed by natural bond orbital analysis, describing the Rh···Rh coupling as a \(d \rightarrow p^*\) donor–acceptor interactions between the two transition metal atoms.
References

10. A search in the CCDC database (August 2011) for unsubstituted 1,2-dicarbalkcloso1,2dodecaborane(12) structures (o-carbaborane) gives 26 C–C distances in the 1.51–1.71 Å range (mean: 1.63 Å; median: 1.63 Å).
11. A search in the CCDC database (August 2011) for unsubstituted cyclohexak1,3,5-triene structures gives 7261 C–C distances in the 0.99–1.97 Å range (mean: 1.37 Å; median: 1.38 Å).
References

97. Spartan’06 Wavefunction, Inc. Irvine, CA.
References

166. A search in the CCDC database (August 2011) for unsubstituted sulfur bridged dimeric rhodium complexes gives 248 Rh···Rh distances in the 2.55–3.78 Å range (mean: 3.25 Å; median: 3.24 Å).