
 

 

 

 

 

 

 

 

PhD Candidate: Sebastian Presecan 

 

Scientific Advisor: Prof. Nicolae Tomai, PhD 

 

  

UNIVERSITATEA „BABEŞ - BOLYAI” 

FACULTATEA DE ŞTIINŢE ECONOMICE ŞI GESTIUNEA AFACERILOR 

CATEDRA DE INFORMATICĂ ECONOMICĂ 

 

CONTRIBUŢII LA DEZVOLTAREA ARHITECTURILOR COLABORATIVE 

A DISPOZITIVELOR INTELIGENTE APLICATE ÎN ECONOMIE 

 

PERVASIVE COMPUTING: COLLABORATIVE ARCHITECTURE APPLIED IN 

BUSINESS ENVIRONMENT 

 

 

Summary of the PhD Thesis 

Cluj-Napoca, November 2011 



 

ii 

 

 

 

 

 

 

Abstract 
 

Personal computers era is nowadays closing, as users are rather focused on 

information and on the methods of accessing the information then on the tools 

themselves. Moreover, computational power is distributed on different small devices 

that are used for helping users to perform various daily tasks. Smart devices owners 

are using mobile applications as a replacement for desktop applications. Due to 

limited resources and due to the fact that they must cope with the challenge of being a 

real replacement for personal computers, mobile devices should be able to run 

applications that distribute their tasks for execution in the cloud. The proposed 

framework combines the mobility of smartphone applications with the execution 

capabilities of the cloud and proves itself as a viable solution for implementing 

pervasive systems that enable ubiquitous usage of the computational power. 

 

 

Keywords: pervasive computing, middleware, mobile application, mobile computing 

  



 

iii 

 

 

Table Of Contents 

 

1.	
   INTRODUCTION	
  .......................................................................................................................	
  1	
  

1.1.	
   MOTIVATION	
  .............................................................................................................................	
  1	
  
1.2.	
   RESEARCH	
  QUESTIONS	
  ..............................................................................................................	
  1	
  
1.3.	
   OBJECTIVES	
  ...............................................................................................................................	
  2	
  
1.4.	
   CONTRIBUTION	
  .........................................................................................................................	
  3	
  

2.	
   BACKGROUND	
  ..........................................................................................................................	
  4	
  

2.1.	
   PERVASIVE	
  COMPUTING	
  EVOLUTION	
  .......................................................................................	
  4	
  
2.2.	
   PERVASIVE	
  SYSTEMS	
  CHALLENGES	
  ...........................................................................................	
  5	
  
2.3.	
   PERVASIVE	
  SYSTEMS	
  AND	
  MIDDLEWARES	
  ...............................................................................	
  6	
  
2.3.1.	
  GAIA	
  ...............................................................................................................................................................	
  6	
  
2.3.2.	
  AURA	
  .............................................................................................................................................................	
  6	
  
2.3.3.	
  ONE.WORLD	
  ................................................................................................................................................	
  7	
  
2.3.4.	
  PICO	
  ..............................................................................................................................................................	
  7	
  
2.3.5.	
  SODA	
  ............................................................................................................................................................	
  8	
  
2.4.	
   CONCLUDING	
  REMARKS	
  ............................................................................................................	
  8	
  

3.	
   CONTEXT-­‐AWARENESS	
  .......................................................................................................	
  10	
  

3.1.	
   CONTEXT-­‐AWARENESS	
  KEY	
  CONCEPT	
  ....................................................................................	
  10	
  
3.2.	
   CONTEXT	
  AWARENESS	
  CHALLENGES	
  ......................................................................................	
  10	
  
3.3.	
   CONTEXT-­‐AWARE	
  ARCHITECTURE	
  .........................................................................................	
  11	
  
3.4.	
   CONCLUDING	
  REMARKS	
  ..........................................................................................................	
  13	
  

4.	
   INVISIBILITY	
  ...........................................................................................................................	
  15	
  

4.1.	
   INVISIBILITY	
  CONCEPT	
  ...........................................................................................................	
  15	
  
4.2.	
   INVISIBILITY	
  CHALLENGES	
  .....................................................................................................	
  15	
  
4.3.	
   DETAILED	
  DESIGN	
  ...................................................................................................................	
  16	
  
4.4.	
   CONCLUDING	
  REMARKS	
  ..........................................................................................................	
  18	
  

5.	
   APPLICATION	
  MOBILITY	
  ....................................................................................................	
  19	
  

5.1.	
   MOBILE	
  CLOUDABLE	
  APPLICATIONS	
  CHALLENGES	
  ................................................................	
  19	
  
5.2.	
   FRAMEWORK	
  ARCHITECTURE	
  ................................................................................................	
  20	
  
5.3.	
   CONCLUDING	
  REMARKS	
  ..........................................................................................................	
  23	
  



 

iv 

 

 

6.	
   SECURITY	
  .................................................................................................................................	
  24	
  

6.1.	
   DETAILED	
  DESIGN	
  ...................................................................................................................	
  24	
  
6.2.	
   CONCLUDING	
  REMARKS	
  ..........................................................................................................	
  26	
  

7.	
   PERVASIVE	
  MIDDLEWARE	
  ARCHITECTURE	
  ................................................................	
  28	
  

7.1.	
   VISION	
  .....................................................................................................................................	
  28	
  
7.2.	
   CHALLENGES	
  ...........................................................................................................................	
  29	
  
7.3.	
   MIDDLEWARE	
  ARCHITECTURE	
  ...............................................................................................	
  30	
  
7.3.1.	
  CONTEXT	
  SERVICE	
  ....................................................................................................................................	
  30	
  
7.3.2.	
  DISTRIBUTION	
  SERVICE	
  ...........................................................................................................................	
  31	
  
7.3.3.	
  SECURITY	
  MANAGER	
  ................................................................................................................................	
  32	
  
7.3.4.	
  COMMUNICATION	
  CHANNEL	
  ....................................................................................................................	
  32	
  
7.4.	
   CONCLUDING	
  REMARKS	
  ..........................................................................................................	
  34	
  

8.	
   CONCLUSIONS	
  .........................................................................................................................	
  36	
  

9.	
   BIBLIOGRAPHY	
  ......................................................................................................................	
  40	
  

 

 

 

 



 

1 

  

 

1. Introduction  

‘‘The most profound technologies are those that disappear. They weave themselves 

into the fabric of everyday life until they are indistinguishable from it.’’ (Weiser M. , 

1991). With this statement, in 1991, Mark Weiser described his vision about the 

computer of the 21st century. Computing has since evolved beyond the desktop PC. 

Computing is no more associated with Personal Computers only. Computers are 

nowadays embedded into different devices like cell phones, PDAs, different control 

devices, etc. The cost of hardware significantly decreased, which contributed to the 

spread of the computing power usage.  

The evolution of network technologies made it possible for computers to perform user 

tasks anywhere, anytime. As time goes by, computers are becoming more ubiquitous.  

The vision expressed by Mark Weiser is nowadays closer to reality than it was ever 

expected.  

1.1. Motivation 

Mobile computing today is a reality, but the computing power is distributed not only 

to mobile phones. Smartphones are nowadays ubiquitous. Smartphones owners are 

using the mobile applications as a replacement for desktop applications. As a result, 

there is an increasing need of using mobile computing in different kind of applications 

in domains like: medicine, business, etc. It becomes more and more obvious that there 

is also a need of having architecture for these new conditions. Considering my 

experience as a developer and architect and the fact that I have been working in 

designing and implementing large scale distributed systems for more than 12 years, 

these new technological advances challenged me to try and define architecture for the 

new generation of pervasive system. 

1.2. Research questions 

Given the current technological stage when the computing power is spread within 

different kinds of devices, a new challenge may arise and that is making these smart 

devices work together. For the moment, the old method of making these devices 



 

2 

  

 

collaborate presupposes connecting them to some service providers in order to get 

information from there.  

 

The embedded devices are nowadays smart enough, though they should be able to 

identify themselves as possible collaborators, in order to perform user tasks or to 

delegate them to more powerful computers. Baring these aspects in mind, the 

following questions pop-up: 

• Is it possible to improve smartphone applications by sensing the environment? 

• Which are the possible ways that can be used to make smart devices communicate? 

• What is the best approach to be used in order to let smart devices to transfer their 

jobs to more powerful computers? 

• How should the system be designed in order to assure security, privacy and 

trustfulness? 

• How is it possible to integrate all different types of smart devices running on 

different operating systems into one single system? 

 

Throughout the current research we have searched for answers to all these questions. 

Putting together all these answers we have managed to detail a middleware that could 

be used for implementing any pervasive system. The purpose of the current research 

is to define a highly scalable architecture to be used in the implementation of different 

user requirements with little effort from applications developers. The proposed 

middleware should help the mobile applications become ubiquitous. 

1.3. Objectives 

One of the objectives of the present thesis is to understand the way in which the 

current middleware is supporting pervasive computing and to analyse them from the 

perspective of the implementation of an educational pervasive portal. 

 

The projected result of the current research is a scalable architecture for a pervasive 

system. We will consider the educational portal from a university campus as a target 

system to work on. It will thus gain a new dimension, its ubiquity. The usage of the 

system is meant to be ubiquitous so that the users are not disturbed by the system, 

except for the situation when, after consuming all the existing possibilities, it cannot 



 

3 

  

 

be fixed by itself. Even if the proposed architecture has currently been applied to 

improve an educational pervasive portal, we consider it generic enough to be the 

backbone in the implementation of any type of pervasive system. 

1.4. Contribution 

Our PhD thesis raises several novelty issues in the field of Pervasive Computing. The 

main area of study and research comprises context-awareness, invisibility, security 

and application mobility. All these aspects have been analysed from the perspective of 

building a pervasive system middleware. The major contributions are the following: 

- identifying the major challenges in the implementation process of a pervasive 

system and subsequently, defining the evaluation criteria which could be used 

to analyse different middleware used in implementing pervasive systems; 

- creating an innovative solution which would observe the context and gather 

together all the context providers. They could be used by the mobile 

application to monitor the environment and to adapt the application’s features 

and functionalities to the context changes, in an invisible way;  

- conceiving a cutting-edge solution to achieve the application mobility, by 

distributing the application services into the cloud in a seamless manner. The 

application performances could be easily improved through the distribution in 

the cloud of some of its services. When the distribution is made automatically, 

without the intervention of the application developer, no additional codes must 

be implemented. Therefore, we consider this approach as a major benefit for 

enabling the cloud distribution in a transparent way; 

- using a communication channel based on internet de-facto standards which has 

ben used to integrate different devices into the platform. These devices have 

been running on different operating systems and supported both the pull and 

the push of the content; 

- building-up a state-of-the-art middleware architecture which provides a 

generic end-to-end solution for implementing any type of pervasive system 

which faces all the identified system challenges. 

 

 

  



 

4 

  

 

2. Background 

This chapter is mainly focused on presenting the key-concepts of Pervasive 

Computing. It is not intended to be a detailed monograph of Pervasive Computing, 

but rather to present the key-concepts which are needed in order to perform the 

analysis of a Pervasive Computing system architecture. I hereby present the Pervasive 

Computing challenges, some of the systems that are able to solve these particular 

challenges and the main directions of study within the above mentioned branch of 

computing science.  

2.1. Pervasive computing evolution 

 

Mark Weiser’s visionary statement(mentioned above) describes what is expected 

from pervasive or ubiquitous computing: users access the computational environment 

anytime, everywhere. 

Starting with the definition: ”A distributed system is an information-processing 

system that contains a number of independent computers that cooperate with one 

another over a communications network in order to achieve a specific objective.” 

(Bapat, 1994) makes it clear that the “pervasive computing” defines a new context for 

interaction between the end users and the distributed systems. 

A.S.Tanenbaum definition of the distributed systems: “A collection of independent 

computers that appears to its users as a single coherent system.” (Tanenbaun & 

Steen, 2006) predicted the pervasiveness of the nowadays computing systems. 

   

Computing has since evolved beyond the desktop PC. Computing is not any more 

associated only with Personal Computers. Computers are nowadays embedded into 

different devices like cell phones, PDAs, different control devices, etc. The fact that 

the cost of hardware has significantly decreased contributed to the spread of the 

computing power usage.  

Given the evolution of computers and the interaction between users and the 

computing system, we can identify 3 main stages: 

• mainframe – which can be defined as one system multiple users; 



 

5 

  

 

• personal computer – which can be defined as one user, one system; 

• pervasive computing – which can be defined as one user, multiple systems. 

 

Pervasive computing changed the way people interact with computers. The key idea 

behind pervasive computing is to deploy a wide variety of computing devices 

throughout our living and working spaces. These devices coordinate with each other 

and with network services, aiming at providing people with universal access to their 

information and seamlessly assisting them in completing their tasks. 

2.2. Pervasive systems challenges 

Considering the vision of M. Weiser and the user needs expressed into the above 

scenario, it is clear that a pervasive system must be distributed and must support user 

and application mobility. 

In  

Figure 2.1, M. Satyanarayanan describes the main characteristics of a pervasive system. 

 

 
 

Figure 2.1 - Taxonomy of Computer Systems Research Problems in Pervasive 

Computing (Satyanarayanan, Pervasive Computing: Vision and Challenges, 2001) 



 

6 

  

 

2.3. Pervasive systems and middlewares 

Even if pervasive computing is a relatively new field, there are already many 

approaches of defining architectures for pervasive systems. For the purpose of the 

current work, we have selected those that are representative for niche area. The 

selection was made considering the world wide appreciation of the system and the 

different taxonomies used to define these architectures. 

The purpose of the assessment is to analyse how these systems meet the requirements 

defined above, to identify the strength and the weakness of the existing systems and 

also to identify possible research directions. 

The selected systems are: 

• GAIA- developed by the University of Illinois; 

• AURA- developed by Carnegie Mellon University; 

• PICO – developed by the University of Texas; 

• One.world – developed by Washington University; 

• SODA 

2.3.1. Gaia 

Gaia is a meta-operating system built as a distributed middleware infrastructure that 

coordinates software entities and heterogeneous networked devices contained in a 

physical space (Roman, Hess, Cerqueira, & Campbell, 2002). Gaia is designed to 

support the development and execution of portable applications for active spaces — 

programmable ubiquitous computing environments in which users interact with 

several devices and services simultaneously. Gaia exports services to query, access, 

and use existing resources and context, and provides a framework to develop user-

centric, resource-aware, multi- device, context-sensitive, and mobile applications. 

2.3.2. Aura 

As a consequence of Moore’s law, nowadays it is clear that the hardware is no more 

the bottleneck, but the way in which the user interacts and uses the computing 

systems. 

The intuition behind a personal Aura is that it acts as a proxy for the mobile user it 

represents: when a user enters in a new environment, his or her Aura marshals the 

appropriate resources to support the user’s task. Furthermore, an Aura captures 



 

7 

  

 

constraints that the physical context around the user imposes on. (Garlan, Siewiorek, 

& Smailagic, 2002), (Aura, 2002) 

2.3.3. One.World 

The One.World architecture was created with the aim of implementing one of the 

most important pervasive challenges, which is “accessing information anytime and 

everywhere”. One.world architecture provides an integrated, comprehensive 

framework for building pervasive applications. It targets applications that 

automatically adapt to highly dynamic computing environments, and it includes 

services that make it easier for developers to manage constant change. (Grimm R. , 

2004) 

2.3.4. PICO 

PICO’s objective is to meet the demands of time-critical applications in areas such as 

telemedicine, the military, and crisis management that demand automated, continual, 

unobtrusive services and proactive real-time collaborations among devices and 

software agents in dynamic, heterogeneous environments. (Kumar, Shirazi, & 

Singhal, 2003) 

The PICO’s architects imagine a system composed of intelligent autonomous 

softwares called delegents and hardware devices called camilenus. The target of PICO 

is to provide “what we want, when we want, where we want, and how we want” types 

of services, autonomously and continually.  

Camilenus can be of different types and complexities. They are all interconnected 

using different protocols and technologies. A delegent is an intelligent software which 

works on behalf of camilenus or on behalf of the user. For example, a delegent can 

gather information locally or remotely, with the aim of collaborating with other 

delegents and form a computing community.  

 

Overall, the PICO system offers a viable solution based on the agents paradigm to 

implement a dynamic pervasive system. As mentioned previously, in order to match 

the main pervasive requirements, the system needs to be improved by adding 

monitoring and dispatching functions either to delegents or to communities. 

 



 

8 

  

 

2.3.5. SODA 

To build a pervasive system as we have seen above, there are many challenges that 

need to be overcome. In order to meet them all, the system is getting extremely 

complex and expensive. In order to leverage the cost of integration, development and 

to achieve a good scalability, a solution would be to adopt SOA in pervasive 

computing. 

A Service Oriented Architecture (SOA) is set of principles that define an architecture 

that is loosely coupled and comprised of service providers and service consumers that 

interact according to a negotiated contract or interface. These services provide the 

interfaces to applications in the IT landscape. The primary goal of SOA is to expose 

application functions in a standardized way so that they can be leveraged across 

multiple projects. This approach greatly reduces the time, effort and cost it takes to 

maintain and expand solutions to meet business needs. (Mansukhani, 2005) 

 

SODA is an adaptation of the service oriented architecture (SOA) which integrates 

business systems through a set of services that can be reused and combined to address 

changing business priorities. Services are software components with well-defined 

interfaces, and they are independent of the programming language and the computing 

platforms on which they run. (Koch, 2005) Thus the purpose of SODA is to integrate 

the system devices into enterprise software systems. By these the developers will be 

able to use the embedded devices and sensor as using any other enterprise services. 

(Sumi, 2006) 

 

2.4. Concluding remarks 

Pervasive Computing is a natural evolution of distributed systems. Pervasive 

Computing users are able to use different applications running on wide range of 

devices and systems. The distribution of the tasks’ execution and the heterogeneity of 

the running environment make the design of a pervasive system a pretty complex task. 

 

We have identified the main architectural challenges that need to be overtaken by any 

system performing pervasive tasks: context-awareness, invisibility, service discovery, 

integration, mobile information access, scalability, security and development and 



 

9 

  

 

deployment. The following middlewares: Gaia, Aura, One.World, Pico and SODA 

have been analysed from the perspective of full-filling the above-identified 

architectural challenges. The presented systems provide powerful architecture, 

addressing some of the challenges.  They introduce great concepts and define simple 

yet powerful ways of fulfilling some of the main key challenges.  

The main outcomes from this chapter were published on (Presecan S., 2007), 

(Presecan S, 2008)  



 

10 

 

 

 

3. Context-awareness 

Context-awareness is a key-concept in pervasive systems. The current chapter defines 

the concept of “context-awareness”. It also identifies and describes in full detail the 

main challenges presupposed by the process of implementing context-awareness 

systems. At the end of the chapter we have decided to make a presentation of a virtual 

system architecture that aims at solving the identified context-awareness challenges. 

3.1. Context-awareness key concept 

 “Context-aware software adapts according to the location of use, the collection of 

nearby people and objects, the accessible devices, as well as changes to those objects 

over time. A system with these capabilities surveys the computing environment and 

reacts to changes to that environment”. (Schilit, Adams, & Want, 1994) 

 

Context-aware computing devices and applications respond to changes in the 

environment in an intelligent manner, in order to enhance the computing environment 

for users. Context-aware applications tend to be mobile applications for obvious 

reasons: 

• the user’s context fluctuates most frequently when a user is mobile. 

• the need for context aware behaviour is greatest in mobile environment 

(Adelstein, Gupta, Richard, & Schwibert, 2005). 

3.2. Context awareness challenges 

In theory, a smart device can get context information by using a large variety of 

sensors, cameras and microphones, which can be embedded in the device or in the 

surrounding environment. In practice, this is a very challenging task, if we take into 

consideration the need of integration of different type of small devices and 

technologies, the mobility of the user and the reduced computational power of smart 

devices.   

 



 

11 

 

 

The following challenges can thus be considered important for a context awareness 

middleware: 

• discovery of the source of the context providers. 

• query for getting the context information. 

• processing of the context information without disturbing the normal system 

features. 

• the system adaptability to the change of context values. 

• the integration of different types of context providers and communication 

channels. 

3.3. Context-aware architecture 

The context information can be retrieved at least from the following type of sources: 

- sensors connected directly to the embedded device. 

- sensors connected to a close device or computer. 

- actuators which generate context information. 

The following architecture is proposed in order to support the context awareness of 

the pervasive system. Figure 3.1 depicts the main components needed to build a 

distributed context awareness system. 

 

The key-component is the ContextService. It is responsible for getting all the context 

information that an application running inside the embedded device might need. It 

retrieves the context information from the sensors/actuator directly connected to it or 

it gets them from the “buddy” ContextService. 

 

The “buddies” ContextServices consist of a collection of services distributed on 

different machines which collaborate in order to retrieve all the context information 

needed by the embedded applications. The buddies can be defined statically or 

dynamically. For the static configuration, we can define a list of QoS parameters 

which need to be used when the buddies are retrieved from the DiscoveryService. The 

dynamic configuration means that the buddies start working together once there is any 

request of accessing information about the context from another target. 

 



 

12 

 

 

 
Figure 3.1 - Architecture overview 

 

The buddy ContextService is a smart proxy that is retrieved from the 

DiscoveryService. The DiscoveryService analyses the QoS parameters transmitted by 

the buddy ContextService during the requests for a new ContextService and gives the 

client the ContextService which is most appropriate for his/her needs. The proxy is 

considered to be smart because the DiscoveryService could replace it in case it does 

not provide the expected functionality. This way, when the expected QoS are no 

longer assured by the current buddy, the DiscoveryService is responsible to replace it 

with another buddy. Consequently, the system assures the local scalability that is an 

important requirement for pervasive systems. 

 



 

13 

 

 

Each ContextService can be directly connected to one or multiple sensors and 

actuators. The ContextService from that computer will communicate directly with the 

sensor, and will publish the sensor values to the entire system. The sensor contains the 

specific implementation of connecting and retrieving information from the physical 

sensor. 

 

Actuators are used to push the context information into the system on users’ demand. 

The actuators do not really sense the environment, but they provide information that 

can help the user’s intention. For example: presence actuator notifies the other users 

that the current one is just joining/leaving the community. 

3.4. Concluding remarks 

The current chapter aimed at presenting the context-awareness feature, one of the 

most important challenges for a pervasive system. The architectural challenges 

triggered by the need of supporting context-awareness have been identified. These are 

the following: the integration of different context providers, extensibility, distribution 

and cooperation, event-based infrastructure, simple domain mobile, simple query 

interface, dynamic discovery and registration. Some of the existing pervasive 

middleware that support context-awareness have been analysed from the perspective 

of the above identified challenges. The existing solutions can only partially solve the 

target problems. 

 

A new virtual architecture for implementing a pervasive system which is aware of the 

context has been detailed. The context-awareness challenges are not new, but the 

solution proposes some innovative aspects which bring some improvements compared 

to the existing solutions: 

• distributed context provisioning – the context data can be retrieved from the 

buddy context services and not only from the embedded device. 

• it supports local scalability by facilitating the replacement of the context 

service, based on the QoS parameters. 

• transparent context provisioning – the client can ask for a given context value 

without knowing where that context needs to be retrieved from. 



 

14 

 

 

• flexible query mechanism which allows the external application to have a 

simple and flexible way of getting the context values. 

• flexible mechanism for reaction to the context change, which allows the 

external application to configure their reaction, both statically and 

dynamically, in case of context change, and to adapt to the new context values 

without disturbing the user. 

 

The proposed middleware is base on the idea of considering the distribution of the 

context providers and the possibility to integrate them in a system which is able to 

monitor their QoS parameters. If the middleware observes that certain provider do not 

function normally, it replaces the provider by an equivalent one without interrupting 

the user activities. The context data can be retrieved from the buddy context services 

which can be located into the near network and not only from the embedded device, 

as previous middleware had considered. By letting the ContextService instances to be 

hotreplaced by the DiscoveryService the middleware supports the local scalability. 

The middleware enables transparent context provisioning, thus the client can ask for a 

given context value without knowing from where that context needs to be retrieved. 

 

The outcomes of this chapter are summarized in the following studies: (Presecan & 

Tomai, 2009), (Presecan S., 2009), (Presecan S. , 2009a)  



 

15 

 

 

4. Invisibility 

Context-awareness is the first step in achieving the “ubiquity” when using 

computational power. A context-aware system observes the environment and it can 

react on its changes. The ways in which it reacts could make the system to be really 

pervasive. The present chapter details the “invisibility” as a key-concept in pervasive 

computing. The ways of achieving “invisibility” are herein detailed and a new 

solution is presented in order to improve the current available solutions.  

4.1. Invisibility concept 

Due to the aim of having a proactive reaction to the change of context, the pervasive 

systems can tend to be annoying, notifying the user with any context change. 

Adaptation to the environment changes should be made smoothly by the system 

without too much interaction with the user. It is the role of the pervasive system to 

facilitate adaptation, which may involve adapting individual software components 

and/or reconfiguring bindings of components by adding, removing or substituting 

components. In what the pervasive system is concerned, the adaptation tends to be 

made more in an application-aware manner and less in a user-aware manner.  

 

Having such a system, the interaction between the client application and the system 

becomes invisible for the user; most of the adaptation actions are made by the client 

application, without interrupting the operations performed by the user. The challenge 

consists in finding the proper method of integrating these heterogeneous technologies 

into one system, in order to let different connectivity channels open for different types 

of devices. 

4.2. Invisibility Challenges 

The pervasive system should be configurable in such a way that only specific 

conditions could lead to interactions with the user. The user should be able to 

configure the system in such a way that it should react in various given ways to the 

change of context. 



 

16 

 

 

In order to assure the invisibility and application adaptability, the middleware should 

face the following challenges: 

• Support for static configuration for the reaction rules – the application should 

be able to pre-configure, using a simple configuration language, the reactions 

to the context change. 

• Support dynamic configuration for the reaction rules – the external application 

should be able to register and configure the reaction rules based on simple 

logic reasoning. The configuration should be done using a simple descriptive 

language which is open to add new filtering conditions. 

• The rule processing should not affect the overall system performance. Thus, 

the system should process the events and perform the reaction to these rules in 

a smart manner, in order to avoid reducing the overall system performance. 

4.3. Detailed design 

Starting from these challenges, a simple rule engine was designed with the aim of 

supporting the application adaptability. Figure 4.1 describes the main classes needed 

to implement an efficient rule engine. 

 

The key class is the Rule. It is used to model a reaction rule. It contains an EventFilter 

and the Action that need to be performed once the received event passes the filter. The 

Rule, EventFilter and Action follow the ECA (Event-Condition-Action) pattern. 

(Ipina & Katsiri, 2001) 

 

The Rule expresses a simple IF-THEN-ACTION directive: 

 

If EventFilter then Action 

 

Based on this directive, it is pretty simple to build a pre-configured manual of the 

system reactions or a dynamic configuration for system reactions. The user can easily 

define his/her one preference for reactions to the changes in context. 

 

Once the rule is defined, it needs to be registered to the RuleManager. The manager 

supports 2 ways of registering the rules: 



 

17 

 

 

• dynamic based registration – when the application creates the rule and then 

adds to the manager. 

• configuration based registration – at start-up, when the RuleManager reads a 

configuration where the rules are stored, by using a simple descriptive 

language. 

A simple descriptive language could look like: 

rule := name conditions action 

conditions := condition * 

condition := contextParam operator value 

operator := = | > | < | >= | <= 

 

 

 
Figure 4.1 - Rule Engine Class Diagram 

 

The RuleManager is a ContextDataListener; during start-up, it finds the appropriate 

ContextService and registers itself as a ContexDataListener, in order to be able to 

receive any notification concerning the context change. When the event is received 

from the ContextService, the RuleManager looks through all the registered rules in 



 

18 

 

 

order to check for which of them the event passes the configured EventFilter. If it 

finds some rules for which the event is selected by the EventFilter, it consequently 

starts to execute the Actions defined for those rules. In order to avoid the 

computational power, those actions can be executed synchronously or 

asynchronously, based on a configuration. 

 

4.4. Concluding remarks 

Any pervasive system should observe and adapt itself to changes within the 

environment. Seamless adaptation to the context changes is a must in achieving an 

“ubiquitous” experience. The current chapter described a simple way of reacting to 

environment changes. The middleware could adapt to the change based on user’ 

preferences or based on predefined reaction strategy. The proposed middleware 

design matches the architecture defined for implementing a context-aware system. By 

combining the context-aware and the invisibility features together, the proposed 

middleware helps the application developers with implementing applications which 

are smart enough to adapt themselves to the heterogenous and dynamic environment 

specific to a pervasive system. 

 

The outcomes of this chapter are summarized in the following studies: (Presecan S. , 

2009), (Presecan & Tomai, 2009) 

  



 

19 

 

 

5. Application Mobility 

In a pervasive environment, the users and the devices are in a continuous movement. 

The information is collected from various sources that could change their location and 

even more, the data connectivity is moving from one provider to another. In this 

context, the application and data mobility are key-features that need to be supported 

by a pervasive middleware. 

 

A new concept called “cloaudable application” is introduced with the aim of defining 

a new way of achieving the application and data mobility. 

The final section of the present chapter presents a concrete solution for implementing 

cloaudable applications.  

5.1. Mobile cloudable applications challenges 

Pervasive computing aims at helping applications to run in mobile environments, by 

adapting themselves to the environment changes. Any pervasive application should be 

able to run on mobile devices that have a limited computational power and which lack 

good Internet connectivity.  Due to the limited resources and due to the aim of being a 

real replacer for personal computers, mobile devices should be able to run 

applications that are distributing their tasks into the cloud for execution.   

 

In order to make a clear distinction between normal mobile applications (which run 

on mobile devices and use programmatically resources from certain devices or from 

the Internet) and the new mobile applications that are performing the user requests by 

splitting the execution into small tasks, we suggest we call the last type of mobile 

applications:  “mobile cloudable application”.  

 

A mobile cloudable application - is a mobile application that is able to migrate into 

the cloud in order to perform the user tasks in a better way, by using the vast 

computational power available into the cloud. 

 



 

20 

 

 

Any framework used for developing mobile cloudable applications that are used into 

the pervasive environment should aim at fulfilling the following requirements: 

- enable the development of context-aware application – The mobile users are 

characterized by different contexts: local, social, behaviour. The pervasive 

applications are using these contexts to understand user’s habits and to adapt 

the task execution to the user’s preferences.  

- react on changes within environments – during their execution, the 

applications should react on the environment changes. The mobile cloudable 

applications are embracing the “react-and-adapt” strategy as to adapt their 

execution to the environment changes. 

- transparent distribution of the execution into the cloud – the application 

developer should not be constrained to use custom libraries in order to manage 

the service distribution. The distribution of tasks into the cloud should be 

transparent to the application developer and it should be achieved by using the 

framework.  

-  application and data mobility – the code written for the mobile application 

should be transparently migrated to the cloud. The code and data should 

migrate dynamically at runtime and should be requested in order to use the 

resources of the mobile device optimally. 

- application elasticity -  the cloud services will be used on demand only when 

the local resource would not be able to meet the expected QoS. The 

development framework should measure the QoS and should react upon the 

lack of resources by distributing the execution over the cloud 

 

The mobile cloudable applications are meant to use the mobile device resources 

optimally and when the device is lacking in computational power or when the 

execution of tasks within the cloud becomes optimal, they are distributing the tasks 

execution transparently into the cloud. 

5.2. Framework architecture 

In order to fulfil the above mobile cloudable application challenges, the framework 

architecture described in Figure 5.1 could be used for the development of a new 

generation of mobile applications. 



 

21 

 

 

The main components of the herein proposed architecture are: 

- Mobile application – the application is developed using the mobile platform 

specific framework and programming language: Java for Android, Objective C 

for iPhone/iPad, C# for WP7. The mobile application interacts with the user 

by using a user interface that is specific to the target mobile device. In order to 

fulfil user requests, the mobile application uses different services located on 

the mobile devices. The services are either system services or custom services.  

- Local services – are implementing the granular task used to fulfil user 

requests. The services could run on local mobile device but could also be run 

on cloud. The services should implement the pure business logic and should 

not depend on the user interface.  

- Distribution service – one of the core components of the architecture. It 

monitors the QoS of the system and it provides at runtime the appropriate 

implementation for a given local service. The Distribution Service is not to be 

used directly by the application. The Distribution Service communicates with 

the Distribution Service from the cloud in order to manage the lifecycle of the 

Riders. 

- Rider – it is used by the Distribution Service in the migration process of the 

Local Service into the cloud. The Rider contains the running data needed for 

the execution and the implementation of the local service. Once the Rider 

installed on the cloud, it will return to the Distributed Service a smart-proxy to 

the corresponding service running into the cloud. The smart proxy is going to 

be used by the application as a replacer for the local service. The Rider serves 

as data and code migration container and is used to support application 

mobility. 

 



 

22 

 

 

 
Figure 5.1 -  Mobile cloudable framework architecture 

 

The Distribution Service and the Rider, support the application mobility and 

application elasticity. The Distribution Service is constantly monitoring the system 

QoS and delegates the calls to the Local Service located on the cloud, if be the case. 

 

The Distribution Service intercepts the calls to local service. From this perspective, 

the proposed architecture treats the application distribution through the cloud as a 

crosscutting concern. The cloud distribution is separated from the development of the 

mobile application.  The best way of implementing such architecture is to use the 

innovative Aspect Oriented Programming Paradigm. 



 

23 

 

 

5.3. Concluding remarks 

The application mobility is one of the key features of any pervasive application. The 

pervasive application needs to be able to run in different environments and 

furthermore, it has to be deployed seamlessly in different environments without the 

user’s intervention. The current research proposes a solution for the migration of the 

mobile application into the cloud without the user’s intervention, in a way that is 

transparent to the application developer. 

 

The resources available within the cloud are incomparable as performance with the 

resources available on mobile devices. The architecture described in the current study 

proposed a seamless solution for executing user tasks into the cloud if the local 

mobile resources are not enough to offer a good user experience. The proposed 

solution envisages the running on the cloud of the application that has been especially 

developed for mobile devices. The proposed framework comprises the 

implementation for seamless integration within the mobile application, as well as the 

distribution and the deployment of the mobile applications into the cloud. 

 

The proposed architecture presented in the current chapter provides details of an 

innovative way of achieving application and data mobility. The collaborative 

architecture that proposes the use of the cloud for performing mobile operations is 

proved to be viable both from the technical and from the performance point of view. 

Evolving from the status of experimental solution to the status of commercial product, 

the presented mobile cloudable application proves it feasibility. Mobile cloudable 

application is clearly a viable solution for distributing the application services into the 

cloud into a way that is transparent to the application developer. The proposed 

solution does not force the application developer to use a very custom framework, it is 

open and it integrates seamlessly into a mobile application. They need to focus on 

solving the application business and not how the application is distributed into the 

cloud. This task in supported by the proposed middleware. 

 

The current research is going to be extended to a more abstract level in order to build 

an architecture that could virtually be applied cross-mobile platforms. 

The outcome of this chapter is published on: (Presecan S. , 2011) 



 

24 

 

 

6. Security 

Pervasive networks foresee communicating and computing devices embedded 

throughout our environment. This will cause huge increases in the complexity of 

network infrastructures and information services available within these 

infrastructures. Therefore, the challenge of managing information services while 

maintaining security and privacy will be quite high. 

 

The very same features that make pervasive computing environments convenient and 

powerful make them vulnerable to new security and privacy threats. Traditional 

security, mechanisms and policies may not provide adequate guarantees in dealing 

with new exposures and vulnerabilities. 

 

The Security is a key-feature for a pervasive system in which the devices/users move 

continuously through a heterogeneous environment. A middleware that could be used 

as a support for implementing pervasive systems should face the following security 

challenges: confidentiality, privacy, integrity, availability, authentication, 

transparency, context-awareness, interoperability, freshness, user mobility, single 

sign-on. Some of these challenges are specific to pervasive systems, others are general 

security challenges. 

 

6.1. Detailed design 

It is essential that the middleware used for implementing the system within a 

pervasive environment, support different security strategies. It thus allows the 

application developer to use some of these strategies based on the security needs of 

the targeted application. The security should be handled as cross-cutting concern since 

it should be applied transparently to different operations. 

 

The most important classes that could be used to define a security framework needed 

for implementing a middleware that supports pervasive applications are presented in 

Figure 6.1: 



 

25 

 

 

- Security manager: it is the main class used to perform the most important 

security operations: authentication and authorization. The SecurityManager 

could be used directly by the application in order to validate the user access or 

indirectly by the security interceptors that could be applied as cross-cutting 

concerns in the execution process of different application calls. The 

SecurityManager itself is a listener to the context changes. The 

SecurityManager contains one or multiple SecurityStrategies which could be 

used to perform the operations based on different types of configurations. 

- SecurityStrategy: contains specific configurations that could be used in order 

to trigger different behaviours in what security is concerned. Each 

SecurityStrategy contains different SecurityProviders that are in charge with 

the execution of the security operations. Based on their configuration and 

based on contextual information, the SecurityStrategy decides whether it could 

handle the security requests or not and which of the attached providers could 

be used. The SecurityStrategy contains the logic needed to decide whether the 

User information is still accurate or not. The SecurityStrategies are able to 

decide if the user needs to re-authenticate or if his/her authentication is still 

valid. The SecurityStrategy could poll the information about the context from 

the ContextService defined in Context-aware architecture. 

- SecurityProvider: it is responsible for the implementation of a specific way of 

handling the security operations. The SecurityProviders could be shared 

between applications and they are able to perform the security operations by 

using a specific protocol/logic. For example: they could perform the 

authentication/authorization by using an external WebService. By default, the 

middleware could provide SecurityProviders for open protocols: OpenId or 

OAuth. These providers could be used in order to implement the security 

operations for different systems that are using these standards. 

 

A special SecurityProvider is the AccountManager. The AccountManager could be 

used to store user access tokens and authorization tokens which could be shared 

between multiple applications. By using the AccountManager the users have to log-in 

once for a specific system and then they could use different applications to connect to 

the target system’s services. Thus, the “single sign-on” challenge could be easily be 



 

26 

 

 

supported by the pervasive middleware. The AccountManager acts as a shared local 

storage that stores authentication/authorization information. 

 

 
Figure 6.1 - Security framework design 

6.2. Concluding remarks 

The proposed solution aims at solving the security challenges which are specific to 

context-aware systems. The proposed design supports the development of different 

security strategies that could be implemented by different context-aware applications. 

The proposed solution does not address the data encryption or data signing. They need 

to be addressed by the middleware that ensures the data transport and data integrity.  

 

The proposed solution fits well with the context-aware middleware defined in the 

Context-awareness chapter. The current solution will be extended and integrated in 



 

27 

 

 

order to provide a complete middleware which supports all the challenges identified 

for a pervasive system. 

The outcomes of the current chapter have been partially published on (Presecan S. , 

2008) 

  



 

28 

 

 

7. Pervasive middleware architecture 

The previous chapters have detailed different small architectures used for solving 

specific pervasive system challenges. The present chapter comprises a case study that 

aims at identifying the main challenges for a pervasive system used for solving day-

by-day problems in a community of students. Once the challenges are identified, an 

architectural solution is proposed in the view of solving almost all of the identified 

challenges.  

 

The architectural solution aggregates the small designs proposed by the previous 

chapters. The result is a generic architecture that could be used for addressing 

different business domains in which the usage of computational power is ubiquitous. 

7.1. Vision 

Almost all universities have currently implemented educational portals from where 

students can get relevant information. Most of these portals are web-centric, exposing 

the information on the web. In many cases, this is sufficient, but there are 

improvements that can be made in order to facilitate the collaboration between 

students and the university. Almost all the e-portals offer one-way interaction. 

Students directly access the information published on the educational portal, via the 

web interface.  

 

Considering the current progress in the world of hardware and software engineering, 

these options are not enough. Nowadays, smart-phones and social networks are 

ubiquitous. Students want to be informed everywhere and they want to share 

information with their colleagues in a away that is ubiquitous. The usage of social 

networks is sometimes much easier than sharing information by using the traditional 

channels such as the email and the telephone.   

 

The educational system should be also aware about students’ profile. Based on these 

profiles, students should receive certain broadcast messages or have access to certain 

information.  



 

29 

 

 

Students and professors should be linked by a virtual network which is aware of their 

preferences and profiles and where they could exchange information from any device, 

from any location. Moreover, the virtual network should provide information security 

and the information should be easily moved from one device to another. 

7.2. Challenges 

Starting from the vision and considering the pervasive challenges described in 

Paragraph 2.2, the following major challenges should be considered by any system 

developer who aims at implementing a pervasive system which has the features 

described in the Vision: 

- Context-awareness: the system should be aware of student’s profile/context: 

geo profile, social profile, environmental context, temporal context.  

- Invisibility: the system should react on context changes. Each time when the 

user context is changed, the system is aware about the change and tries to 

adapt system functionalities to the new context.  

- Application mobility: On almost all the existing educational portals, data is 

transferred to the user. The data is mobile, the application is not. There is also 

a need for moving the applications between difference devices. The users 

expect to continue their work on different devices.  

- Security: The need for application mobility and for context-awareness is 

exposed on different attacks. Users want to perform all the above-described 

operations in a secured manner.  

- Integration: A pervasive educational portal is a heterogeneous system which 

integrates different types of computational systems: servers for storing data 

and for executing user tasks, laptops and personal computers for accessing the 

information form fixed locations, smart phones for mobile access.  All of these 

need to be integrated into the pervasive system. 

- Local scalability: the number of devices connected to the pervasive 

educational portal can substantially vary based on the location and based on 

time factors. There are also periods when the system is under the usage stress. 

The system should support local scalability in order to face all these 

challenges. 



 

30 

 

 

- Development and deployment: the system middleware should help developers 

to implement applications that are able to use the information received from 

different sources, with different protocols. The middleware should ease the 

development and the deployment of the application on different types of 

devices that run different operating systems. The middleware should also 

provide services and functionalities that help the application developers to 

reduce the overall costs in the application development. 

7.3. Middleware architecture 

Starting from the Vision and considering the above-identified challenges, the 

following architecture is proposed for implementing a pervasive system that could be 

used for implementing the next version of educational portals. The architecture 

combines all the designs presented on the previous chapters. The solution aims to 

solve all the challenges that needed to be solved by a generic middleware used for 

pervasive systems.  

The middleware architecture presented into Figure 7.1, uses the following main 

components: 

- ContextService 

- DistributionService   

- SecurityManager 

- Communication channel 

7.3.1. Context Service 

ContextService is the component used to implement the context-aware and the 

invisibility functionalities. ContextService observes the environment by the usage of 

sensors and actuators. The sensors could be embedded into the smartphone such as the 

GPS sensors, or external sensors. Via the sensors the ContextService is notified 

whenever the information collected by these sensors are changing. ContextService is 

also connected to actuators that provide information on-demand about different 

contexts such as: social context, functional context, temporal context. 

 



 

31 

 

 

 
Figure 7.1 - Middleware architecture 

 

7.3.2. Distribution Service  

The users expect to continue their activities by using different computational power 

environments. They want to have the application and data migrated from one device 

to another-one, and they want to have the proper usage of the computational power 

existing into a certain system. The middleware is in charge of migrating the data and 

the application to the corresponding device/server for performing the user tasks. The 

application mobility is transparent for the user. They users do not want to be bothered 



 

32 

 

 

with this kind of activities; they simply want to perform certain tasks by using at 

maximum the computational power. 

The DistributionService performs the distribution of application together with their 

data and context. The DistributionService knows how to find a better place for 

performining certain tasks by monitoring the QoS values of different devices and 

servers connected into the system. 

7.3.3. Security Manager 

SecurityManager performs all the operations need to support: authentication, 

authorization and confidentiality. SecurityManager uses different strategies to 

authorize the user access. Into a pervasive system the security is a crosscutting 

concern that need to be applied transparently to different system’s operations. 

SecurityManager supports the implementation of these concerns providing the 

following security operations: authorization and authentication. 

7.3.4. Communication channel 

An educational portal that is ready for a pervasive environment needs to integrate 

different types of devices, sensors, actuator, computers. Each of them uses different 

protocols and communication channels. The integration efforts without having 

defined a clear communication channel, is a nightmare. The communication 

abstraction used to integrate different application running on different devices is a 

major challenge for pervasive computing.  

 

The communication channel is able to deliver securely data that are retrieved on 

demand by the external system clients or by different devices that are connected into 

the system. The polling interface is exposed as RESTfull webservices over 

HTTP/HTTPs.  Via the RESTfull webservices the data could be read/updated/deleted 

by the devices or subsystem connected to the middleware. 

The context notification over HTTP might not be that easy. By default, the HTTP 

does not use the push of the data. There are several technologies/frameworks that 

have solved this problem. 

 



 

33 

 

 

One of the solutions is to use the HTTP long connections and use these connections 

for sending bidirectional message.  Such example is Bidirectional-streams Over 

Synchronous HTTP (BOSH) BOSH, the technology defined in this specification, 

essentially provides a "drop-in" alternative to a long-lived, bidirectional TCP 

connection. BOSH is designed to transport any data efficiently and with minimal 

latency in both directions. For applications that require both "push" and "pull" 

semantics, BOSH is significantly more bandwidth-efficient and responsive than most 

other bidirectional HTTP-based transport protocols and the techniques. (Paterson, 

Smith, Saint-Andre, & Moffitt, 2010). 

 

The technique employed by BOSH achieves both low latency and low bandwidth 

consumption by encouraging the connection manager not to respond to a request until 

it actually has data to send to the client. As soon as the client receives a response from 

the connection manager it sends another request, thereby ensuring that the connection 

manager is (almost) always holding a request that it can use to "push" data to the 

client. 

 

The Figure 7.2 details the ways of interacting with the communication channels: 

- ContextService expose the data by the usage of QueryInterface. The 

QueryInterface is defined as a RESTfull webservice which runs over HTTPS 

- QueryInterface is able to register notification listeners by using HTTP 

notification. The HTTP notifications are achieved by using the BOSH 

protocol. By using the BOSH protocol the application could be notified 

anytime when certain context values are changed and the notification is sent 

over the standard HTTP. 

- Certification Authority could be used by certain applications to issue 

certificates which could be used then to sign sensitive information 

- Applications/users are connecting over HTTPS to the RESTfull services in 

order to get the information exposed by different public services 

 



 

34 

 

 

 
Figure 7.2 - Communication Channel 

The purpose of any middleware is to support implementation of the overall system 

features and to ease the life of the developers. Having a communication channel that 

is based on HTTP and BOSH, it is good from the integration point of view. Thus the 

application developers could easily written pervasive application which could connect 

each other in order to perform the user tasks. 

7.4. Concluding remarks 

Nowadays, the personal computer is disappearing; it becomes a tool that is used by 

the users to perform certain tasks. Currently the focus is on information and on the 

applications/systems that facilitate the access to the information. The pervasive 

education portal is a challenging task, which starts first with a vision that is detailed 

into this chapter. Following the vision, we have identified the challenges that need to 

be solved in order to implement a pervasive educational system. 

 

Starting from the vision and challenges, we have proposed architecture for 

middleware that could be used for implementing a pervasive educational portal.  



 

35 

 

 

 

The proposed architecture combines all the components described into the previous 

chapters, and provides consistent ways of solving identified challenges. The proposed 

middleware is generic, thus it could be used for implementing any type of pervasive 

system. 

 

The proposed architecture solves some of the most important pervasive challenges: 

context-awareness, invisibility, integration, application mobility, security and 

deployment. The proposed middleware is based on open-standards and does not lock-

in the developers for using custom framework. The proposed standards have a big 

community support, which ease the overall costs of the solution.. The proposed 

communication protocols (HTTP and BOSH)  for enabling both Push and Pull of the 

date are innovative and helps the applications to be used almost in any network, since 

HTTP is the internet de-facto standard and BOSH works on top on HTTP. 

 

  



 

36 

 

 

8. Conclusions 

The present research aimed at contributing to the theoretical approaches within the 

domain of pervasive computing, but in a way that could provide tangible results, as 

well as assistance for those specialists who will actually implement pervasive 

systems.  Pervasive computing is still a young field of research and there are no de-

facto standards for developing pervasive systems. In order to have a significant 

contribution by providing a middleware which could be used for implementing 

pervasive systems, we have established two main objectives: understanding the 

current status of the pervasive middleware and design a generic middleware which 

could be easily implemented by any pervasive system. 

  

The first few chapters of the present thesis focus on understanding the general 

challenges one must fulfill in implementing a pervasive system. We have thus 

identified the key challenges for a pervasive system: context-awareness, invisibility, 

service discovery, integration, security, application mobility, development and 

deployment. These key concepts are detailed in chapter 2. The second chapter also 

focuses on presenting the status of the latest research in the domain of pervasive 

middleware and the way in which theoretical research can provide solutions in 

implementing systems that could solve the above listed challenges. The second 

chapter does not claim to be a complete analysis of all the existing pervasive 

middleware. Nevertheless, we have tried to focus on those that we considered to be 

the most important middleware designed for pervasive computing. The existing 

middleware are analyzed from the method perspective, that is to say, the way they 

overcome the identified challenges. By analyzing them thoroughly, we have come to 

the conclusion that these middleware actually represent a good starting point for 

gathering ideas about how the ideal middleware should look like. 

 

The second objective of the present research is designing a pervasive middleware and 

we have focused on fulfilling our goal starting with the third chapter. Context-

awareness is a major key concept in pervasive computing; it is one of the key 

differentiators between mobile computing and pervasive computing. Our endeavor of 



 

37 

 

 

creating a smart middleware for pervasive computing has started with providing the 

design for a particular part of the middleware that aims to solve the context-awareness 

challenges. The proposed design brings forward the idea of having a “buddy” 

ContextServices which could collaborate for providing information about the 

environment. The distribution of the “buddies” is transparent to the application 

developer and the middleware is able to discover and link the buddies together. The 

DiscoveryService which monitors the QoS could replace the “buddies” 

ContextProviders at runtime. This dynamic replacement also ensures the localized 

scalability which is a major challenge for a pervasive middleware.  

 

Together with Context-awareness, Invisibility is a mandatory key feature of any 

pervasive system. The fourth chapter provides details about the Invisibility challenges 

and about the ways of supporting it. The proposed middleware could contain 

configuration of reactions to the context changes. The RuleManager itself is a 

ContextListener, therefore, it is notified whenever the monitored context values are 

changed. The RuleManager could be configured statically or dynamically with the 

reaction rule. Thus, the system is learning the user’s behavior and preferences and it 

could react on context changes on behalf of the user. The system adaptation without 

user’s intervention is the key feature in supporting invisibility. 

 

Applications Mobility is a key differentiator between distributed and pervasive 

systems. It is a challenge pretty difficult to achieve, given the heterogeneity of devices 

and the security concerns. In the fifth chapter, we have proposed to develop an 

innovative way of supporting the application migration from smart devices to other 

devices or even in the cloud. By using the DistributionService, the Rider and the 

custom ClassLoader, the application services could migrate to a cloud or to any 

nearby more powerful device in order to have access to a higher computational power 

for executing user tasks. The application mobility is supported by the middleware and 

it is implemented transparently for the application developer. By using the proposed 

AOP paradigm, the distribution in the cloud is implemented as a cross-cutting 

concern. By using the distribution advice, the application developers could annotate 

their services as being distributed in the cloud or on more powerful devices. The 

distribution in the cloud could be decided automatically by the middleware through 



 

38 

 

 

monitoring the QoS services. To the end-user, the services distribution in the cloud is 

thus made in a transparent and silent way. By making the distribution when then QoS 

of the services are under certain agreed values, the middleware support the localized 

scalability. 

 

Chapter 6 provides detailed information regarding Security implications in the 

pervasive world. The discussions concerning Security are further taken to presenting 

our proposal for the supporting Security in a pervasive middleware. Security is 

perceived as a cross-cutting concerned, thus the authorization could be implemented 

by using AOP advices.  

 

The middleware architecture is defined and detailed in Chapter 7. The architecture 

combines all the designs presented in the previous chapters and proposes a generic 

middleware that could be implemented for any pervasive system. The middleware 

aims at overcoming the pervasive computing challenges defined for an educational 

pervasive system. The middleware supports context-awareness, invisibility, security, 

application mobility, local scalability and integration. It does worth mentioning the 

innovative way of pushing the context values to the devices/systems that are 

interested in their values. Using the BOSH http push protocol makes the push of the 

events containing context values. The events are thus distributed to the subscribers by 

using the HTTP transport. The proposed middleware is based on open-standards such 

as: REST, BOSH, HTTP(s) and therefore, it does not lock-in the developers by 

forcing them to use a specific standard. The usage of open-standards is the way of 

supporting the integration of different types of devices running on different operation 

systems. 

 

Comparing the proposed middleware to the analyzed existing systems: AURA, Gaia, 

One.World, Pico and SODA, it is obvious that it has a better coverage in terms of 

supporting different pervasive specific features. The analyzed systems are able to 

fulfill only certain challenges; they have not been created with the aim of providing an 

end-to-end solution for pervasive systems. 

 



 

39 

 

 

Through the present research thesis, we have proposed a state-of-the-art solution for a 

middleware which focuses on covering all the major aspects of pervasive computing. 

Our solution aims at being complete and we believe it is a unique one because of its 

innovative proposals, such as:  

• buddy context providers which are interconnected into a net of providers and 

which are replaced dynamically whenever one of them does not perform well 

or is disconnected from the network  

• transparent tasks distribution into the cloud for achieving local scalability and 

application mobility  

• using AOP for implementing a seamless application distribution  

• using BOSH over HTTP for distributing the events 

 

Even if the solution has been implemented and tested partially as lab examples and 

partially is part of a pretty successful commercial product, the current research needs 

to be extended in order to support multiple programming languages and multiple 

platforms. The lab examples have been implemented using Java and Android, but in 

order to prove its completeness, the current work might be enriched and further 

developed in order to ease the integration and development of the application using 

different platforms. 

 

 

 

 

 

 

  



 

40 

 

 

 

9. Bibliography 

[1] Adams, A. (2003). A whole picture is worth a thousand words. SIGCHI 

Bulleting (Supplement to Interactions) , Volume 2003, May-June , pp. 121-124. 

[2] Adams, A. (1999). Users' perception of privacy in multimedia communication. 

Conference on Human factors in computing systems (pp. 53-54). ACM Press. 

[3] Adams, A., & Sasse, M. (1999). Privacy Issues in Ubiquitous Multimedia 

Environments: Wake Sleeping Dogs, or Let Them Lie?, INTERACT, pp. 214-

221. 

[4] Adelstein, F., Gupta, S., Richard, G., & Schwibert, L. (2005). Fundamentals of 

Mobile and Pervasive Computing. New-York: McGraw-Hill. 

[5] Anthony, D., Joshua, M., & Tauber, A. (1997). Mobile computing with the 

rover toolkit. IEEE Transactions on Computers. Volume 46, pp. 337 – 352 

[6] Appweb. (2007, 01). AppWeb Server. Retrieved 08 2011 from AppWeb Server: 

http://appwebserver.org/ 

[7] Aura, P. (2002). Project Aura. Retrieved 07 2008 from 

http://www.cs.cmu.edu/~aura/ 

[8] Bapat, S. (1994). Object-Oriented Networks, Models for Architecture, 

Operations and Management. New-York: Prentice-Hall International. 

[9] Becker, C., & Schiele, G. (2003). Micro-broker- based middleware for 

pervasive computing, Pervasive Computing and Communications (PerCom), 

pp. 443 - 451 

[10] Bellotti, V. (1997). Design for privacy in multimedia computing and 

communication environments. Massachusetts: MIT Press. 

[11] Bellotti, V., & Sellen., A. (1993), Design for Privacy in Ubiquitous Computing 

Environments, European Conference on computer supported cooperative work, 

pp. 77-92 

[12] Birrell, A., & BJ, B. N. (1994). Implementing remote procedure calls. ACM 

Trans Computer Systems , Volume 2 (1), pp. 39-59. 

[13] Brandram, J., & Hansen, T. (2004). The AWARE architecture: supporting 

context-mediated social awareness in mobile cooperation, Proceedings of the 



 

41 

 

 

2004 ACM conference on Computer supported cooperative work, pp. 192 – 

201 

[14] Campbell Roy, Al-Muhtadi J., Naldurg P., Sampemane G. and Dennis M. 

(2003), Towards Security and Privacy for Pervasive Computing, Software 

Security — Theories and Systems, Volume 2609/2003, p. 77-82 

[15] Carriero, N., & Gelernter, D. (1986). The s/net’s linda kernel. ACM Trans 

Comput Syst . 

[16] Chan, E., & Bresler, J. (2005). Gaia Microserver: An Extendable Mobile 

Middleware Platform. Third International Conference on Pervasive Computing 

and Communication, Santa Cruz: IEEE, pp. 309-313 

[17] Chappell, D. (2006). Understanding .NET (2nd Edition). Addison-Wesley 

Professional . 

[18] Cox, P. A. (2011). developerWorks. From Mobile cloud computing: 

http://www.ibm.com/developerworks/cloud/library/cl-mobilecloudcomputing/ 

[19] Crane, D., & McCarthy, P. (2008). Comet and Reverse Ajax: The Next-

Generation Ajax 2.0. Apress. 

[20] Dey, A., & Abowd, G. (1999). Towards a better understanding of context and 

context-awareness. Georgia: Georgia Institute of Technology. 

[21] Doceur J. (2002), The Sybil Attack, Peer-to-Peer Systems, Volume 2429/2002, 

pp. 251-26 

[22] Edu, Berkely (n.d.). Endeavour System. Retrieved 07 2008 from 

http://endeavour.cs.berkeley.edu 

[23] Edu, M. (2003). From Oxygen System: http://oxygen.lcs.mit.edu/ 

[24] Eugster, P., Felber, P., & Guerraoui, R. (2003). The many faces of 

publish/subscribe. ACM Computer Surveys, Volume 3, pp. 114 - 131 

[25] Fielding, R. (2000). Phd. Disertation Architectural Styles and the design of 

Network-based Software Architecture. Retrieved 2008 from 

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm 

[26] Forum, U. (2008). Universal plug and play device architecture. From UPnP: . 

http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0- 

20080424.pdf 



 

42 

 

 

[27] Garlan, D., Siewiorek, D., & Smailagic, A. (2002). Project Aura: Toward 

Distraction-Free Pervasive Computing. Pervasive Computing, Volume 1(2), 

pp. 22 - 31 

[28] Google. (2010). Robo Guice. From http://code.google.com/p/roboguice/ 

[29] Google. (2011, 04 29). The Mobile Movement: Understanding Smartphone 

Users. Retrieved 04 2011 from 

http://googlemobileads.blogspot.com/2011/04/complimentary-copy-of-mobile-

movement.html 

[30] Google. (2008). What is Android. From 

http://developer.android.com/guide/basics/what-is-android.html 

[31] Google, A. (2009, 12). Trip Journal winner of Android Development Challenge 

Organized by Google. From Android Development Challenge: 

http://code.google.com/android/adc/gallery_travel.html 

[32] Gravelle, R. (2008, 03). Webreference. From Comet Programming: Using Ajax 

to Simulate Server Push: 

http://www.webreference.com/programming/javascript/rg28/ 

[33] Grimm, R. (2004). One.world: experiences with a pervasive computing 

architecture. Pervasive Computing, Volume 3, pp. 22 - 30 

[34] Grimm, R., Anderson, T., Bershad, B., & Wetherall, D. (2004). System 

Support for Pervasive Applications. Trans. Computer Systems , 22 (4), -. 

[35] Group, O. M. (2008). Common object request broker architecture (corba/iiop). 

From OMG: http://www.omg.org/spec/CORBA/3.1/  

[36] Hyun Jung La, S. D. (2010). A Conceptual Framework for Provisioning 

Context-aware Mobile Cloud Services. 3rd International Conference on Cloud 

Computing. Miami: IEEE, pp. 466 - 473 

[37] Interface 21, S. F. (2006). Aspect Oriented Programming with Spring. From 

http://static.springsource.org/spring/docs/2.0.x/reference/aop.html 

[38] Ipina, D., & Katsiri, E. (2001). An ECA Rule-Matching Service for Simpler 

Development of Reactive Applications. Published as a supplement to the Proc. 

Of Middleware, IEEE,  

[39] Jetty. (2003). Jetty webserver. Retrieved 08 2011 from Jetty webserver: 

http://jetty.codehaus.org/jetty/ 



 

43 

 

 

[40] Kagal, L., Finin, T., & A., J. (2001). Trust-Based Security in Pervasive 

Computing Environments. IEEE Computer , Volume 34 Issue 12 

[41] Knorr, E., & Gruman, G. (2010). What cloud computing really means. From 

Inforworld:  

http://www.infoworld.com/d/cloud-computing/what-cloud-computing-really-means-

031?page=0,1 

[42] Koch, C. (2005). How SOA Really Works. CIO, 

http://www.cio.com/article/10591/How_SOA_Really_Works 

[43] Krill, P. (2010, 10). AJAX alliance recognizes mashups. Retrieved 08 2011 

from Infoworld: http://www.infoworld.com/d/developer-world/ajax-alliance-

recognizes-mashups-559 

[44] Kumar, M., Shirazi, B., & Singhal, M. (2003, July-Sept). PICO: A Middleware 

Framework for Pervasive Computing, IEEE Pervasive Computing, Volume 2, 

pp. 72 - 79 

[45] Laerhoven, K. V. (1999). Online Adaptive Context Awareness, starting with 

low- level sensors. Free University of Brussel. 

[46] Mangoose. (2008). Mangoose. Retrieved 08 2011 from Mangoose Web Server: 

http://code.google.com/p/mongoose/ 

[47] Manjunatha, A., Ranabahu, A., Sheth, A., & Thirunarayan, K. (2010). Power of 

Clouds In Your Pocket: An Efficient Approach for Cloud Mobile Hybrid 

Application Development. Cloud Computing Technology and Science. IEEE. 

[48] Mansukhani, M. (2005). Service Oriented Architecture. Hewlett Packard . 

[49] Mei, L., Chan, W., & Tse, T. (2008). A Tale of Clouds: Paradigm Comparisons 

and Some Thoughts on Research Issues. Asia-Pacific Service Computing. 

IEEE, pp. 464 - 469 

[50] Microsystems, S. (2006). remote method invocation (rmi) - related apis and 

developer guides. . From Java Website: 

http://java.sun.com/javase/6/docs/technotes/guides/rmi/index.html  

[51] Mitchell, K. (2002). Supporting the Development of Mobile Context-Aware 

Computing. Department of Computing. Lancaster University. 

[52] Monnox, A. (2005). Rapid J2EE™ Development: An Adaptive Foundation for 

Enterprise Applications. Prentice Hall. 



 

44 

 

 

[53] Newsome, J., & Shi, E. (2004). The Sybil attack in sensor networks: Analysis 

and Defense. International Symposium on INformation Processing in Sensor 

Networks, US: ACM Press,  pp. 225-229 

[54] Nokia. (2006). Mobile Web Server. Retrieved 2011 from Nokia Labs: 

http://research.nokia.com/page/231 

[55] Norman, A. (1998). The Invisible Computer. Cambridge. Massachusetts: MIT 

Press. 

[56] One.world. (2003, 02). One.world. Retrieved 07 2008 from 

http://cs.nyu.edu/rgrimm/one.world/ 

[57] Orlando, D. (2009, 01). Cloud computing service models. Retrieved 04 2011 

from developerWorks: http://www.ibm.com/developerworks/cloud/library/cl-

cloudservices1iaas/ 

[58] Oxygen, M. P. (2002). Pervasive Human-Centred Computing. Retrieved 12 

2006 from MIT Laboratory for Computer Science: 

http://oxygen.lcs.mit.edu/Overview.html  

[59] Paterson, I., Smith, D., Saint-Andre, P., & Moffitt, J. (2010, 07 02). 

Bidirectional-streams Over Synchronous HTTP (BOSH). Retrieved 08 2011 

from XMPP Standards Foundation: http://xmpp.org/extensions/xep-0124.html 

[60] Ponnekanti, S., Johanson, B., Kiciman, E., & Fox, A. (2003). Portability, 

extensibility and robustness in iRos. Pervasive Computing and 

Communications(PerCom 2003). IEEE, pp. 11 - 19 

[61] Presecan, S. (2009). Distributed context provisioning middleware. Proceedings 

of the International Conference on Knowledge Engineering, Principles and 

Techniques Conference (KEPT2009), Section ‘Knowledge Processing in 

Economics’, Babes-Bolyai University of Cluj-Napoca  

[62] Presecan, S. (2011). Mobile Cloudable Applications - New Way of Distributing 

Mobile Tasks Into the Cloud - TO BE PUBLISHED. International Workshop 

on Machine-to-Machine Communications, IEEE GlobeCom. Huston: IEEE. 

[63] Presecan, S. (2009). Pervasive context-aware middleware. Proc. 9th 

International Conference on Informatics in Economics. Bucharest: ASE. 

[64] Presecan, S. (2007). Pervasive Education Portal - Architectural Challenges. 

Proc. 8th International Conference on Informatics in Economics (pp. 108-113). 

Bucharest: ASE. 



 

45 

 

 

[65] Presecan, S. (2008). Security Challenges for Pervasive Computing. The 

Romanian Workshop on Mobile Systems, Economy Informatics. Cluj-Napoca: 

FSEGA. 

[66] Presecan, S. (2008). SOA based architecture for pervasive systems. The 

Romanian Workshop on Mobile Systems, Economy Informatics, Cluj-Napoca: 

FSEGA. 

[67] Presecan, S., & Tomai, N. (2009). Distributed Context Provisioning and 

Reaction Middleware. Intelligent Computer Communication and Processing. 

Cluj-Napoca: IEEE Computer Society Press, pp. 351 - 354 

[68] Qian Wang, D. R. (2009). SOA's Last Mile-Connecting Smartphones to the 

Service Cloud. IEEE international conference on Cloud Computing. Bangalore 

: IEEE, pp. 80 - 87 

[69] Ricky K., K. M.-L. (2010). A Stack-on-Demand Execution Model for Elastic 

Computing. 39th International Conference on Parallel Processing. San Diego: 

IEEE, pp. 208 - 217 

[70] Rivest, R., & Stanajo, F. (2002). Security for ubiquitous computing. US: 

Willey. 

[71] Robinson P.,  Vogt H. and Wagealla W. (2005), Some Research Challenges in 

Pervasive Computing, Privacy, Security and Trust within the Context of 

Pervasive Computing, Volume 780, pp. 1-16 

[72] Roman, M., & Campbell, R. (2000). GAIA: Enabling active spaces. 

Proceedings of the 9th workshop on ACM SIGOPS European workshop: 

beyond the PC: new challenges for the operating system, pp. 229-234  

[73] Roman, M., Hess, C., Cerqueira, R., & Campbell, R. (2002). Gaia: A 

Middleware Infrastracture to Enable Active spaces. IEEE Pervasive Computing 

Magazine , pp. 74 - 83 

[74] Sasse, M., & Adams, A. (1999). Taming the wolf in sheep's clothing: privacy 

in multimedia communications. ACM international conference on Multimedia 

Orlando: ACM Press, pp. 101-107 

[75] Satyanarayanan, M. (2001). Pervasive Computing: Vision and Challenges. 

IEEE Personal Communication , pp. 10-17. 

[76] Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The Case for 

VM-Based Cloudlets in Mobile Computing. Pervasive computing , 8 (4). 



 

46 

 

 

[77] Schechter, B. (1999). Seeing the light: IBM's vision of life beyond the PC. 

IBM Press. 

[78] Schilit, B., Adams, N., & Want, R. (1994). Context-aware computing 

applications. Workshop On Mobile Computing Systems and Applications. Santa 

Cruz: IEEE, pp. 89-101 

[79] Scholtz, J. (2001). Workshop on Evaluation Methodologies for Ubiquitous 

Computing. Ubicom. 

[80] Source, S. (2003). Aspect Oriented Programming with Spring. (I. 21, Producer) 

From http://static.springsource.org/spring/docs/2.0.x/reference/aop.html 

[81] Sousa, J., & Garlan, D. (2002). Aura: an Architectural Framework for User 

Mobility in Ubiquitous Computing Environments. 3rd Working Conference on 

Software Architecture, US: IEEE, pp. 102-106 

[82] Sumi, H. (2006, Oct-Dec). SODA: Service-Oriented Device Architecture. 

Pervasive Computing , Volume 5, pp. 94 - 96 

[83] Tanenbaun, A., & Steen, M. (2006). Distributed Systems: principles and 

paradigms. New-York: Prentice Hall. 

[84] UDDI. (2000). Universal Description, Discovery and Integration of Business 

for the Web. From Universal Description, Discovery and Integration of 

Business for the Web: http://www.uddi.org 

[85] Vaquero, L. M.-M. (2008, 12). A break in the clouds: towards a cloud 

definition. SIGCOMM Comput. Commun. , pp. 50-55. 

[86] W3C. (2008). Simple Object Access Protocol. From SOAP: 

http://www.w3.org/TR/soap/ 

[87] W3C, (2008a). Web Services Description Language (WSDL). From Web 

Services Description Language (WSDL): http://www.w3.org/wsdl 

[88] Waldo, J. (1999). The jini architecture for network-centric computing. 

Communications of the ACM, Volume 42, pp. 76-82 

[89] Washington, U. o. (2002). Portolano: An Expedition into Invisible Computing. 

Retrieved 08 2008 from http://portolano.cs.washington.edu/  

[90] Weiser, M. (1991). The Computer of the 21st Century. Scientific American , 

Volume 265, pp. 94-101. 

[91] Weiser, M., & Brown, J. (1998). The coming age of calm technology. Beyond 

calculation: The next fifty years of computing, pp. 75-82. 



 

47 

 

 

[92] Wejchert, J. (2000). The Disappearing Computer. European Commission, 

Information Document, IST Call for proposals. Brussels: European 

Commission. 

[93] Xiao, Y. (2007). Security in distributed, frid, mobile and pervasive computing. 

US: Auerbach Publications. 

[94] Zhang X., Kunjithapatham A., Jeong S. and Gibbs S. (2011). Towards an 

Elastic Application Model for Augmenting the Computing Capabilities of 

Mobile Devices with Cloud Computing , Mobile Networks and Applications. 

Springer link, Volume 16, issue 3, pp. 270 - 284 

[95] Zhou, Y., & Jiannong, C. (2007). A Middleware Support for Agent-Based 

Application Mobility in Pervasive Environments. 27th International 

Conference on Distributed Computing Systems Workshops. IEEE, pp. 9 – 9o 

 


