
BABEŞ-BOLYAI UNIVERSITY, CLUJ-NAPOCA

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

FORMAL METHODS IN DEVELOPING

CORRECT PROGRAMS

Abstract of the Ph.D. Thesis

 Scientific Advisor: Ph. D. student:

 PROF. DR. MILITON FRENŢIU MIHIŞ ANDREEA-DIANA

CLUJ-NAPOCA

2011

i

ACKNOWLEDGEMENTS

Thanks once again to all who were with me in developing this thesis, especially

Mrs. Prof. Dr. Doina Tătar, Mr. Prof. Dr. Militon Frenţiu, Mr. Prof. Dr. Ștefan Măruşter

and Mr. Prof. Eng. Ioan Salomie, Mihăilă Family, Mihiş Family, co-workers, colleagues

and department chair.

This work was supported partially from: Grant type UBB TP no. 2/2006, Grant

CNCSIS TD 400/2007, Conto 91-037/19.09.2007 CNMP Project, 42-117/2008 I-Globe

CNMP Project and ID_2412/2009 Project Idei.

ii

Table of Contents of the Abstract of Thesis:

I. Introduction 1

II. Formal programs in program development 4

2.1. Software life-cycle 4

2.2. Requirement specification 4

2.2.1. Informal requirements 4

2.2.2. Semiformal specification techniques 4

2.2.3. Formal specification techniques 4

2.3. Stepwise refinement 4

2.4. Natural language processing methods used in requirements analysis 4

2.5. Ontology 5

III. Contributions in the field of natural language processing 6

3.1. Contributions in the automatic disambiguation of a text 6

3.1.1. Word sense identification 6

3.1.2. Part of speech recognition 7

3.1.3. Text entailment relationship 8

3.1.4. A simple ontology based on the text entailment relationship 11

3.2. New approaches of the segmentation 11

3.2.1. Linear segmentation 11

3.2.2. Various types of Logical TextTiling 13

3.2.3. Genetic segmentation with predefined number of segments based on

textual entailment relationship 13

3.2.4. A new top-down segmentation method based on lexical chains 15

3.3. New approaches to text summarization 16

3.3.1. Summary extraction from a segmented text 16

3.3.2. Arbitrary length summary 18

3.3.3. Lexical chains based summarization 20

IV. The ontology usage in requirement analysis 22

4.1. Ontology matching versus text 22

Ontology evaluation 22

Metrics for the evaluation of ontology matching versus a natural language

text 22

Quantitative metrics 22

Text entailment base metrics 23

iii

4.2. Ontology learning from text based on the syntactic analysis tree of a

Sentence 23

Syntactic Analysis of a Sentence 23

The triple identification 24

4.3. Similarity used in the identification of the need to refactoryze an ontology 25

The algorithm for selecting the most susceptible misplaced elements 25

4.4. The role of disambiguation in ontology evaluation 27

Ontology and disambiguation 27

The disambiguation algorithm 27

4.5. Ontology assisted requirements analysis 27

The semi-automatic formal specification extraction 28

Conclusions 29

V. Aspects of formal methods usage in developing correct programs 30

5.1. Software quality assurance – a continuous activity 30

5.2. Multiformal approach to specifying software systems 31

5.3. Formal specifications reuse 32

5.4. An application that assist Z language usage 33

5.5. An application that assist stepwise refinement 34

5.6. Code simplification by automatic processing conditional expressions 35

VI. Conclusions 38

VII. References 39

Table of Contents of the Ph. D. Thesis:

List of published papers 1

I. Introduction 5

II. Formal programs in program development 18

2.1. Software life-cycle 18

2.2. Requirement specification 20

2.2.1. Requirement specification document 20

2.2.2. Informal requirements 23

2.2.3. Semiformal specification techniques 23

Action-oriented graphical techniques 23

Data-oriented graphical techniques 24

Other semi-formal specification techniques 24

2.2.4. Formal specification techniques 25

Finite state machine 25
Petri Nets 26

Z language 26

Other formal techniques 28

iv

2.3. Stepwise refinement 29

2.4. Natural language processing methods used in requirements analysis 32

Some requirement elicitation techniques 33

Natural language processing mechanism which can assist the analysis process 34

2.5. Ontology 38

III. Contributions in the field of natural language processing 41

3.1 Contributions in the automatic disambiguation of a text 41

3.1.1. Word sense identification 42

3.1.2. Part of speech recognition 47

3.1.3. Text entailment relationship 51

3.1.4. A simple ontology based on the text entailment relationship 61

3.2. New approaches of the segmentation 64

3.2.1. Linear segmentation 64

3.2.2. Various types of Logical TextTiling 70

3.2.3. Genetic segmentation with predefined number of segments

based on textual entailment relationship 73

3.2.4. A new top-down segmentation method based on lexical chains 80

3.3. New approaches to text summarization 81

3.3.1. Summary extraction from a segmented text 82

3.3.2. Arbitrary length summary 86

3.3.3. Lexical chains based summarization 92

IV. The ontology usage in requirement analysis 96

4.1. Ontology matching versus text 96

Ontology evaluation 97

Metrics for the evaluation of ontology matching versus a natural language

text 98

Quantitative metrics 98

Text entailment base metrics 99

Precision and recall 100

Evaluation 100

4.2. Ontology learning from text based on the syntactic analysis tree of a

Sentence 102

Syntactic Analysis of a Sentence 103

The triple identification 105

Evaluation 108

4.3. Similarity used in the identification of the need to refactoryze an ontology 109

Similarity 110

Similar elements from an ontology 111

Misplaced elements 111

The algorithm for selecting the most susceptible misplaced elements 111

An example of algorithm operation 113

The application that implement the algorithm 113

4.4. The role of disambiguation in ontology evaluation 114

Ontology and disambiguation 114

Examples 115

The disambiguation algorithm 118

4.5. Ontology assisted requirements analysis 119

The semi-automatic formal specification extraction 120

Experiments 125

Conclusions 125

v

V. Aspects of formal methods usage in developing correct programs 127

5.1. Software quality assurance – a continuous activity 127

5.2. Multiformal approach to specifying software systems 130

5.3. Formal specifications reuse 134

5.4. An application that assist Z language usage 139

5.5. An application that assist stepwise refinement 143

5.6. Code simplification by automatic processing conditional expressions 146

VI. Conclusions 152

VII. References 155

VIII. Annexes 172
Annex 1 (a) 172

Annex 1 (b) 174

Annex 2 175

Annex 3 179

Annex 4 182

Annex 5 184

Annex 6 185

1

I. Introduction

The main purpose of software developers is to fulfil the customer’s requirements,

regardless of their type: functionality, time or money. Generally it is desirable that the

made products are of high quality, but the main requirement is related to the software

correctness. By software correctness is understood the capacity of a software product to

fulfil its requirements. In some areas, the existence of a software which behaves exactly as

expected is essential. Unfortunately, customer requirements are often written in natural

language, ambiguous and difficult to process.

A solution is to remove the requirements ambiguity, which is possible due to the

formal methods. Formal methods can be seen as a formal mean to describe the problem or

to model the system [Gab06]. Practically, any usage of mathematics in problem of

software engineering is a formal method. Formal methods have a precise mathematical

basis, from which are derived modelling and analysis methods.

By formal methods is understood the usage of the mathematical notations,

techniques and methods in the specification, design and software implementation [Bur95,

Cla96, Tho95], “Formal methods are the mathematics of computer science” [Hol96].

There are many types of formalizations. The easiest is a utilization of mathematics

(notations, methods) in spots in the specification, at the design, implementation or testing

or at the product maintenance.

The next formalization level is represented by the specification formal languages,

as is the Z language [Abr80], Vienna definition method (VDM) [Jon86] or Gist [Bal85].

Formal specifications have a predefined form, use mathematical notations and is possible

the consistence checking. The value of the formal specification languages is well

recognized, because even if their elaboration is time consuming, the grown cost of the

specification phase, early phase of the software product life cycle, this cost is later

recovered because the cost of the design, development and maintenance are significantly

decreased [Sch05].

In the same time correct programs can be obtained by the stepwise refinement

method [Dij75, Gri85, Mor90]. The refinement method consists in the step by step

application of a set of refinement rules. The process starts from an abstract program and stops

when the code is obtained. The code obtained in this way will fulfil its requirements,

following testing being unnecessary.

In the same time, there are formal methods used in the automated proving and model

consistency checking [Hei96, Rus95]. This is the highest level of formal methods.

Formal methods were successfully used in specification, validation, automatic proof

and automatic test generation.

As it can be noticed, in order to assure the fact that the client and the developer

have understood the same thing from the requirement specification document, it must be

developed using a formal language. Unfortunately, this is not always possible. If however

is desired the conversion of the natural language requirements written by the client into

formal specifications, developers can use the aid of different tools capable of natural

language processing.

Thesis structure. The present thesis is structured in six chapters (an introduction,

a background chapter, three chapters containing original contributions and a concluding

one), has a bibliography including a number of 219 references and five annexes.

2

Chapter 1 introduces the context, motivations and goals of the thesis, summarizes

the contributions brought within it and provides an outline to its contents.

Chapter 2 shortly presents background information in respect with software

engineering, formal methods, but also the existing link between the natural language

processing methods and formal methods. This chapter also contains a short presentation of

Z language, and of stepwise refinement method, the lonely method capable to guarantee

that the resulting programs fulfil their specification.

Chapter 3 describes the contribution in the field of natural language processing. It

is divided in three subchapters. In the first subchapter are presented the contributions in the

disambiguation and text entailment relationship. The second contains the contributions in

the field of textual segmentation and in the last those of summary extraction from a text.

Chapter 4 realizes a transition from natural language to formal specifications,

presenting different aspects of ontology usage with this purpose. Here are addressed the

problem of ontology matching versus a natural language text, of a ontology extraction from

a natural language text using the syntactic sentence analysis tree. Also is analysed the role

of disambiguation of ontology elements and of the similarity usage in order to enhance the

quality of an ontology. And at the end an ontology is used to process requirements in order

to obtain structures as close as possible to formal specifications.

Chapter 5 presents different contributions in the field of formal methods. Among

them are numbered a tool that assists the Z specification elaboration, Z specification usage

and transformation into abstract programs. Another tool which assist the refinement

process of abstract programs into code, and a tool which simplifies the condition

expression, and also some considerations regarding formal specification reuse and

multiformalism.

Chapter 6 concludes the studies made during the thesis.

Keywords: specifications, formal methods, correctness, natural language

processing, ontology.

The original contributions are detailed in the chapters 2, 3, 4 and 5. A study they

include:

 A debate regarding natural language processing methods applicability in

requirements analysis [Mih08c] (subchapter 2.4).

 A new disambiguation algorithm [Tăt07a] (subchapter 3.1.1).

 A new disambiguation and part of speech recognition algorithm [Mih07] (subchapter

3.1.2).

 Three directional methods for textual entailment [Tăt07b, Tăt09a] (subchapter 3.1.3).

 A method for an ontology construction using the textual entailment relationship

[Mih08b] (subchapter 3.1.4).

 Three logical text segmentation methods [Tăt08e, Tăt08b] (subchapter 3.2.1).

 Two new version of logical segmentation method [Mih08d] (subchapter 3.2.2).

 A genetic segmentation method with a predefined number of segments [Mih08a]

(subchapter 3.2.3).

 A method of top-down based on lexical chains [Tăt08b, Tăt08c, Tăt08d, Tăt09b]

(subchapter 3.2.4).

 A summarization post segmentation method [Tăt08e, Tăt08b] (subchapter 3.3.1).

 Three methods for variable length summary extraction [Tăt08d] (subchapter 3.3.2).

 A lexical chain summarization method [Tăt08b, Tăt08c, Tăt08d, Tăt09b] (subchapter

3.3.3).

3

 Some metrics for ontology matching versus a natural language text [Mih10b]

(subchapter 4.1).

 Two methods for a sentence syntactic analysis tree processing and ontology triples

extraction [Mih10c] (subchapter 4.2).

 An algorithm for misplaced elements identification in an ontology [Mih10d]

(subchapter 4.3).

 A debate regarding the necessity of disambiguation usage in ontology evaluation

[Mih10e] (subchapter 4.4).

 A method of formal specification extraction from a requirement natural language text

[Mih10f] (subchapter 4.5).

 A study regarding the continuity of software quality assurance activity [Şer05]

(subchapter 5.1).

 A debate on the necessity of multiformal approach of complex product specification

[Cio04] (subchapter 5.2).

 An analysis of formal specification reuse [Mih05] (subchapter 5.3).

 A tool which assists the Z schemas refinement [Mih10a] (subchapter 5.4).

 A tool which assists the refinement process of abstract programs into code [Mih06a]

(subchapter 5.5).

 A tool which automatically simplifies conditional expressions [Mih06b, Lup08,

Lup09] (subchapter 5.6).

4

II. Formal programs in program development

2.1. Software life-cycle
The software development process goes through a “life-cycle”, characterized by

three important moments, named phases: definition, development and usage.

2.2. Requirement specification
Requirement specification is the last phase of requirement analysis process. The

result of the requirement analysis is the Requirement specification document, which

represent the contract between the client and the developer.

2.2.1 Informal requirements

In many development projects, the specification document consists in page after

page written in natural language, which has the ambiguity fault.

2.2.2 Semiformal specification techniques

There are many types of semi-formal specification techniques: action-oriented

graphical techniques [DeM78, Gan79, You79], data-oriented graphical techniques

[Che76] and other semi-formal specification techniques (PLS/PLA [Tei77], SADT

[Ros85], SREM [Alf85]).

2.2.3 Formal specification techniques

Among the formal specification techniques are: Finite state machine [Kam87],

Petri Nets [Pet62] and Z language [Abr80]. A Z specification is composed from four

parts: the set of input data, data and constant types, state definitions, initial state and

operations. Other formal techniques are: Anna [Luc85], Gist [Bal85], VDM [Jon86] and

CSP [Hoa85].

2.3. Stepwise refinement
The first person who has proposed a method which assures the program

correctness was Floyd [Flo67]. In the same time, it was considered more important to write

correct programs by construction. In this way an important role was played by Dijkstra

[Dij75], Gries [Gri81], Dromey [Dro89] and Morgan [Mor90]. Dijkstra’s idea, to formally

derived programs from specifications was continued later by Gries [Gri81], which

considers that is more important to develop correct programs then to prove later their

correctness [Fre06]. In order to obtain correct programs, the specifications must be

transformed in code using a set of well-defined rules.

2.4. Natural language processing methods used in

requirements analysis
At a new product conception, clients and developers meet in order to specify the

new product requirements. In order not to omit any requirements, are used different

requirement elicitation techniques. In this way, a large volume of natural language

requirements is obtained. Their process can benefit from the usage of some natural

language processing mechanism, as it can be seen in Figure1:

5

Figure 1. The usage of natural language processing techniques in requirements

analysis

2.5. Ontology
An ontology is „A specification of a conceptualization” [Gru93]. Today, the

backbone of Semantic Internet is OWL (Web Ontology Language) and RDF (Resource

Description Framework) [Pol09]. They represent the best ontology modelling languages.

The most general mean of definition of an ontology is by triple usage [Bra85]. A triple is

composed from an object, a predicate which represent a directional relationship through an

object, which usually is a concept characteristic. For uniformity, all the ontologies items

are represented by an URI (Uniform Resource Identifiers) [Ber98].

Disambiguation Natural language

requirements

Segmentation

Summarization

Formal

specifications

Clients

Developers

Natural or formal language

specifications Entailment checking

6

III. Contributions in the field of natural language

processing

3.1. Contributions in the automatic disambiguation of a

text
In order to quickly disambiguate the natural language specifications written by the

clients, is needed a tool capable to automatically identify the correct sense of words. As is

expected, when the purpose is to identify the correct sense of a word the most trustful

source is the dictionary.

3.1.1 Word sense identification

One of the best known dictionary-based methods is that of Lesk [Les86]. The

algorithm of Lesk was successfully developed in [Ban03] by using WordNet dictionary for

English [***WNt]. The algorithm developed by Banerjee and Pedersen improves the

original Lesk's method by augmenting the definitions with non-gloss information:

synonyms, examples and glosses of related words. Also, the authors introduced a novel

overlap measure between glosses which favour multi-word matching.

The original algorithm CHAD [Tăt07a] is similar with the one presented in

[Ban03], only that the CHAD disambiguates all the words from the text, by one scroll and

not only a target word. The algorithm uses repeatedly a group of three words, among

which the first two were already disambiguated, and the third will be disambiguated. In

this way the algorithm is similar to a chain, of which mesh are represented by groups of

three words. The first three words being disambiguated in the same.

The algorithm uses three ways of computing the score of a sense triplet i

ws
1
, j

w
s

2
,

k

ws
3
of the three words w1, w2, w3: Dice [Dic45], overlap and Jaccard [Jac901]. These three

measures evaluate differently the number of existing common words among the

corresponding senses i

ws
1
, j

w
s

2
, k

ws
3
of those three words w1, w2, respectively w3, definitions

denoted with
321

,, www DDD :

Dice: score (i

ws
1
, j

w
s

2
, k

ws
3
) =

||||||

||
*3

321

321

www

www

DDD

DDD





overlap: score (i

ws
1
, j

ws
2
, k

ws
3
) =

|)||,||,min(|

||

321

321

www

www

DDD

DDD 

Jaccard: score (i

ws
1
, j

ws
2
, k

ws
3
) =

||

||

321

321

www

www

DDD

DDD





Including the disambiguation algorithm of a words triplet, the CHAD algorithm

from Figure 2 is obtained.

Since often the intersection of the definition of the three words is 0, there are

words with the score 0 for all their senses. For these words is attributed the first sense from

WordNet, because in WordNet the word senses are ordered by their frequency.

The algorithm was tested on ten randomly chosen texts from Brown corpus

[***BrC, Nel79] (A01, A02, A11, A12, A13, A14, A15, B13, B20 and C01) text which are

POS (Part Of Speech) tagged. The Brown corpus was chosen because the results could be

7

compared with those from SemCor corpus [***Sem], POS and sense tagged. The CHAD

algorithm was run first for nouns, then for verbs and the third time for nouns, verbs,

adjectives and adverbs.

Figure 2. CHAD Algorithm

Even if the precision is less than the precision given by the first WordNet sense

(the average difference is for nouns: 0.0338, for verbs 0.0340 and for all words 0.0491),

these results are comparable to those obtained so far, since at Senseval 2 contest, only 2 out

of the 7 teams (with the unsupervised methods) achieved higher precision than the

WordNet first sense baseline.

CHAD algorithm is independent on the language in which the text is written, and

it can be successfully applied for Romanian language also. It can be applied for enhancing

the translation [Tăt07a], and also for POS tagging [Mih07] or for text entailment checking.

3.1.2 Part of speech recognition

When a person finds an unknown word, especially in a language not fully learn,

even though grammar skills are not completely developed, he will try to search for the

corresponding word in a dictionary, in order to identify the sense corresponding to the

context. But some words have several different POS, depending on their context. In the

case in which the searched word has this kind of characteristics, in the same time with the

sense identification is made a POS identification by the context. This fact is at the base of a

new algorithm of simultaneous POS tagging and sense identification derivate from CHAD

as it can be seen in Figure 3 [Mih07].

The experiments were made on the same ten texts from the Brown corpus.

Because in SemCor, which is used as an evaluation standard exists words with no POS

identified (Notag), these words were not considered in the computation of the precision for

the method. The minim, maximum and average values are in table 1.

The method is promising despite the fact that the results are below the results

obtained using many more resources and grammatical rules, because it can be applied for

many languages and in the same time disambiguates the words.

Algorithm CHAD (W, n, S) is:

 data W {a text formed by the words w1,w2,...,wn}, n {the number of words from text }

 @Disambiguate_triplet (w1,w2,w3,
*

1ws , *

2ws , *

3ws)

 For i  4,n do

 p  1

 max  scor(*

2iws , *

1iws , 1

iws)

 {the already identified senses for the words wi-2 and wi-1 are *

2iws , *

1iws }

 For every sense m
wi

s do

 If max< score(*

2iws , *

1iws , m
wi

s)

 then p  m

 max  score(*

2iws , *

1iws , m
wi

s)

 endif

 endfor

p
ww

ii
ss *

 endfor

 results S {senses nis
iw ,1,*  }

end CHAD

8

Figure 3. POS_CHAD algorithm

Precision Minimum value Maximum value Average value

All word identification 20.16% 64.13% 42.78%

All word disambiguation 7.00% 41.43% 21.78%

Noun 53.04% 82.83% 66.12%

Verbs 67.83% 92.02% 84.45%

Adjectives 29.55% 75.34% 56.39%

Adverbs 46.87% 80.65% 69.41%

Table 1. The minimum, maximum and average values of the precision regarding

POS

This algorithm can be successfully used for the automatic POS identification from

specifications and in this way the entities and relations are much easily identified for an

Entity-Relationship model elaboration.

3.1.3 Text entailment relationship

The main reasoning regarding a text or a group of texts is based on the text

entailment relationship. The text entailment relation between two texts: T (the text) and H

(the hypothesis) represents a fundamental phenomenon of natural language. It is denoted

by T → H and means that the meaning of H can be inferred from the meaning of T.

Although the problem is not new, most of the automatic approaches have been

proposed only recently within the framework of the Pascal Textual Entailment Challenges

[***RTE]. Nonetheless, only few authors exploited the directional character of the

entailment relation, which means that if TH it is unlikely that the reverse HT also

Algorithm POS_CHAD (W, n, S, P) is

 data W {a text form by the words w1,w2,...,wn}, n {the number of words from the text}

 @Disambiguate_and_identify_PV_triplet (w1, w2, w3, 1*
1

*

1
w

p
s , 2*

2

*

2
w

p
s , 3*

3

*

3
w

p
s)

 For i  1,n do

 r  the first POS from the dictionary which corresponds to the word wi

 k  1 {the first sense of the first POS of the word wi}

 max  score(2*
2

*

2 


 iw

ipis , 1*
1

*

1 


 iw

ipis , iw
ris1

)

 For every POS q of the word wi do

 For every sense iw
q

m

is of the word wi with the POS q do

 If max< score(2*
2

*

2 


 iw

ipis , 1*
1

*

1 


 iw

ipis , iw
q

m

is)

 then r  q

 k  m

 max  score(2*
2

*

2 


 iw

ipis , 1*
1

*

1 


 iw

ipis , iw
q

m

is)

 endif

 endfor

 endfor

 *
ip  r

 iw

ipis *

*
 iw

r

k

is

 endfor

 results S {senses nisi ,1,*  }, P { POS nipi ,1,*  }

end POS_CHAD

9

holds. The most notable directional method used in the RTE-1 challenge was that of

Glickman [Gli05] 58.5%, and the directional method of Kǒuylekov [Kǒu06] obtained 56%.

The first method which evaluates the textual entailment relationship proposed in

[Tăt07b] uses text similarity. In [Cor05] is defined the following similarity measure

between two texts, the similarity between the texts Ti and Tj with respect to Ti:

 

 








pos WSw w

pos WSw wk

Tji

iT
posk k

iT
posk k

i idf

idfwSim
TTsim

)))((max(
),((3.1.3.1)

The set of words from the text Ti which have a specific part of speech pos is

denoted by iT
posWS . For a word wk with a given pos in Ti, the highest similarity of the words

with the same pos in the other text Tj is denoted by maxSim(wk). Since the hypothesis H is

not informative in respect to T, for an entailment between the two texts the following

relationship must take place [Tăt09a]:

sim(T,H)T < sim(T,H)H (3.1.3.2)

This formula is applied to the texts previously disambiguated with the CHAD

algorithm presented in the previous chapter. In the formula (3.1.3.1) only nouns and verbs

were used as pos, and the similarity between two words was considered to be 1 if those two

words are identical or synonyms and 0 otherwise. This identification is completed with a

set of heuristics for recognizing false entailment that occurs because of lack of monotony

of real texts (COND).

The following notations are made: the text T with T1, the hypothesis H with T2,

NP1 and NP2 – Name entities from T1 respectively T2, Ic – non-named entities common in

T1 and T2,
2

)(1 TTSYN – words non-Name entities, non common in T1, which are nouns or

verbs and are contained in a synset of T2,
1

)(2 TTSYN
2

)(1 TTSYN – words non-Name

entities, non common in T2, which are nouns or verbs and are contained in a synset of T1,

|)(|
211 TTSYNC  , |)(|

122 TTSYNC  , cT INPW  11
, cT INPW  22

 .

The condition for text entailment obtained from (3.1.3.1) and (3.1.3.2) is: C1  C2,

that means |)(||)(|
12 21 TT TSYNTSYN  . The relation is not strict because of the definition of

the sets
2

)(1 TTSYN and
1

)(2 TTSYN .

Figure 4. The function that checks the text entailment relationship based on similarity

For our heuristics an important situation is that when T2 contains only named

entities and common with T1 words, and because of this, the condition
21 TT WW  is the first

one that is verified in the algorithm (see Figure 4).

Function Entailment (T1,T2) is

 data T1, T2 {two texts}

 if
21 TT WW 

 then if T2 = NP2  Ic

 then if @ COND

 then Entailment  False {not T1  T2}

 else Entailment  True { case I: T1  T2 }

 else if C1  C2

 then Entailment  True { case II: T1  T2 }

 else Entailment  False {not T1  T2}

 else Entailment  False {not T1  T2}

 results True { T1  T2}, respectively False {not T1 T2}

end Entailment

10

The algorithm uses as input POS tagged texts, were also the Name entities were

identified. The algorithm was checked on the 800 pairs from the RTE-1 challenge

[***RTE].

The global precision is 52,625%, and the average precision 56,60647 %.

The second text entailment check method is based on the cosine measure

[Tăt09a]. Three cosine measures were defined in order to evaluate the distance between the

word vectors T = t1,t2,...,tm and H = h1,h2,...,hn. The first cosine measure, cosT(T,H) evaluates

the distance between the m-dimensional vector)1,...,1,1(T


and the m-dimensional

vector H


 which represent the projection of H on T, in other words 1iH


, if ti is a word in

the sentence H and 0iH


otherwise. The second cosine measure, cosH(T,H) evaluates the

distance between the n-dimensional vector)1,...,1,1(H


 and the n-dimensional vector T


which represent the projection of T on H, in other words 1iT


, if hi is a word in the

sentence T and 0iT


otherwise. For the last cosine measure cosHT(T,H), the first vector is

obtained by replacing the words from HT contained in T with 1 the other with 0, and the

second by replacing the words HT contained in H with 1 and those from T\H with 0.

Denoting by c the number of common words of T and H, the three measures are:

m

c
HTT ),(cos ,

n

c
HTH ),(cos and

))((

4
),(cos

2

cmcn

c
HTTH


 .

To accomplish the condition: T entails H if and only if H is not informative in

respect to T [Mon01], the similarities between T and H calculated with respect to T and to

HT must be very closed. Analogously, the similarities between T and H calculated in

respect to H and to HT must be much closed. Also all these three similarities (cosines)

must be larger than an appropriate threshold. So the conditions imposed are: |cosHT(T,H) –

cosT(T,H)|1, |cosH(T,H) – cosHT(T,H)|2 and max{cosT(T,H), cosH(T,H), cosHT(T,H)}

 3. The thresholds found are: 1= 0.095, 2= 0.15 and 3= 0.7.

The accuracy for TRUE pairs is 68.92230576% and for FALSE pairs is

46.36591479%. The overall accuracy is 57.62%.

The third original method is based on a modified Levenshtein distance [Tăt09a].

Let consider that for two words w1 and w2 the modified Levenshtein distance as calculated

by our algorithm is denoted by LD(w1,w2). This is defined as the minimal number of

transformations (deletions, insertions and substitutions) such that w1 is transformed in w2.

We denote by Tword the “word” obtained from the sentence T by considering the empty

space as a new letter, and by concatenating all the words of T. Analogously a “word” Hword

is obtained. LD(Tword,Hword) represents the quantity of information of H with respect to T.

This modified Levenshtein distance is not a distance in the usual sense, such that

LD(w1,w2)  LD(w2,w1).

As T entails H if and only if H is not informative with respect to T the following

relation must hold: LD(Tword,Hword) < LD(Hword,Tword). By applying these criteria to those

RTE-1 800 text pairs, a global precision of 53,19% was obtained.

The costs of transformations from the word w1 to the word w2 are as follows:

change case cost 1, insert cost 3, remove cost 3, substitute cost 5 and swap cost 2.

The obtained results are among those of the last RTE competitions, the second

method giving the best results. Beside the fact that to be able to decide if a text entails

another one is useful to the developers, this relation is successfully used for the

11

segmentation and the summarization of a text, which also makes the natural language

requirements analysis process easier, as it can be seen from the following sections.

3.1.4 A simple ontology based on the text entailment relationship

In [Mih08b] is presented a way of constructing an informal ontology based on the

directional relationship between texts. The method with the best score for the text

entailment relationship, the cosine method was used.

Starting with a natural language text, all the text entailment relationships existing

among the sentences of the text are identified. In this way is obtained a directional graph

among the texts sentences. The graph can represent a simple informal ontology of the

corresponding text, in which the entities are represented by the sentences, and the

relationships by the text entailment relationship.

The same text entailment relationship can be also used between entire texts,

obtaining in this way a graph with the texts relationships. If the corresponding texts

represent the entities definitions, then the entailment relationship graph can be the text

entailment relationship graph.

3.2. New approaches of the segmentation

In the case of implementing a large informatics system, the requirements volume

will be great. In this case the analysis will involve the work of many persons or teams of

persons. So the specifications must be divided by functionalities, which correspond with

the segmenting operation, a natural language specific technique.

3.2.1 Linear segmentation

In [Tăt08e, Tăt09c] a method of linear segmentation of a text using the text

entailment relationship was proposed. The easiest segmentation algorithm based on the

entailment relation is named „PureEntailment” (PE). A new segment begins when the new

sentence is not entailed by the last segment.

Figure 5. Logical structure of the text

A second segmentation approach, Logical TextTiling (LTT) [Tăt08e, Tăt09c], is

similar with the algorithm to detect subtopic structure TextTiling (TT) [Hea93], with the

difference that LTT detects the logical structure of the text. The main differences are:

 In LTT the individual units are sentences, and in TT are token-sequences (pseudo

sentences) of a predefined size;

 In TT a score is assigned to each token-sequence boundary i, calculating how similar

the token-sequences i-k through i are to token-sequence from i + 1 to i+k+1. In LLT

12

the score of a sentence si, score(si), is the number of sentences of the text which are

entailed by si. A higher score of a sentence denotes a higher importance. This fact is

in accordance with the following text entailment criteria: A text T entails a text H if

and only if the text H is less informative than T [Tăt07b].

A boundary (a shift in discourse or a gap) in LTT is determined by a change in the

configuration of logical importance of sentences (see Figure 5). In such a way we have a

structural basis for dividing up the discourse into a series of smaller segments, each with a

different configuration of the importance of components.

Unlike other segmentation methods, LTT is a linear method:
Algorithm LTT(S, n, SC, SEG) is

data S {a text, si – texts sentences, i1,n}, n {the number of sentences from the text},

SC {sci = score(si) the texts sentences scores}

j  1, p  1,

initialize(Seg1, s1) {initially the segment Seg1 contains only the sentence s1}

dir  „up”

While p<n do

If scp+1 > scp

then If dir = „up”

then add(Segj, sp+1) {adds to the segment Segj the sentence sp+1}

else j  j+1

initialize(Segj, sp+1)

dir  „up”

endif

else add(Segj, sp+1)

If score(sp+1) < score(sp)

then dir  „down”

endif

endif

p  p + 1

endwh

results SEG={Seg1,...,Segj}

end LTT

Starting from the way in which is measured the importance of a sentence

regarding the number of other sentences with which the first sentence is in a entailment

relationship, two new versions to determine the sentences score were proposed:

  
  


n

ki

k

jiij

ji

k

i

n

jikj

jik entailentailArcInt
,

,

1 ,

,

  
   





n

ki

k

jiij

ji
k

i

n

jikj

ji

k
ji

entail

ji

entail
ArcReal

,

,

1 ,

,

||||

where


 


else,0

if,1
,

ji

ji

ss
entail .

Another approach to the segmentation problem is a dynamic programming

approach. This method realises first a summarization (see subchapter 3.3.1). The segment

boundaries are those sentences with a minimal score and are placed between two summary

sentences (see Figure 6). In this way the number of obtained segments is correlated with

the length x of the summary.

The segmenting methods were tested on the narrative literary text „The Koan”

[Ric91], text which was segmented, summarized and anaphora resolved in a manual way,

by linguistic criteria by a specialist [Tăt08e].

Regarding the comparison with the human judge, the method is evaluated

according to [Hea93]:

 how many of the same (or very close) boundaries (gaps) with the human judge the

method selects out of the total selected (precision);

 how many true boundaries are found out of the total possible (recall)

13

In the same time, the F measure was used:
RecallPrecision

n*Recall2*Precisio
F


 .

Figure 6. The Segmentation post summarization algorithm

A part of the comparative evaluation results of the different segmentation methods

(Logical/Dynamic programming) are in Figure 7. From the logical methods the best results

were obtained by LTT.

0

20

40

60

80

100

Logical

TextTiling

Pure

Entailement

ArcInt Tiling ArcReal Tiling

%

Segmentation (compared with the short
manual one)

Recall

Precision

F

0

20

40

60

80

100

Resources
Logically
Scored

Resources
ArcReal
Scored

Resources
ArcInt

Scored

Logically
Scored

ArcReal
Scored

ArcInt
Scored

%

Dynamic Programming method

Segmentation (compared with the short
manual one)

Recall

Precision

F

Figure 7. Segmentation evaluation

3.2.2 Various types of Logical TextTiling

The Logical TextTiling algorithm needs as a prerequisite the scoring of every

sentence, which leads to a n2 complexity. In order to reduce the complexity, a

neighborhood LTT was proposed, in which every sentence will be scored in a predefined

dimension neighborhood, instead on the entire text. Respectively a weighted LTT, which

makes priority the local entailments and so the logical structure graph will be flatten

[Mih08d]. The neighborhood logical structure generates the same segments as LTT for a

neighborhood of minimum 20% from the initial text length (for the text ”The Koan”

[Ric91]). And the second type of logical structure generates the same segments. As a

consequence, the two new types of LTT can successfully replace the original LTT.

3.2.3 Genetic segmentation with predefined number of segments

based on textual entailment relationship

The following method uses the logical interpretation of a text, in other words the

text entailment relationship for the purpose of obtaining: an increased cohesion inside a

segment and a low connection between the neighboring segments [Mih08a].

If for the previous logical methods it cannot be imposed the number of obtained

segments, the following method will split the text in a predefined number k of segments.

Algorithm Segmentation_post_summarization(S, n, SC, P, x, SEG, nrseg) is:

data S {a text, si – the texts sentences, i1,n}, n {the number of sentences from the

text}, SC {sci = scor(si) the scores for the texts sentences}, P {pi – the sentences

from the text belonging to the summary, i1,x}, x {the number of summary

sentences}

nrseg  1

begpoz  1

For i  1, x-1 do

)s(scorminargendpoz j}1p,p{j,j 1ii  


@Segnrseg begins with begpoz and ends with endpoz

nrseg  nrseg + 1

begpoz  endpoz + 1

endfor

results SEG {Seg1,...,Segnrseg – segments list}, nrseg {number of segments}

end Segmentation_post_summarization

14

So, if there is a text T={t1, t2,..., tn} containing n sentences, to split it into k segments means

to split the set {1, 2, ..., n} in k subsets, {1, 2, ..., n1}, {n1+1, ..., n2}, …, {nk-1+1, nk-1+2, ...,

nk }. This partitioning of the initial set can be represented as a vector b = {n1, ..., nk}, where

nk=n, and n1, ..., nk represents the indexes of the last sentences of those k segments.

The first step of the segmentation method is to construct the entailment matrix. To

the text T a matrix nn E is associated, defined as following:



 


otherwise0,

1,n,i,jt entails tif1,
e ji

ji, (3.2.3.a)

a second definition of the same matrix is:








 1,n,i,j

otherwise0,

 entails tif t,
1j||i

1

e ji
i,j (3.2.3.b)

The entailments are computed with the cos measure, method previously presented

in subchapter 3.1.3.

Every segment will be evaluated separately, concerning the cohesion:

 
 


j

ik

j

il

lkji esegmentscore ,,)((3.2.3.1)

the normalization of the score:
 2

,

,

1
)(




 

ji

e

segmentscore

j

ik

j

il

lk

ji (3.2.3.1’)

and a version without self entailments:

 

 2
,

,

1

1

)(






 

ji

jie

segmentscore

j

ik

j

il

lk

ji (3.2.3.1”)

 Considering entailments, two segments are disconnected if between their

sentences are few entailments:

 
 

 
j

il

k

jm

mlkjji esegmentsegmentscore
1

,,1,),((3.2.3.2)

The sum of local scores (3.2.3.2) must be minimized in order to obtain a

segmentation with a less interconnectivity, and the sum of local scores (3.2.3.1), (3.2.3.1’)

respectively (3.2.3.1”) must be maximized, to obtain a segmentation in which the segments

have a high intern cohesion.

The problem of determining a predefined number of segments can be viewed as a

combinatorial problem and the most appropriate algorithms for such problems are genetic

algorithms. The proposed algorithm starts with a chromosome population randomly

generated, which represent possible segments of dimension k. To generate the next

generation, the following genetic operators are applied: “binary tournament selection” for

the parent’s selection, “one point crossover” and “flip mutation” [Bac00] for the crossing

and mutation to generate new chromosomes. The evaluation process is similar to an

evaluation scheme of a standard genetic algorithm. In addition, a selection of the best

individuals will be used. The solution for the segmenting problem is represented by the

genetic algorithm named GATTS [Mih08a]. The GATTS algorithm has used the following

parameters: population size of 200, 50 generations, the crossing probability of 0.7 and the

mutation probability of 0.1.

15

The evaluation was realized on the text „The Koan” [Ric91], previously used and

a newspaper article Hirst [Mor91], from which the short sentences (with 5 or less than 5

words) were removed, the rest 41 sentences being renumbered. The results were compared

with those obtained by the Dynamic programming method (DP) previously presented,

since both methods generates a predefine number of segments.

The average results obtained are comparable with the best results of the Dynamic

programming method, and the maximal ones exceeded them, some being equal to 100%,

which indicate the fact that the manual segmentation was obtained.

It can be noticed that for the Koan the best results are obtained with the version

(3.2.3.a) of the matrix E, and between the local scores definitions, (3.2.3.1”) and (3.2.3.2)

give the best results. Regarding the matrix (3.2.3.b), its combination with the score

(3.2.3.1’) seems to be the best. For the second text, Hirst, the matrix (3.2.3.b) gives the best

results, and again the scores (3.2.3.1”) and (3.2.3.2) stand out.

As a future research direction, a mode to correlate the two local scores, (3.2.3.1”)

and (3.2.3.2) will be searched for, in order to obtain an even better segmentation method.

3.2.4 A new top-down segmentation method based on lexical

chains

A segmentation method which gives better results than the LTT method is the

top-down based on lexical chains method. A lexical chain is a sequence of words such that

the meaning of each word from the sequence can be obtained unambiguously from the

meaning of the rest of words [Mor91, Bar99, Har97, Sil02]. The map of all lexical chains

of a text provides a representation of the lexical cohesive structure of the text. Usually a

lexical chain is obtained in a bottom-up fashion, by taking each candidate word of a text,

and finding an appropriate relation offered by a thesaurus as Rodget [Mor91] or WordNet

[Bar99, Sto04]. If it is found, the word is inserted with the appropriate sense in the current

chain, and the senses of the other words in the chain are updated. If no chain is found, then

a new chain is initiated.

0

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Positions of sentences

Logical structure of Koan text

0

2.25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Positions of sentences

Cohesion structure of Koan text

0

11

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Positions of sentences

Logical structure of Hirst text

0

2.25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Positions of sentences

Cohesion structure of Hirst text

Figure 8. Logical and cohesion structure of Koan, respectively Hirst texts

The following method [Tăt08b/c/d] approaches the construction of lexical chains

in a reverse order: first the whole text is disambiguated and then the lexical chains which

cover as much as possible the text are constructed. For the disambiguation, the CHAD

algorithm previously presented was used. It identifies by only one scroll algorithm shows

what words in a sentence are unrelated as senses with the previously words: these are the

words which receive a ”forced” first WordNet sense. Scoring each sentence of a text by the

number of ”forced” to first WordNet sense words in this sentence, a representation of the

lexical cohesive structure of the text is provided. If the number F represents the number of

16

words in a sentence forced to be disambiguated with first WordNet sense, then in the graph

representing the function 1/F for all the sentences the valleys (the local minima) of the

function will represent the boundaries between lexical chains (see Figure 8) [Tăt08b/c].

This idea for the linear lexical chain identification is at the basis of a linear

segmentation algorithm denoted CTT (Cohesive TextTiling), similar with the previously

presented LTT algorithm, with the single difference that the score formula for every

sentence is changed,
i

i
nuw

SScore
1

)( , were nuwi is the number of words ”forced” to first

WordNet sense from the sentence Si. If nuwi = 0, then Score(Si) = 2. CTT was tested on the

texts Hirst [Mor91] and „The Koan” [Ric91], and had provided better results than LTT.

The segmentation methods presented above can be very helpful to the team of

developers, especially the methods of segmentation with a predefined number of segments

- the number of team members. In this way the client requirements can be analysed and

refined easier and faster, in a parallel process.

3.3. New approaches to text summarization
Systems that can automatically summarize documents become increasingly

studied and used. The summary is a shorter text (usually no longer than a half of the source

text) which keeps the most informative (salient) parts of the text. In the literature two types

of summary are identified: extract and abstract [Hov03]. Most of the automatic summaries

are made by extraction. For this, in the literature are known several approaches [Mar97].

Usually the salient parts are determined on the following assumptions: they contain words

that are used frequently, they contain words that are used in the title and headings, they are

located at the beginning or end of sections, they use key phrases which emphasize the

importance in text, they are the most highly connected with the other parts of text. From

these approaches, the latter is the most difficult to achieve. Connectivity can be estimated

using the number of words, synonyms or common anaphora [Oră06, Rad02].

3.3.1 Summary extraction from a segmented text

There are many methods for summary extraction from a text, but if the text was

previously segmented, its quality should increase, because by selecting sentences which

belong to different sentences should enrich the summary with relatively independent

information. In [Tăt08e, Tăt09c], beside the linear segmenting methods previously

presented, is proved the fact that the segmentation improves the summary quality.

A simple summary obtain as a consequence of the text entailment relationship is

the „PureEntailment” (PE) summary, and is obtained by sequentially adding to the

summary every sentence which is not implied by the current summary.

Starting from the PE, LTT, ArcInt, respectively ArcReal segmentation previously

described in subchapter 3.2.1, a summary can be build by choosing the most important

sentences not from the entire text, but from each segment in part such that the summary

will have the desired number of sentences. The number and the way in which the sentences

are chosen from every segment are given by the algorithm from the Figure 9.

17

Figure 9. The algorithm for summary extraction from a segmented text

In this first approach the salience of segments was considered to be equal and

from each segment as the most salient sentence, the sentence with the maximal score, was

selected.

Figure 10. The algorithm for summary extraction from a segmented text

Another approach to the summarization problem is a dynamic programming

algorithm (see Figure 10). In order to meet the coherence of the summary the algorithm

selects the chain of sentences with the property that two consecutive sentences have at least

one common word, which corresponds to the continuity principle in the centring theory

which requires that two consecutive units of discourse have at least one entity in common.

It is assumed that each sentence is assigned a score of its representativity. The

three logical scores defined in section 3.2.1 will be used: the sum of entailments, of integer

arcs, respectively weighted arcs. A summary score is the sum of all sentences scores from

the summary. The summary will be built such that the score is maximized. For the

Algorithm DP_Sum(S, n, SC, penalty, Sum, x) is:

data S {a text, si – texts sentences, i  1,n}, n {the number of the sentences from the text},

SC {sci = score(si) texts sentences scores}, penalty {constant}, P {pi – positions from the text of

the summary sentences, i1,x}, x {the number of the sentences from the summary}

For i  1,n do

)(1
ii sscore

For k  2,x do



















otherwise,))δ)(score(S*(penaltymax

wordscommonhavesandsif,)δ)(score(smaxk
iδ 1k

jij)j(i

ji
1k

jij)j(i



















otherwise,))δ)score(s(penalty*(argmax

wordscommonhavesandsif,)δ)(score(sargmax
h

1k
jij)j(i

ji
1k

jij)j(ik
i

endfor

endfor

)(maxargi x
jj 

initialize(Sum) {initially th summary Sum is empty}

For k  x,1 do

add(Sum, si) {adds to the summary the sentence si}
k
ihi 

endfor

results Sum {the summary of length x}

end DP_Sum

Algorithm SumPostSeg(S, n, SEG, j, Sum, x) is:

data S {a text; s1,s2,...,sn – texts sentences}, n {the number of texts sentences}, SEG

{Seg1,...,Segj the segments in which the text is divided}, j {the segments number}, x {the

summary length}

@ calculate the "salience" of each segment and rank the segments in
j1 ii Seg,...,Seg

@ is computed the number
si

c of ”esential” sentences for every segment j1i i,is,Seg
s



@ the first k (<j) segments are selectes such that xc
si

sSeg i 

@ reorder selected k segments by their occurrence in text, Seg’1,...,Seg’k

@ sentences from Seg’1,...,Seg’k are the sentences of the summary SUM

results SUM {the summary of length x}

end SumPostSeg

18

Dynamic programming method a penalty of 1/10 and the list of 571 ”stop” words

LYRL2004 developed for SMART project [Lew04] were used. But only nouns, verbs,

adjectives and adverbs were used as common words and the Porter Stemmer [***Por] was

used to compare words.

0
10
20
30
40
50
60
70
80

Logical
TextTiling

Pure
Entailement

ArcInt Tiling ArcReal Tiling

%

Anaphora Summary (Long)

Recall

Precision

F

0

20

40

60

80

Resources
Logically
Scored

Resources
ArcReal
Scored

Resources
ArcInt

Scored

Logically
Scored

ArcReal
Scored

ArcInt
Scored

%

Dynamic Programming method

Anaphora Summary (Long)

Recall

Precision

F

Figure 11. Summarization evaluation

To evaluate the summarization methods the literary ”The Koan” [Ric91] was

used, that based on linguistic criteria, and then was summarized and anaphora resolved in a

manually way [Tăt08e]. From Figure 11 it can be noticed that the segmentation improves

the summarization and the combination of dynamic programming with logical scoring lead

to good results. From the logical methods, best results are obtained for the LTT.

3.3.2 Arbitrary length summary

The previous summary is based on segmentation. And also starting from the LTT

segmentation (see subchapter 4.1) the following arbitrary length summary is obtained. The

LTT segmentation starts from the logical structure of a text, with a fix number of minimum

points, so the number of segments is also fixed. Therefore the previous approach which

selects from every segment, previously ordered by their importance, the sentence with the

greatest score cannot be applied all the time, as in the case in which the number of

sentences from the summary is greater than the number of segments. In [Tăt08a] three

arbitrary length summarization methods were proposed, all starting from an existing

summarization, methods which will be presented in the following. The testing was realized

on the Hirst [Mor91] (from which the sentences with five or less words were removed),

and the results were compared with those obtained by the authors by lexical chains.

The first step for the summarization is segments scoring. The summary will be

achieved by selecting a number of sentences proportionally with the segment score. Is

denoted by: Score(si) = the number of sentences entailed by si,

||

)(
)(

j

Segs i

j
Seg

sScore
SegScore

ji
 

 , Scorefinal(si) = Score(si)  Score(Segj), were siSegj,

 


n

j jSegScoreTextScore
1

)()(, 10;
)(

)(
:  j

j

j c
TextScore

SegScore
csegmentaofWeight , n =

the number of segments obtained by LTT algorithm, x = the desired length of the summary,

NSenSegi = the number of sentences selected from the segment Segj.

The predefined summary algorithm, denoted by AL (Arbitrary Length) is in

Figure 12. It is possible that the number of sentences selected from a segment,

NSenSegj > 1. If x < n, then for some segments, NSenSegj = 0.

19

Figure 12. The algorithm for extracting a summary from a segmented text

The method of extracting sentences from the segments is decisive for quality of

the summary. Three selection methods were proposed in order to identify the most

important sentences from every segment, every one trying to omit as less information as

possible.

Definition 1 Given a segmentation of initial text T = {Seg1,...,Segn}, for each

segment n,1i,Segi  , first NSenSegi sentences are selected such that 



n

1i
i xNSenSeg .

The summary Sum1 = {s’1,...,s’x} is obtained.

Definition 2 Given a segmentation of initial text T = {Seg1,...,Segn}, the summary

is calculated as: Sum2 = {s’1,...,s’x}, were n,1i  , Sum2  Segi = SelPropSegi,

|SelPropSegi| = NSenSegi , 



n

1i
i xNSenSeg and sj  SelPropSegi and sk  Segi \

SelPropSegi, score(sj)  score(sk).

Figure 13. The informativeness of summaries for different lengths, obtained AL and

those three definitions Sum1, Sum2, Sum3, respectively the Dynamical programming

method

Algorithm AL(Text, SEG, n, Lseg, SC, SelM, Sum, x), is:

data Text {a text} SEG {text segments Seg1,...,Segn}, n {the number of segments},

Lseg {the vector with the lengths (sentences number) of those n segments}, SC

{the scores for every sentence sci=Scorefinal(si)}, SelM {selection method}, x

{summary length}

@ calculate the weights of segments cj, j=1,n

@ rank the segments in descending order after cj

{ NSenSegj, j=1,n is computed}

While @ the number of already selected sentences is less then x do

If [x  cj]  1 {integer part}

then NSenSegj = min(lsegj, [x  cj])

else NSenSegj = 1

endif

endwh

@ initialize the empty summary Sum

@ select using SelM from every segment Segj - NSenSegj sentences and add them to

the summary Sum

@ reorder the summary sentences, according to the Text order

results Sum {the summary with length x}

end AL

20

Definition 3 Given a segmentation of initial text T = {Seg1,...,Segn}, the summary

is calculated as: Sum3 = {s’1,...,s’x}, were s’1=s1, Seg0 contains only the sentence s1 and

n,1i  , Sum3  Segi = SelPropSegi, |SelPropSegi| = NSenSegi , 



n

1i
i xNSenSeg and sj

 SelPropSegi and sk  Segi \ SelPropSegi, sim(sj,Segi-1)  sim(sk,Segi-1), sim(sj,Segi-1)

represents the similarity between sj and the last sentence selected from Segi-1. The

similarity between two sentences s, s’ is calculated by cos(s,s’).

The informativeness of the summaries with different lengths obtained by AL

combined with those three definitions Sum1, Sum2, Sum3, respectively Dynamical

programming method, computed relative to the original text is presented in Figure 13.

It can be noticed that the best results were obtained by the AL algorithm with the

definition Sum1. In the same time, it can be noticed the positive influence of the

segmentation on the summarization For the lengths 9 and 12, in 5 of 6 cases the

summarization preceded by segmentation method provides better results to direct

summarization method.

3.3.3 Lexical chains based summarization
This summarization use the same AL algorithm previously presented, only that

the initial AL algorithm is considered to be the first version Var1, where the score of a

segment is computed using the formula
||

)(
)(

j

SegS i

j
Seg

SScore
SegScore

ji
 

 . The second

version of the same algorithm, Var2 differs only by the score computing formula for a

segment:  


ji SegS ij SScoreSegScore)()(. Both have their advantages and disadvantages,

version Var1 may disadvantage long segments with only few large score sentences,

whereas Var2 gives an increased importance to long segments.

Starting from two segmentations, by LTT (subchapter 3.2.1) and CTT (subchapter

3.2.4), the two versions Var1 and Var2 of the arbitrary length algorithm AL, and also three

summary definitions Sum1, Sum2 respectively Sum3, a combination of them was tries into an

potentially ideal summary IdS, by taking the majority occurrences of the sentences in all

obtained summaries.

For evaluation, the texts “The Koan” [Ric91], Hirst [Mor91], Tucker1 and

Tucker2 [Tuc99] were used. The similarity of every summary to the initial text was

computed (Table 2). As a conclusion, the LTT and CTT segmentations favours the

obtaining of quality summaries. Among them, CTT leads to better results, partially due to

the fact that the precision of text entailment relationship is less than the one of word

disambiguation (CHAD algorithm).

21

Koan text

seg.
summary

 type

summary length

5 6 10

Var1 Var2 Var1 Var2 Var1 Var2

LTT

Sum1 0.402941 0.357519 0.490186 0.419314 0.597022 0.614695

Sum2 0.357519 0.303239 0.427179 0.376552 0.548034 0.583095

Sum3 0.427179 0.548034 0.508666 0.531751 0.583095 0.587805

CTT

Sum1 0.449629 0.514595 0.531751 0.587805 0.654998 0.662474

Sum2 0.449629 0.442326 0.463739 0.463739 0.568535 0.542697

Sum3 0.483779 0.463739 0.502625 0.508666 0.627334 0.635489

 IdS 0.419314 0.47724 0.631438

Hirst text

seg.
summary

 type

summary length

5 6 10

Var1 Var2 Var1 Var2 Var1 Var2

LTT

Sum1 0.579 0.6205 0.6229 0.644 0.7301 0.7126

Sum2 0.5345 0.5313 0.5439 0.5649 0.6978 0.6939

Sum3 0.5377 0.5706 0.5845 0.6253 0.6901 0.6997

CTT

Sum1 0.5281 0.4635 0.5439 0.5345 0.6761 0.6529

Sum2 0.5182 0.501 0.5345 0.559 0.672 0.6615

Sum3 0.562 0.501 0.6253 0.5248 0.7089 0.6761

 IdS 0.4975 0.5561 0.6802

Tucker1 text

seg.
summary

 type

summary length

5 6 10

Var1 Var2 Var1 Var2 Var1 Var2

LTT

Sum1 0.5102 0.517512 0.564498 0.579741 0.67433 0.67433

Sum2 0.5102 0.517512 0.564498 0.579741 0.67433 0.67433

Sum3 0.528176 0.548496 0.554993 0.579741 0.65143 0.665371

CTT

Sum1 0.570682 0.538497 0.588551 0.588551 0.678714 0.67433

Sum2 0.558193 0.528176 0.582704 0.582704 0.6873 0.711701

Sum3 0.561361 0.57675 0.602715 0.579741 0.703782 0.691504

 IdS 0.5102 0.594292 0.699744

Tucker2 text

seg.
summary

 type

summary length

5 6 10

Var1 Var2 Var1 Var2 Var1 Var2

LTT

Sum1 0.637022 0.637022 0.664775 0.664775 0.805387 0.806

Sum2 0.637022 0.637022 0.664775 0.664775 0.805387 0.805387

Sum3 0.594385 0.5547 0.671345 0.581695 0.807441 0.708069

CTT

Sum1 0.645 0.610558 0.680946 0.668078 0.740819 0.740819

Sum2 0.644194 0.637022 0.680946 0.690257 0.755929 0.755929

Sum3 0.644194 0.568481 0.730297 0.696311 0.82717 0.713782

 IdS 0.637022 0.664775 0.727607

Table 2. The similarities for the automatic summaries

22

IV. The ontology usage in requirement analysis

Although natural language processing techniques are useful in processing

requirements for obtaining specifications, preferably formal specifications, additional

resources are needed. The most useful resource is ontology, since ontology allows the

association of semantic information to a natural language text, text that otherwise cannot

be understood by the computer.

4.1. Ontology matching versus text
Currently, the amount of semantic information existing in the web has increased.

However there is an enormous amount of information written in natural language without

any semantic support, that “human beings cannot organize it all” [Pol09]. And since

different types of ontologies exists, obtained in various ways, the question of associating

an ontology to an existing text prevails in front of an ontology extraction from text.

Ontology evaluation

Considering the different types of learned ontologies and the way in which they

were obtained, a quality assurance mean must be enforced. In [Gan05b], the ontology

quality assurance metrics are classified in three types: structural measures, functional

measures and usability-profiling measures. The ontology matching versus text belongs to

the second category, so the following proposed metrics will be precision and recall of the

proposed matching criteria [Mih10b].

The need to identify the proper ontology for a given task was discussed in

different articles. In [Eng05] the ontologies are searched and evaluated regarding a set of

keywords. In [Tan09], is proposed a framework for selecting the appropriate ontology for a

particular biomedical text mining application. Another similar paper is [Doa03], which

uses some similarities metrics and machine learning techniques, based on the names,

context, constrains and labels.

Metrics for the evaluation of ontology matching versus a

natural language text
So, there are a lot of ontologies, many of which being continuously enriched. But

from the point of view of natural language processing, the following question has to be

answered: Which ontology is the best ontology to be used for a particular text, and which

part of the ontology. In order to find this answer, the usage of the some ontology

evaluation metrics was proposed in [Mih10b].

The first proposed metrics will evaluate how many of the existing concepts can be

found in the natural language text. Because all kind of ontologies can be represented in the

triple form (concept – predicate – object), the ontology is considered to be in the triple

form.

Quantitative metrics

The simplest ontology matching to the text technique is to search the concepts in

the text. So, the first proposed metric, similar to an ontology quality metric and to an

ontologies matching technique is the number of concepts found in the text. Because the

concepts can appear in the text both in singular as in plural form, was considered that the

concept was found in the text, if is found at least one word which starts with the same

letters.

23

Some derived metrics can be evaluated in a similar manner: the number of roots

found in the text, the number of leafs found in the text, and the list can continue. The roots

are those concepts which appear only in the left parts of the triples, and the leafs are the

concepts which appear only in the right parts of the triples.

Text entailment base metrics

In the last period of time, the text entailment evaluation techniques have

improved. This is the reason for which the use of text entailment in order to evaluate the

ontology matching with a text was proposed in [Mih10b]. And the reason is simple, as the

most simple and popular way to represent an ontology is by using which is similar with a

simple sentence, which is usually composed from a subject, a predicate and an object.

The use of text entailment relation in the ontology versus text matching process is

by checking if the ontology, or bits of the ontology entails the natural language text. The

following metrics were proposed: entailment (the ontology entails the text), respectively

number of entailments (how many triples from the ontology entail the text). In the same

time, it can be checked how many sentences are entailed by an ontology triple, and so the

third measure was proposed, the number of entailed sentences (every sentence entailed by

a different triple is numbered), and the number of distinct entailed sentences (only distinct

sentences are numbered). For the text entailment check, the cosine method was used (see

3.1.3).

The precision (how many matches are recognized from the existing matches) and

the recall (how many matches are recognized from the total number of tested elements)

were evaluated. In order to evaluate the proposed metrics, a set of nine ontologies taken

from the [***WnB] was used. All the ontologies have as core the “business” term, but with

different senses. The nine ontologies were compared with the first part of an article from

Wikipedia about “small business” [***WSM]. From the nine ontologies, the first four and

the sixth seem to have the greatest chance to match.

Unfortunately, the entailment measures aren’t accurate enough, especially because

the “business” concept is common to those nine ontologies. The quantitative metrics

proposed confirmed the supposition that only the first four ontologies and the sixth one

match the text (for the first ontology the recall 10.5%, for the second 8.1%, for the fourth

20%, and for the sixth 6.5%).

4.2. Ontology learning from text based on the syntactic

analysis tree of a Sentence
The result of the grammatical analysis of a sentence is usually represented as a

tree. Or between the words of a sentence, dependence relations can be identified [Mar08],

relations which are astonishing similar to the RDF triples, the simplest way to represent an

ontology. For the grammatical analysis of a sentence, the online tool developed by the

Stanford Natural Language Processing Group [***STO], was used. The tool has accuracy

greater than 87% [Kle03].

In the process of ontology learning, it was recognized the importance of syntactic

analysis of text. But the grammatical relations were used only as recognition patterns in

[Cim05, May09], or as constraints for the identification of relations between ontology

concepts in [Kaw04].

Syntactic Analysis of a Sentence

The Stanford Parser [***STS] constructs the syntactic analysis tree of a sentence,

identifies word dependencies and collapsed (for example: nsubjpass(abbreviated-6, title-

3)). Starting from the dependencies, a graph can be constructed (see Figure 14,

24

corresponding to the sentence “This function title is often abbreviated to the initials 'HR'.”

[***WHR]).

Figure 14. The graph obtained from the type dependencies

The triple identification
The first proposed method of triple extraction is the triple extraction from the

dependencies graph (see Figure 15) [Mih10c].

Figure 15. Triple extraction from the dependency graph

Figure 16. The triple extraction from the syntactic analysis tree

The second proposed method of triple extraction is the triple extraction from the

syntactic analysis tree (see Figure 16).

For the methods testing, the same text and the same ontologies as in the previous

chapter were used. A simple word similarity was used (one is included in the other), the

stop words [***SPW] and the word “business” were not taken into account.

@remove all the dependencies in which the predicate is “det”

For @every dependency D1 do

 For @every dependency D2 different then D1 do

 If @D1 and D2 have common words then

 If @the common word is a Verb and the distinct words are Nouns then

 @add the triple (distinct word from D1, common word, distinct word from D2) to the triple_list

 endif

 endif

 endfor

endfor

Subalgorithm IdentifyTriple(S @a sentence) is

 @read symbol SB

 if @SB is NN, then @the concept from the triple is the following word endif

 if @SB is NP then @analyze the constituents endif

 if @SB is S then IdentifyTriple(@new S) @and take the concept as the concept of the new S endif

 @read symbol SB

 if @SB is VB then @the predicate from the triple is the following word endif

 if @SB is VP then @analyze the constituents endif

 @read symbol SB

 if @SB is NN then @the object from the triple is the following word endif

 if @SB is NP or ADJP then @analyze the constituents endif

 if @SB is S then IdentifyTriple(@new S) @and take the object as the concept of the new S endif

end IdentifyTriple

{in the “analyze the constituents”, a similar process takes place read a symbol and identify it until current

branch of the tree is finished, but if a conjunction or a disjunction is identified (for concepts and objects, or

only a disjunction for predicates), then every element of the conjunction will be taken separately, and as a

result, not a triple, but a series of triple will be obtained}

25

Method/Ontology first second fourth sixth

I 0/0 2+2(reversed)/1 0/0 0/0

II 2/2 2/3 1/1 2/2

Table 3. The partially match triples inferred from the text/belonging to the ontology

The result of the evaluation can be seen in the Table 3. Because the most triples

partially match the triples from the second ontology, for both methods the tested small

business article is identified as matching the ontology in which the business is business

enterprise (the expected answer).

4.3. Similarity used in the identification of the need to

refactoryze an ontology
The existing ontologies are obtained in various forms, from manual way, the work

of different specialists or volunteers [Wil06], to semi-automatic [Mor06] and automatic

ways [Dah06]. Moreover, the need to enrich an existing ontology was discussed [Suk08,

Che06]. Some are developed in a longer period of time. Some have an impressive number

of elements. And when in a work of big proportions a lot of sources are involved,

furthermore, from the moment of conceiving and the moment of final release, a lot of time

passes, then is more than likely that in the final product, in the final ontology exists some

discrepancies, some misplaced elements.

Different similarity measures were used in the ontology evaluation [Bra05],

ontology alignment [Euz04] or ontology matching [Euz07]. But usually the similarity

measurements used are word similarity, evaluated usually by string measurements.

Homonyms, although written in the same way, have different meanings and are wrongly

recognized as identical. Another kind of similarity used in the natural language processing

is text similarity. In the text similarity are considered almost all the words appearing in the

text (usually there is a list of stop words which are ignored), and the similarity is computed

using their similarity measurements.

Figure 17. The process of selection of the most susceptible misplaced elements

Considering the case in which the ontology is represented by triples, then is

possible to identify sublists of elements which are related by the same predicate to the

same concept or predicates bound by the same two concepts. This kind of elements must

be similar. Evaluating the similarity of the two by two elements, an average for every

element is computed, the similarities are averaged for each item, then the element with the

lowest score is the most likely to be misplaced (see Figure 17) [Mih10d].

The algorithm for selecting the most susceptible misplaced elements
Algorithm Selecting_the_Most_Susceptible_Misplaced_Elements (O, n) is

 data: O- the ontology given as a set of triples

 n- the number of searched misplaced elements

 @extract the list of distinct elements (concepts) from the ontology

26

 For @every distinct element from the ontology do

 @identify the list of distinct elements which are bent by the same predicate to the current element

 @identify the list of predicates linking the same element with the current element

 endfor

 @keep in a set S only the lists with at least three elements

 @initialize an empty set of lists S’

 For @every distinct element e from the lists belonging to the set S do

 @take all the distinct predicates and elements related to e, and construct a list L

 @add to the list L the current element e

 selected_sense=1

 min_sim=1

 For @ every sense i from the dictionary, sense of the name of the current element from L do

 @compute the similarity s of the text composed by the names of the elements from L and the sense

 If @this is the first sense then

 min_sim=s

 else If min_sim>s then

 min_sim=s

 selected_sense=i

 endif

 endif

 endfor

 @add in S’ in a analogue position to the position of the current element e the selected_sense

 endfor

 i=0

 @initialize an empty set S”

 For @every list L’ from S’ do

 mins=1

 poz_min=1

 i=i+1

 For @every text t from the list L’do

 nu=0

 sum=0

 For @every text t’ from the list L’ do

 If e≠e’then

 @add to sum the similarity of t relative to t’

 nu=nu+1

 endif

 endfor
 avg=sum/nu

 endfor
 If i=1then

 mins=avg

 else If mins>avg then

 mins=avg

 poz_min=i

 endif

 endif
 @add to S” the pair formed by the element from the position i from the list L of set S (where list L is the

“parent” list of the list L’) and its score, avg

 endfor
 @order the elements from the set S” by the scores and keep the first n

 results: the first n elements with the lowers scores

end Selecting_the_Most_Susceptible_Misplaced_Elements

Notice: in the algorithm, by distinct elements or relations are understood the elements and

the relations which have distinct URIs.

As an example of operation of the algorithm, it is assumed that in a ontology

the words “man”, “women”, “elderly” and “driver” are all subclasses of class “adult” and

after disambiguation, the first sense from WordNet [*** WNT] was identified for all four

words:

27

man – man, adult male (an adult person who is male (as opposed to a woman)) "there were two women and

six men on the bus"

women – woman, adult female (an adult female person (as opposed to a man)) "the woman kept house while

the man hunted"

elderly – aged, elderly (people who are old collectively) "special arrangements were available for the aged"

driver – driver (the operator of a motor vehicle)

After computations, “driver” gets the lowest score.

4.4. The role of disambiguation in ontology evaluation
The disambiguation was already used in the ontology field several times: in order

to enrich the ontologies [Ste02], to learn ontologies [San07]. In the following is discussed

the role played by the disambiguation ontology alignment respectively for the ontology

matching versus a natural language text.

Ontology and disambiguation

The diversity of the means through ontologies were obtained does not guarantees

that the same URI is used for the same concept when the concepts belong to different

ontologies. But every concept has a name, name which can be used to decide if two

concepts are identical or not, even if the URI are different. But in the case of homonyms

only a simple word similarity measure isn’t enough. Therefore the ontology elements

bounded directly to the concept which is disambiguated must be also used [Mih10e]:

The disambiguation algorithm
Function RecursiveDisambiguation(WORD,SET,ONTOLOGY) is

 data: WORD,SET,ONTOLOGY

 preconditions: the WORD which must be disambiguated and the SET of its neighbors from the

ONTOLOGY

 SENSE  0

 max 0

 for @each sense i of WORD from the dictionary do

 @evaluate the overlap score of the SET and the gloss i from the dictionary

 if @measure > max then

 SENSE  i

 endif

 endfor

 if max = 0 then

 if @exists new neighbors in ONTOLOGY for the elements from SET then

 @add the neighbors to the SET

 SENSE  RecursiveDisambiguation(WORD,SET,ONTOLOGY)

 endif

 endif

 results: SENSE

 postconditions: the index of the correct SENSE of the WORD, 0 otherwise

end RecursiveDisambiguation

The presented approaches emphasize the role played by the natural language

processing techniques in the problem of semantic information association to a natural

language text, and also of improving the ontology quality.

4.5. Ontology assisted requirements analysis
Since the ontologies make the computer capable to better understand the natural

language, they have a great applicability in the field of information extraction. Since 2003,

their applicability for information extraction was emphasized in [Mae03], where the

28

authors propose a step by step method for enriching an existing ontology in order to make

it more appropriate for information extraction from a new text source.

In a newer paper [Yil07], an ontology unsupervised method for information

extraction is presented, without using any other knowledge sources. However, the

precision of the results will depend on the quality of the input ontology. The method also

identifies unused elements from the ontology, and in this way the quality of the ontology

can be improved, and also the results of the extraction.

The semi-automatic formal specification extraction

The scope of the paper [Mih10f] is to extract an abstract program from a natural

language requirements text. In other words to identify the precondition, postcondition and

the variable list.

Figure 18. Phrase analysis algorithm

There are two types of requirements: requirements which are expressed by many

sentences, and many requirements expressed in a single sentence. In the first case, the

identification of the preconditions and postconditions seems to be much easier to be

resolved, since it can be reduced to a sentence selection problem. In the second case, a

single sentence must be split into one or more preconditions and one or more

postconditions. In the second case, the sentence itself must be analyzed. Again the

Stanford Parser [***STS] is used. A precondition is expressed in natural language as a past

or present sentence, and a postcondition as a future sentence. The variable list is

represented by the subjects of those sentences. The corresponding algorithm is in Figure

18.

In the case in which the requirements text contains many sentences, the proposed

algorithm can be applied after the sentences are analyzed, triple extracted, synonym

identified and subordinate words identified, binding in this way the dependency graphs

(see subchapter 4.2). From every sentence, the dependency graph can be constructed and

this graph is a mini-ontology (it contains entities and relations). If the requirements volume

is great, they must be segmented first.

For the further refinement from natural language preconditions/postconditions

into abstract programs or Z schemas, is necessary the use of an ontology, which for

instance for the case of Z schemas, has as base-nodes the base types and the base

operations for these types. For instance, for “Generate the first prime number larger than a

Subalgorithm PrePostSelection(g, pre_list, post_list) is

 data: g - a dependencies directional graph

 @Identify the VB words list: VB_list

 @Initialize a list of lists of words, Word_ll and place in every list on the first position the VB

word

 @Initialize an empty list of distinct words, Var_l

 For @every list L from Word_ll do

 @Identify the graph path which ends with a dependency "sub" for a VB or a VBD, and if

none exist, the path which ends with a dependency "obj", respective the path

which ends with an "amod" dependency for a VBN

 @Add all the words from the path to L

 @The NN word which is in relation "sub", "obj" or "amod" must be added to the variable list

Var_l

 @Add all to L all the words connected to the last word in a recursive way (they and all the

words connected to them)

 endfor

 results: pre_list - the lists L from Word_ll which starts with a VB, post_list - the other lists from

Word_ll, Var_l - the list of variables

endSub

29

given natural number n.” [***Adr], it can be noticed that, the basic type natural number

will be used, with prime and larger than as operations, and that only first is not a simple

predicate involving a natural number.

Figure 19. A part of Natural numbers ontology

In this case, first words which represent the variables will be searched in the

ontology (see Figure 19), and replaced with the closest base type (after the node "natural"

is identified, the closest base type is N). Then, from the natural language preconditions and

postconditions all the words are searched between the sub-ontology with the base root the

base type identified. If they are found, then the base predicate directly connected to the

base type will replace the current word.

In the discussed example, “Generate the first prime number larger than a given

natural number n.” [***Adr], the identified list of words which express the postcondition

is Generate + larger + number (the subject) the + first + prime. Number can be replaced by

x IN, and also larger x > n. The computer can provide these base types/predicates, and in

this way to assist the translation process from natural language into formal specifications.

Conclusions

Two sets of metrics were proposed for ontology matching versus text evaluation.

The first are based on statistical evaluation of the number of concepts that appear in the

text, and the last on the text entailment relationship.

Although the tests for the text entailment metrics have been inconclusive, partly

due to the size differences between ontologies and the analyzed text, the first set of metrics

has led to expected results.

Two methods of converting the result of a grammatical analysis of a text written

in natural language into ontology triples were presented. The first proposed method

provides fewer but concise triples, close to the computer and the second provides triples

closer to the human user. They emphasize the role that grammar plays in the construction

of an ontology or ontology matching the text.

Is also presented a method able to identify precisely the most likely misplaced

items in an ontology and help developers to improve the quality of the ontology.

In the end a semi-automatic method for extracting formal specifications from a

natural language text is presented. It uses the Stanford Parser to obtain the dependency

graph, followed by a process of unification of ontologies to connect mini-ontologies, and

in the end based on semantic principles, natural language sentences, which are

preconditions and postconditions, are extracted.

30

V. Aspects of formal methods usage in developing

correct programs

5.1. Software quality assurance – a continuous activity
It is well known the fact that from the effort associated with a software products

development and deployment, maintenance represents 60%. To reduce this cost, product

quality must be guaranteed from the first stages of development. In the case of large scale

products, their maintenance is impossible unless they meet certain quality criteria.

Measuring software quality is performed using software metrics, with specific metrics for

different phases of product development.

Figure 20. Geometrical shape hierarchy

One way to ensure software product quality is to evaluate the quality in every

phase of product development and improve it. To demonstrate the importance of software

quality evaluation early in the development process, a class hierarchy was designed in

[Şer05] (see Figure 20). In Table 5 are the results of the evaluation of the classes from the

hierarchy. It can be noticed that it is possible to improve this class hierarchy by deriving

the class Circle from the class Ellipse, case in which the complexity will decrease by

31

reducing the number of operations and operators of class Circle. Also COM metric value

should be higher, which means that some additional comments must be added.

Class/Metrics

SIZE
(the

number of

code lines)

COM
(comments

percents)

WMC
(method

weight of a

class)

DIT
(inheritanc

e tree

depth)

NOC
(the

“children”

number)

LCOM
(lack of

methods

cohesion)

CBO
(class

coupling)

Shape 6 33% 0 1 0 - 0

Polygon 37 8% 8 1 2 0 1

Circle 17 17% 5 1 0 0.5 1

Ellipse 34 5% 3 1 0 0 0

Triangle 15 7% 2 2 0 0 1

Rectangle 46 20% 7 2 1 0.46 1

Square 22 9% 4 3 0 0 1

Point 37 8% 9 1 0 0.33 0

Table 4. The results for the class metrics evaluation

Another method is to develop high quality software using design templates or

formal methods. Unfortunately there is no general model available to ensure software

quality. For each development process, quality requirements should be specified from the

beginning, pursued throughout the development process and the discrepancies should be

resolved in the early stages, when the changing cost is reduced.

5.2. Multiformal approach to specifying software systems
Large scale software systems have several aspects. Each aspect requires a specific

formalism application and formal checking using specific tools. Therefore specifications

obtained by applying different formal methods must be integrated, resulting a multiformal

specification (integrated or heterogeneous).

Formal methods are classified into: state-oriented (or model-oriented), property-

oriented (axiomatic or algebraic) and hybrid. State-oriented formal methods are: Z

[Abr80], VDM [Jon86], B [Joh73], finite state machines [Gil62], Petri nets [Pet62], CCS

[Mil80], CSP [Hoa85]. Property-oriented formal methods are: ADR [Ast02] ACT ONE

[Ehr83], Anna [Luc85], Larch [Gar93] CLEAR [Bid91], OBJ [Fut85], LOTOS [Eij89].

Generally, the integration of formal methods is the combination of two or more

complementary formal specification methods.

When specifying a complex system, a homogeneous or a heterogeneous approach

can be applied. Homogeneous approach describes multiple aspects of software system

using a single formalism, able to express all the aspects of the system. Such specifications

can be made or by specifying new languages, or by expanding an existing one. The

heterogeneous approaches, multiformal ones, use several existing formalisms to cover all

the aspects of the specified system. Depending on how the languages are syntactically

combined, this approach can be a powerful integration of formalisms, or a

composition/coupling of the independent specification parts, each part being written using

another language.

For syntactic combination of languages there are three basic approaches. The first

approach uses the graphic representation of the behaviour (Petri nets, state diagrams, and

labelled transition systems) and different data types (algebraic specifications, B, Z, VDM).

The second approach consists in combining process algebras such as CCS or CSP with

algebraic formalism. Such a multiformalism is LOTOS. A third approach tries to integrate

process algebra (CCS, CSP) with a state-oriented formalism (Z, Object-Z [Smi99], B,

VDM). Such an integrated formalism is ZCCS [Gal96].

32

The prerequisites of a multiformal approach are: learning formal methods, using

integrated methods and the necessary tools. One of the main disadvantages of formal

methods that are being difficult to learn because of notations, concepts and mathematical

methods, can be an impediment for a multiformal approach. In addition, combining

different notations can introduce ambiguities, inconsistencies and the resulting

specifications may be difficult to understand. But it was argued that by using several

methods, each in the best cases, specifications will get shorter, clear and concise towards

the use of a single formalism [Cio04].

5.3. Formal specifications reuse
When a new version of software is produced, its code can be reused, but not only

its code can be reused, specifications, documentation and other secondary software

products can be also reused. From the different types of specifications, formal

specifications are the most useful and in the same time the harder to develop. As a

consequence, to reuse this type of specification will prove to be very useful. Another case

of formal specifications reuse is to build a product for multiple platforms.

Also, formal specifications can be used to identify reusable elements. For example

if there is a library of components and the production of a new one is desired, but reusing

as much as possible, for the identification of reusable components is better to use formal

specifications, since in this case the similar components are spotted immediately.

The advantage of using Formal specifications is that they are in a mathematical

form, and so it is easy to identify a bijective function between them, and so to prove that

they are similar. K. Periyasamy and J. Cidambaram in [Per96] have defined how two Z

specifications are identical or analogous, from declaration, signature and property point of

view. The standard form of formal specifications guarantee the fact that the same

specification will always have the same form.

Moreover, analogy is one of the most used learning methods. It can be applied in

formal methods learning too. It is easy to take an example and produce a new specification

similar to the first. Thus similar formal specifications can be used to facilitate learning of

those formal methods [Mih05].

Figure 21. Z data schemas

For instance, let assume there are the specification for a Person and a Person Set,

as it can be seen in Figure 21. It is wanted to specify a Book and a Book Set. From the

discussions about the Book, it is noticed that those two entities matches. Using Person as a

model, immediately specification for Book is written, as shown in Figure 21.

Person

Id : IN

Name : STRING

Country: STRING

Book

Title : STRING

Author’s Name: STRING

Id : IN

Name ≤ 20 # Title ≤ 20

Person Set

Persons: P Person

Book Set

Books: P Book

(p1, p2: Persons  p1.Id= p2.Id  p1=p2) (b1, b2: Books  b1.Id= b2.Id  b1=b2)

33

Another case of formal specifications reuse is where it is necessary to combine

two components. To avoid possible mistakes, it is better to compose their specifications

first. If their specifications are in a formal form, composing them is easier, usually by

applying a rule in order to obtain the specification for the resulting component.

Similar elements will have similar specifications.

If it is noticed that two elements are similar, only one will be specified, and then

similarly, through specification reuse the other elements specification will be obtained. The

similarity of the two specifications can be a warning to the customer, if the two elements

are not actually similar, in the case in which the customer's requirement was not fully

understood by developers.

5.4. An application that assist Z language usage
Having as main purpose the encouraging of the use of formal methods in general

and Z language in particular, an application that assists in a semi-automatic way the

refinement of Z schemes was made, application which will be described in the following

[Mih10a].

In order to assist the Z schema refinement, the application must be capable of

assisting the schema definition and the schema refinement process first. For the first part,

the definition of Z schemas lately, and Z language editor was developed [Gao09]. In the

new original approach the schemas can be defined only in the graphical manner, one

schema at a time, by inserting all the components: name, declarations and predicates. All

the special symbols can be found in a categorized list and added from there [Dil99]. In the

case of selection of a symbol from a list, its definition and an example of usage will be

available before the effective usage of the symbol into the schema definition, in order to

help the new users of Z language.

When the schema definition is finished, a syntactic analyze will take place with

the purpose of base elements identification, according to the notations conventions

[Mih10a], of the previously identified element lists and of the special symbols: “!” and ”?”.

In the case in which the user noticed an incorrect identification, he can manually change

the type of analyzed elements.

After a schema is defined, it is deposited in a schemas list, from where every

schema is available by its name. Only a schema or two schemas can be selected at a time

from the list, in order to refine them [Woo96].

If two schemas are selected, a binary operation can be applied, such as

conjunction, disjunction and composition (see Figure 22). If one schema is selected, a

unary operation can be applied such as denial or decoration. In the same time as the

majority of the components are mathematical elements, various mathematical theorems or

properties can be applied. All these operations can be carried out in assisted mode, as long

as the application provides an example of using the selected operation, where the user must

enter only the new elements. The collection of refining operations for the schema elements

is continuously enriched adding by the user of new operations. The first use of a new

operation will be stored and provided as example for future applications. Refining

operations that can be applied to the selected component from the current scheme is

identified on the basis of similarity relationship between two components.

Definition: Two components of two Z schemas are similar if they have the same

number of base elements, in the same order and with the same types.

The most important refining operation that can be achieved is the transformation

of a scheme Z in assisted mode into an abstract program. To transform a Z schema into an

abstract program, the following elements must be identified: the frame, the precondition

and the postcondition. The framework was previously identified by analyzing syntactic

34

constituent elements of a schema Z. The variables must only be selected from the list of

elements. The precondition is the conjunction of schema predicates containing variables

whose names include the symbol “!” and the postcondition is the conjunction of predicate

where the variable name ends with “?”. Of course the user can intervene to correct errors.

The obtained abstract program can be saved in a text file, for further processing.

Figure 22. The conjunction of two Z schemas

The application is primarily for teaching purposes and was developed in C #. The

abstract programs obtained from Z schemas can be refined further, as can be seen from

next subchapter.

5.5. An application that assist stepwise refinement
In [Mih06a] a mini CASE tool was presented, “Asistent rafinare” (Refinement

Assistant), which allows the assisted refinement of code from abstract programs, tool

described in the following. The abstract programs are specified by frame w, input predicate

or precondition, denoted with pre, and output predicate or postcondition, denoted with pos:

„w:[pre,pos]”. The refinement assumes a step by step transition through refinement rules.

The refinement rules are: attribution rule, alternation rule, sequential composition rule and

iteration rule.

The application offers the following features: automatic using of the above rules

for an abstract subprogram, after the user has identified all the necessary new elements for

the refining process, as can be seen from Figure 23. The users can also change manually

the code lines. The entire refining process is stored in a log file “log.txt”, which allows the

reuse of the refining process for similar cases. Also the current form of the program can be

saved, and a previously saved program can be load.

This application makes the developers work easier, especially in the case of

medium to large programs that require repeated application of refinement rules.

35

Figure 23. The base window for the Refinement Assistant

5.6. Code simplification by automatic processing

conditional expressions
Another small CASE tool is proposed in [Mih06b] and presented in a subchapter

of [Lup08/09], tool that favour code quality improvement through applying Boolean

function simplification to the conditional expressions existent in the code. This is because

each simple conditional expression has only two truth values: true, can be denoted by 1 or

false, denoted by 0. If all the simple conditional expressions are denoted by xi, n,i 1

variables, where n represents the number of conditions, then the complex conditional

expression can be replaced by a Boolean function f(x1, x2,...,xn). So the problem of

conditional expression simplification can be reduced to a Boolean function simplification

method, a process that was automated in the tool called BOOFS (BOOlean Function

Simplifier).

The method used for the simplification was Quine-McClusky method combined

with Moisil method [Tăt99, Lup08/09]. This method can be applied only to the disjunctive

canonical form of a Boolean function, so a normalization process must be applied.

In order to effectively assess the improvements obtained by the simplification

method, the BOOFS tool automatically evaluates some metrics based on the number of

operators (connectives) and operands, metrics defined as follows: count of distinct

operands, count of all operands, count of distinct operators, count of all operators, sum of

priorities of distinct operators, sum of priorities of all operators.

These metrics will take a natural number as value, and as a result of the

simplification process their value must decrease. For metrics 1, 3 and 5 this fact is

immediately. For metrics 2 and 4, there are cases in which their value will be in fact

increased, as it can be seen from the following example. So maybe the best choice is metric

6. The priorities used by the metrics 5 and 6 are from 1 to 5, corresponding to the

36

operators: , , , , . These priorities were used as criterion in the code from the

BOOFS tool.

For instance, for the conditional expression

((x < y) and (y <= z) and (z < 5)) or ((x < y) and (y >= 5) and (z < 5)),

which was simplified to ((x < y) and (z < 5)), the values of those 6 metrics dropped

from 3, 6, 3, 6, 6, 12, to 2, 2, 1, 1, 2, 2.

Figure 24. Binary tree operations used in the normalization process: a) equivalence

elimination, b) entailment elimination, c) and d) De Morgan’s rules , e) and f)

distributive law (to the left respectively to the right), and g) double negation law.

The BOOFS tool was made in Java. The execution begins by opening a source

code file, from which a conditional expression to be simplified can be selected. Because

the application cannot automatically identify simple conditional expressions, they will be

indicated manually. Simultaneously, as the application works regardless of the source code

language, the user will indicate how the five logical connectives appear in the code. The

connectives are memorized by letter: n(), a(), o(), i() and e() and operands by x1,

x2, x3 and so on. The obtained Boolean function must first be normalized. The

normalization was performed on a binary tree, by applying the operations from the Figure

24, through a back-tracking algorithm. To convert the function from infix form in the

binary tree form, the function will be transformed into its postfix Polish form by a stack.

Also using a stack will turn the Polish postfix form into the tree. After bringing the tree to

37

the disjunctive form, disjunctive infix form of the Boolean function browse through an

inordin binary tree.

The support set is built, by adding n-uples with components 0 or 1.

Quine-McClusky's method is used to obtain the maximum monoms set. In the

corresponding n-uples digit 2 was used to mark the simplified variables. The Moisil

method is used to identify the simplified form. Moisil's method is based on turning a

conjunctive normal form in a disjunctive one, transformation performed again on the

binary tree.

38

VI. Conclusions

Currently the need for correctness is becoming stronger. If a software product

does not meet its specifications, it will not be accepted by the client. The existence of

complete specifications, accurate and clear is essential. Such specifications are formal

specifications.

Unfortunately, learning and using of formal methods is not easy and is

time-consuming. It is a real help the existence of a tool able to assist the development of

such specifications. Such a tool, which allows construction of Z specifications, their

composition and their transformation into abstract programs is presented in this paper.

There are several types of formal specifications, for example some are

process-oriented, others data-oriented. Complex systems require a formal specification to

capture all aspects of the application, requiring a multiformal approach for the

specification. Formal specifications can be reused successfully, especially when

developing a new version of a software program whose formal specification already exists.

Starting from the formal specifications, correct code can be generated by refining

based on rules. Although formal specification and refinement process may seem difficult to

achieve, the entire development costs are reduced. The existence of tools which assist and

automate part of this process is welcomed. Such a tool is presented in this paper. Another

made tool simplifies by logical means the conditional expressions from code.

On the other hand, the formal specification cannot be realized usually by the

developers together with the clients. In this case, developers can use natural language

processing tools to facilitate their work, such an application which disambiguates,

summarizes or segments a particular text.

Ontologies are excellent candidates for a more complex natural language

processing, as is the requirements selection for specifications obtaining. However, the

ontology used for this purpose must be chosen carefully.

This paper presents various aspects of using formal methods in developing correct

programs, but contains an important part of natural language processing and ontologies.

But all the methods and applications presented are intended to facilitate the use of formal

methods in developing correct programs.

39

 VII. References

[Abr80] Abrial J.-R., The Specification Language Z: Syntax and Semantics, Oxford

University Computing Laboratory, Programming Research Group, Oxford, U.K., April

1980.

[Alf85] Alford M., SREM at the Age of Eight: The Distributed Computer Design System,

IEEE Computer, Vol. 18, No. 4, April 1985, p. 36-46.

[Ast02] Astesiano E., Bidot M., Krieg-Brückner B., Mosses P.D., Sannella D. and Tarlecki

A., CASL: The Common Algebraic Specification Language, Theoretical Computer

Science, 286(2), 2002, p. 153-196.

[Bac00] Back T., Fogel D.B. and Michalewicz Z. (editors), Evolutionary Computation:

Basic Algorithms and Operators, Vol. 1 and Evolutionary Computation: Advanced

Algorithms and Operators Vol. 2, Institute of Physics Publishing, Philadelphia, PA,

2000.

[Bal85] Balzer R., The establishment and use of sound engineering principles in order to

obtain economically software that is reliable and works efficiently on real machine,

NATO Science Committee Conference, 1969.

[Ban03] Banerjee S. and Pedersen T., Extended Gloss Overlaps as a Measure of Semantic

Relatedness, Proceedings of the Eighteenth International Joint Conference on Artificial

Intelligence, Acapulco, Mexico, August 9-15 2003, p. 805-810.

[Bar99] Barzilay R. and Elhadad M., Using lexical chains for Text summarization, editors

J. Mani and M. Maybury, Advances in Automatic Text Summarization, MIT Press,

1999.

[Ber98] Berners-Lee T., Fielding R. T. and Masinter, L., Uniform resource identifiers

(URI): Generic syntax. RFC 2396, IETF, 1998.

[Bid91] Bidoit M., Kreowski H-J., Lescanne P., Orejas F. and Sanella D., Algebraic

System Specification and Development, Lecture Notes in Computer Science, Vol. 501,

Springer-Verlag, 1991.

 [Bra85] Brachman R. and Schmolze J., An Overview of the KL-ONE Knowledge

Representation System, Cognitive Science, vol. 9, no. 2, 1985, p. 171-216,

http://nlp.shef.ac.uk/kr/papers/klone.ps.

[Bra05] Brank J., Grobelnik M. and Mladenić D., A Survey of Ontology Evaluation

Techniques, Proceedings of the Conference on Data Mining and Data Warehouses

(SIKDD 2005).

[Bur95] Burgess C.J., The Role of Formal Methods in Software Engineering Education

and Industry, Proceedings of the 4th Software Quality Conference

http://www.cs.bris.ac.uk/Tools/Reports/Abstracts/1995-burgess-3.html.

[Che76] Chen P., The Entity-Relationship Model – Towards a Unified View of Data, ACM

Transactions on Database Systems, Vol. 1, No. 1, March 1976, p. 9-36.

[Che06] Chen R., Lee Y. and Pan R., Adding New Concepts on the Domain Ontology

Based on Semantic Similarity, International Conference on Business and Information

(BAI 2006), Singapore, July 12-14 2006,

http://bai2006.atisr.org/CD/Papers/2006bai6169.pdf.

[Cim05] Cimiano P. and Voelker J., Text2Onto - A Framework for Ontology Learning and

Data-driven Change Discovery, Proceedings of the 10th International Conference on

Applications of Natural Language to Information Systems (NLDB), Alicante, Spain,

2005.

http://nlp.shef.ac.uk/kr/papers/klone.ps
http://www.cs.bris.ac.uk/Tools/Reports/Abstracts/1995-burgess-3.html
http://bai2006.atisr.org/CD/Papers/2006bai6169.pdf

40

[Cio04] Ciobotariu-Boer, V. and Mihiş, A.D., The Multiformalism Approach in Software

Specifications, Proceedings of the Symposium „ Zilele Academice Clujene”, Computer

Science Section, Faculty of Mathematics and Computer Science, "Babes-Bolyai"

University, Cluj-Napoca, Romania, Lithography "Babes-Bolyai", Editor: Prof. dr.

Militon Frenţiu, 2004, p. 21-26.

[Cla96] Clarke E.M. and Wing J.M., Formal Methods: State of the Art and Future

Directions, ACM Computing Surveys, 1996, http://www.cs.cmu.edu/ CMU-CS-96-

178.

[Cor05] Corley C. and Mihalcea R., Measuring the semantic similarity of texts,

Proceedings of the ACL Workshop on Empirical Modelling of Semantic Equivalence

and Entailment, Ann Arbor, June 2005, p. 13-18.

[Dah06] Dahab M., Hassan H. and Rafea A., TextOntoEx: Automatic Ontology

Construction from Natural English Text, International Conference on Artificial

Intelligence and Machine Learning (AIML-06), Sharm El Sheikh, Egypt, June 13-15

2006, http://www.icgst.com/con06/aiml06/Final_Articles/P1120615104.pdf.

[DeM78] DeMarco T., Structured Analysis and System Specification, Yourdon Press, New

York, 1978.

[Dic45] Dice L.R., Measures of the amount of ecologic association between species,

Ecology, 26(3), 1945, p. 297–302.

[Dil99] Diller A., Z: An Introduction to Formal Methods, second edition, John Wiley &

Sons, April 1999.

[Dij75] Dijkstra E.W., Guarded commands, nondeterminacy and formal derivation of

programs, Comm. ACM, Vol. 18(1975), No. 8, p. 453-457.

[Doa03] Doan A., Madhavan J., Dhamankar R., Domingos P. and Halevy A., Learning to

match ontologies on the Semantic Web, The VLDB Journal – The International Journal

on Very Large Data Bases, vol. 12, issue 4, November 2003, p. 303-319,

http://www.cs.washington.edu/homes/pedrod/papers/vldbj04.pdf.

[Dro89] Dromey G., Program Derivation. The Development of Programs from

Specifications, Addison Wesley, 1989.

[Ehr83] Ehrig H., Fey W. and Hansen. H., ACT ONE: An algebraic specification language

with two levels of semantics, Technical Report No. 83-03, Technische Universität

Berlin, 1983.

[Eij89] van Eijk P.H.J., Vissers C.A. and Diaz M., The formal description technique

LOTOS, Elsevier Science Publisher B.V., 1989.

[Eng05] Engel L., Jaeger M. and Mühl G., Search and Evaluation of Ontologies for

Semantic Web Services in the Internet, IADIS International Conference WWW/Internet

2005 Lisbon, Portugal, October 19-22 2005,

http://www.iadis.net/dl/final_uploads/200507C050.pdf.

[Euz04] Euzenat J. and Valtchev P., Similarity-based ontology alignment in OWL-lite,

Proc. 16
th

 European Conference on Artificial Intelligence (ECAI 2004), 2004, p. 333–

337.

[Euz07] Euzenat J. and Shvaiko, P., Ontology Matching, Springer, New York, 2007.

[Flo67] Floyd R.W., Assigning meanings to programs, Proc. Symposium in Applied

Mathematics, Schwartz J.T. (Ed.), Am.Math.Soc., Vol. 19, 1967, p. 19-32.

[Fre06] Frenţiu M., Pop H.F., Fundamentals of Programming, Cluj University Press,

Cluj-Napoca, 2006.

http://www.docs.dtic/mil/techs
http://www.icgst.com/con06/aiml06/Final_Articles/P1120615104.pdf
http://www.cs.washington.edu/homes/pedrod/papers/vldbj04.pdf
http://www.iadis.net/dl/final_uploads/200507C050.pdf

41

[Fut85] Futatsugi F., Goguen J.A., Jouannaud J.P. and Meseguer J., Principles of OBJ2,

Annual Symposium on Principles of Programming Languages, Proceedings of 12
th

ACM SIGACT-SIGPLANT symposium on Principles of programming languages, New

Orleans, Louisiana, United States of America, 1985, p. 52–66.

[Gab06] Gabbar H.A. (editor), Modern Formal Methods and Applications, Springer, 2006.

[Gal96] Galloway A. and Stoddart B., Integrated Formal Methods, Research Report,

Institut de Recherche en Informatique de Nantes, 1996.

[Gan79] Gane C. and Sarson T., Structured Analysis: Tools and Techniques, Prentice Hall,

Englewood Cliffs, NJ, 1979.

[Gan05b] Gangemi A., Catenacci C., Ciaramita M. and Lehmann J., Ontology Evaluation

and Validation. An integrated formal model for the quality diagnostic task, Technical

report, ISTC-CNR, Lab. for Applied Ontology, http://www.loa-

cno.it/Files/OntoEval4OntoDev_Final.pdf.

[Gao09] Gao X., The Design and Implementation of Z Language Editor, Algorithms and

Architectures for Parallel Processing, vol. 5574/2009, Springer, July 2009, p. 684-692.

[Gar93] Garland S.J., Guttag J.V. and Horning J.J, An Overview of Larch, Lecture Notes in

Computer Science, Vol. 693, Functional Programming, Concurrency, Simulation and

Automated Reasoning: International Lecture Series 1991-1992, McMaster University,

Hamilton, Ontario, Canada, 1993, p. 329-348.

[Gil62] Gill A., Introduction to the Theory of Finite-state Machines, McGraw-Hill, 1962.

[Gli05] Glickman, O., Dagan, I. and Koppel, M., Web Based Probabilistic Textual

Entailment, Proceedings of the PASCAL Challenges Workshop on Recognizing

Textual Entailment, 2005, p. 33-36.

[Gri81] Gries D., The Science of Programming, Texts and Monographs in Computer

Science, 1
st
 ed. 1981. 5

th
 printing, Springer Verlag, Berlin, 1981.

[Gru93] Gruber T., A Translation Approach to Portable Ontology Specifications,

Knowledge Acquisition, vol. 5, no. 2, 1993, p. 199–220.

[Har97] Harabagiu S. and Moldovan D., TextNet – a textbased intelligent system, Natural

Language Engineering, 3(2), 1997, p. 171-190.

[Hea93] Hearst M., TextTiling: A Quantitative Approach to Discourse Segmentation,

Technical Report 93/24, University of California, Berkeley, 1993.

[Hei96] Heitjmeyer C.L., Jeffords R.D. and Labaw B.G., Automated Consistency Checking

of Requirements Specifications, ACM Trans. on Software Engineering and

Methodology, 5(1996), no. 3, p. 231-261.

[Hoa85] Hoare C.A.R., Communicating Sequential Processes, Prentice Hall International,

Englewood Cliffs, NJ, 1985.

[Hol96] Holloway C.M., Why Engineers Should Consider Formal Methods, NASA

Langley Research Center, http://shmesh.larc.nasa.gov/cmh.html, 1996.

[Hov03] Hovy E., Text summarization, The Oxford Handbook of Computational

Linguistics, editor Mitkov R., Oxford University Press, Chapter 32, 2003.

 [Jac901] Jaccard P., Distribution de la flore alpine dans le bassin des Dranses et dans

quelques régions voisines, Bulletin de la Société Vaudoise des Sciences Naturelles 37,

1901, p. 241-272.

[Joh73] Johnson S.C. & Kernighan B.W., The Programming Language B, Technical

Report CS TR 8, Bell Labs, January 1973, Prentice Hall, Englewood Cliffs, NJ, 1986.

http://www.loa-cnr.it/Files/OntoEval4OntoDev_Final.pdf
http://www.loa-cnr.it/Files/OntoEval4OntoDev_Final.pdf
http://shmesh.larc.nasa.gov/cmh.html

42

[Jon86] Jones C.B., Systematic Software Development Using VDM, Prentice Hall,

Englewood Cliffs, NJ, 1986.

[Kam87] Kampen G. R., An Eclectic Approach to Specification, Proceedings of the Fourth

International Workshop on Software Specification and Design, Monterey, CA, April

1987, p. 178-182.

[Kaw04] Kawtrakul A., Suktarachan M. and Imsombut A., Automatic Thai Ontology

Construction and Maintenance System, Workshop on Papillon 2004, Grenoble, France,

http://www.moac.go.th/knowledgebase/uploadfile/42808973.pdf

[Kle03] Klein D. and Manning C. D., Fast Exact Inference with a Factored Model for

Natural Language Parsing, Advances in Neural Information Processing Systems 15

(NIPS 2002), Cambridge, MA: MIT Press, 2003, p. 3-10.

[Kǒu06] Kǒuylekov M. and Magnini B., Tree Edit Distance for Recognizing Textual

Entailment: Estimating the Cost of Insertion, Proceedings of the Second PASCAL

Challenges Workshop on Recognizing Textual Entailment, Venice, Italy, 2006.

[Les86] Lesk M., Automatic sense disambiguation using machine readable dictionaries:

how to tell a pine cone from an ice cream cone, Proceedings of the 1986 SIGDOC

Conference, Association for Computing Machinery, New York, 1986, p. 24−26.

[Lew04] Lewis D.D., Yang Y., Rose T. and Li F., RCV1: A New Benchmark Collection for

Text Categorization Research, Journal of Machine Learning Research, Vol. 5, 2004, p.

361-397.

[Luc85] Luckham D.C. and von Henke F.W., An Overview of Anna, a Specification

Language for Ada, IEEE Software, Vol. 2, No. 2, March 1985, p. 9-22.

[Lup08] Lupea M., and Mihiş A.D., Logici clasice și Circuite logice. Teorie și exemple,

S.C. Albastră Casa de Editura S.R.L., Cluj-Napoca, 2008, 223 pp.

[Lup09] Lupea M. and Mihiş A.D., Logici clasice și Circuite logice. Teorie și exemple,

S.C. Albastră Casa de Editura S.R.L., Cluj-Napoca, 2009, 223 pp.

[Mae03] Maedche, A., Neumann, G. and Staab, S., Bootstrapping an Ontology-based

information extraction system, in Intelligent exploration of the web, Editors: Piotr S.

Szczepaniak, Javier Segovia, Janusz Kacprzyk, Lotfi A. Zadeh, Physica-Verlag GmbH

Heidelberg, Germany, 2003, p. 345 - 359.

 [Mar97] Marcu D., From discourse structure to text summaries, Proceedings of the

ACL/EACL ’97 Workshop on Intelligent Scalable Text Summarization, Madrid, Spain,

pg. 82-88.

[Mar08] de Marneffe M.-C., and Manning C. D., The Stanford typed dependencies

representation, COLING Workshop on Cross-framework and Cross-domain Parser

Evaluation, Manchester, United Kingdom, 2008,

http://nlp.stanford.edu/pubs/dependencies-coling08.pdf.

[May09] Maynard D., Funk A. and Peters W., Using Lexico-Syntactic Ontology Design

Patterns for ontology creation and population, WOP 2009 – ISWC Workshop on

Ontology Patterns, Washington, 2009.

[Mih08a] Mihăilă A.A, Mihiş A.D. and Mihăilă C.F., A Genetic Algorithm for Logical

Topic Text Segmentation, International Conference on Digital Information

Management, IEEE Computer Society Press, 978-1-4244-2917-2/08, IEEE Xplore,

2008, p. 500-505.

[Mih05] Mihiş A.D., Formal Specification Reuse, Proceedings of Symposium „Colocviul

Academic Clujean de Informatică”, 2005, p. 202-206.

http://www.moac.go.th/knowledgebase/uploadfile/42808973.pdf
http://nlp.stanford.edu/pubs/dependencies-coling08.pdf

43

[Mih06a] Mihiş A.D., An Application that Assist StepWise Refinement, Proceedings of

Symposium „Zilele Academice Clujene”, 2006, p. 143-147.

[Mih06b] Mihiş A.D., Chisăliţă-Creţu C., Mihăilă C.A., Şerban C.A., BOOFS-A Tool That

Supports Simplifying Conditional Expressions using Boolean Functions Simplification

Methods, Studii și Cercetări Ştiinţifice, Seria Matematică, 16 (2006), Supplement,

Proceedings of ICMI 45, editors: Mocanu Marcelina & Nimineţ Valer, Bacău,

September 18-20, 2006, p. 493-502.

 [Mih07] Mihiş A.D., Chain Algorithm used for Part of Speech Recognition, Mathematical

Reviews, www.ams.org/mathscinet/, Studia Universitatis "Babes-Bolyai", Informatica:

KEPT 2007, p. 89-95.

[Mih08b] Mihiş A.D., A Simple Ontology based on Text Entailment Directional

Relationship, Proceedings of KM-03 Knowledge Management: Projects, Systems, and

Technologies, October 23-25 2008, Bucharest, Romania, ASE Publishing House

Bucharest, ISBN: 978-606-505-124-9, p. 531-534.

[Mih08c] Mihiş A.D., Natural Language Processing Methods Used in Requirement

Analysis, „Zilele Informaticii Economice Clujene“, Mediamira Science Publisher,

Cluj-Napoca, editors: prof. dr. Niţchi Ştefan & all, 2008, p. 251-258.

[Mih08d] Mihiş, A.D., Various Types of Logical Text Tiling, Zilele Academice Clujene,

Cluj University Press, editor: Prof. dr. Frenţiu Militon, 2008, p. 129-133.

[Mih10a] Mihiş A.D., A Tool for Refinenent of Z Schemas, Proceedings of Symposium

„Zilele Academice Clujene”, 2010, p. 64-67.

[Mih10b] Mihiş A.D., The Evaluation of Ontology Matching versus Text, Informatica

Economică/Economy Informatics, Categ. CNCSIS B+, vol. 14, no. 4, 2010, p. 147 –

155.

[Mih10c] Mihiş A.D., Ontology Learning from Text Based on the Syntactic Analysis Tree

of a Sentence, The 5
th

 International Conference on Virtual Learning (ICVL - 2010),

Târgu-Mureş, Bucharest University Publishing House, Editor: Vlada Marian, Albeanu

Grigore, Popovici Dorin Mircea, ISSN: 1844-8933, 1842-4708, http://c3.icvl.eu/2010,

2010, p. 128-134, article received the special award „Intel®Education”.

[Mih10d] Mihiş A.D., Similarity Used In The Identification Of The Need To Refactoryze

An Ontology, Knowledge Management: Projects, Systems and Technologies (KM –

conference), "Carol I" National Defence University Publishing House, Editor: Toma

Pleşanu, Constanţa Bodea, Luiza Kraft, 2010, p. 23-28.

[Mih10e] Mihiş A.D., The Role of Disambiguation in Ontology Evaluation, The Seventh

International Conference on Applied Mathematics (ICAM7), Minisymposium 6-

Software Engineering - Principles and Practices, Baia Mare, September 1-4 2010.

 [Mih10f] Mihiş A.D., Ontology Assisted Formal Specification Extraction from Text,

Studia Universitatis Babeş-Bolyai, Informatica, Vol. 55, No. 4, 2010, Cluj-Napoca,

p. 103-113.

 [Mil80] Milner R., A Calculus of Communicating Systems, Springer-Verlag, 1980.

 [Mon01] Monz C. and de Rijke M., Light-Weight Entailment Checking for Computational

Semantics, Proceedings of the third workshop on inference in computational semantics

(IcoS-3), editors Blackburn P. and Kohlhase M., 2001.

44

[Mor06] Morita T., Fukuta N., Izumi N. and Yamaguchi T., DODDLE-OWL: A Domain

Ontology Construction Tool with OWL, Proceedings of the 1
st
 Asian Semantic Web

Conference, Lecture Notes in Computer Science, vol. 4185, Beijing, China, 2006,

p. 537-551,

http://iws.seu.edu.cn/resource/Proceedings/ASWC/2006/papers/4185/41850537.pdf.

[Mor91] Morris J., Hirst G., Lexical Cohesion Computed by Thesaural Relations as an

Indicator of the Structure of Text, Computational Linguistics, Vol. 17, No. 1, 1991,

p. 21-48.

[Mor90] Morgan C., Programming from Specifications, Programming Research Group,

University of Oxford, Prentice Hall International (UK), 1990.

[Nel79] Nelson W.F. and Kucera H., Brown corpus manual, Dept. of Linguistics, Brown

University 1979, http://icame.uib.no/brown/bcm.html.

[Oră06] Orăşan C., Comparative evolution of modular automatic summarization systems

using CAST, Ph.D. Thesis, University of Wolverhampton, UK, 2006.

[Per96] Periyasamy K., Chidambaram J., Software Reuse Using Formal Specification of

Requirements, Proceedings of the 1996 conference of the Centre for Advanced Studies

on Collaborative Research, IBM Press, Toronto, Canada, 1996

http://www.cs.ubc.ca/local/reading/proceedings/cascon96/pdf/periyasc.pdf

[Pet62] Petri C.A., Kommunikation mit Automaten, Ph. D. Dissertation, University of

Bonn, Germany, 1962.

[Pol09] Pollock J. T., Semantic Web for Dummies, Wiley Publishing, Indianapolis, 2009.

[Rad02] Radev D., Hovy E. and McKeown K., Introduction to the Special Issues on

Summarization, Computational Linguistics, Vol. 28, No. 8, 2002, p. 399-408.

[Ric91] Richie D., The Koan, Zen Inklings. Some Stories, Fables, Parables and Sermons,

New York and Tokyo: Weatherhill,1991, p. 25-27

 [Ros85] Ross T. D., Applications and Extensions of SADT, IEEE Computer, Vol. 18, No.

4, April 1985, p. 25-34.

[Rus95] Rushby J., Model Checking and Other Ways of Automating Formal Methods,

http://www.csl.sri.com/Reports/html/SQW95.html.

[San07] Sanchez D. and Moreno A., Semantic disambiguation of taxonomies, Proceeding

of the 2007 Conference on Artificial Intelligence Research and Development, Frontiers

in Artificial Intelligence and Applications, vol. 163, 2007, p. 245-254.

[Sil02] Silber H., McCoy K, Efficiently computed lexical chains, as an intermediate

representation for automatic text summarization, Computational Linguistics, 28(4),

2002, p. 487-496.

[Sch05] Schach S.R., Vanderbilt University, Object-Oriented and Classical Software

Engineering, sixth edition, McGraw-Hill, New York, 2005.

[Smi99] Smith G., The Object-Z Specification Language, Kluwer Academic Publishers,

1999.

[Ste02] Stevenson M., Combining Disambiguation Techniques to Enrich an Ontology,

Proceedings of the ECAI 2002 Workshop on Machine Learning and Natural Language

Processing for Ontology Engineering, Lyon, France, 2002.

[Sto04] Stokes N., Applications of Cohesion Analysis in the Topic Detection and Tracking

Domain, Ph.D. Thesis, Faculty of Science, National University of Ireland, Dublin,

2004.

http://iws.seu.edu.cn/resource/Proceedings/ASWC/2006/papers/4185/41850537.pdf
http://icame.uib.no/brown/bcm.html
http://www.cs.ubc.ca/local/reading/proceedings/cascon96/pdf/periyasc.pdf
http://www.csl.sri.com/Reports/html/SQW95.html

45

[Suk08] Suktarachan M., Thamvijit D., Rajbhandari S., Noikongka D., Mahasarakram P.,

Yongyuth P., Kawtrakul A. and Sini M., Workbench with Authoring Tools for

Collaborative Multilingual Ontological Knowledge Construction and Maintenance,

Proceedings of the Sixth International Language Resources and Evaluation (LREC'08),

Marrakech, Morocco, 2008, p. 2501-2508, http://www.lrec-

conf.org/proceedings/lrec2008/pdf/624_paper.pdf.

[Şer05] Şerban, A. C., Mihiş, A.D., Software Quality Assurance, Proceedings of the

Symposium „Zilele Academice Clujene”, 2005, p. 207-212.

[Tan09] Tan H. and Lambrix P., Selecting an Ontology for Biomedical Text, Mining

Human Language Technology Conference, Proceedings of the Workshop on BioNLP,

Association for Computational Linguistics, Boulder, Colorado, June 4-5 2009, p. 55-

62, http://www.aclweb.org/anthology/W/W09/W09-1307.pdf.

[Tăt99] Tătar D., Bazele matematice ale calculatoarelor, UBB lithography, 1999.

[Tăt07a] Tătar D., Şerban G., Mihiş A.D., Lupea M., Lupşa D. and Militon F., A Chain

Dictionary Method for Word Sense Disambiguation and Applications, Mathematical

Reviews, www.ams.org/mathscinet/ , Studia Universitatis "Babeş-Bolyai", Informatica:

KEPT 2007, June 6-8 2007, p. 41-49.

[Tăt07b] Tătar D., Şerban G., Mihiş A.D., Mihalcea R., Textual Entailment as a

Directional Relation, CALP 2007, INCOMA Ltd., editor: Orăşan Constantin & all,

2007, p. 53-58.

[Tăt08a] Tătar D., Mihiş A.D. and Lupşa D., Text Entailment for Logical Segmentation

and Summarization, BDI, Proceedings of the 13
th

 international conference on Natural

Language and Information Systems: Applications of Natural Language to Information

Systems, Document Processing and Text Mining, http://www.informatik.uni-

trier.de/~ley/db/conf/nldb/nldb2008.html, Lecture Notes in Computer Science, Vol.

5039, 2008, p. 233-244.

[Tăt08b] Tătar D., Mihiş A.D., Şerban G., Lexical Chains Segmentation in Summarization,

SYNASC, IeAT Technical Report, 08-11, BDI, 2008, Timişoara, p. 95-101.

[Tăt08c] Tătar D., Mihiş A.D., Şerban G., Top-down Cohesion Segmentation in

Summarization, BDI, http://www.aclweb.org/anthology/W/W08/W08-2232.bib,

Research in Computational Semantics, vol. 1(2008), p. 389-397.

[Tăt08d] Tătar D., Mihiş A.D., Şerban G., Top-down Cohesion Segmentation in

Summarization, Step 2008, Venice, Italy, September 22-24 2008, College Publications,

editors: Bos J. and Delmonte R., 978-1-904987-93-2, BDI, 2008, p. 145-151.

[Tăt08e] Tătar D., Tămâianu-Morita E.S., Mihiş A.D., and Lupşa D., Summarization by

Logic Segmentation and Text Entailment, CICLing 2008, DBLP,

http://www.informatik.uni-trier.de/~ley/db/journals/index-r.html, Research in

Computing Science, Vol. 33(2008), p. 15-26.

 [Tăt09a] Tătar D., Mihiş A.D., Şerban G., Mihalcea R., Textual Entailment as a

Directional Relation, Journal of Research and Practice in Information Technology,

41(2009), 1, p. 53 – 64.

 [Tăt09b] Tătar, D., Mihiş, A. D., Şerban, G., Lexical Chains Segmentation in

Summarization, SYNASC 2008, IEEE Computer Society, Editor: Viorel Negru, Tudor

Jebelean, Dana Petcu, Daniela Zaharie, 978-0-7695-3523-4,

http://www.computer.org/cps, 2009, p. 95-101.

http://www.lrec-conf.org/proceedings/lrec2008/pdf/624_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/624_paper.pdf
http://www.aclweb.org/anthology/W/W09/W09-1307.pdf
http://www.informatik.unitrier.de/~ley/db/
http://www.informatik.unitrier.de/~ley/db/
http://www.aclweb.org/anthology/W/W08/W08-2232.bib
http://www.informatik.uni-trier.de/~ley/db/journals/index.html

46

[Tăt09c] Tătar D., Mihiş A.D., Lupşa D., Tămâianu-Morita E.S., Entailment-Based Linear

Segmentation in Summarization, International Journal of Software Engineering and

Knowledge Engineering, 19(2009), 8, p. 1023 – 1038.

[Tho95] Muffy T., Formal methods and their role in developing safe systems,

www.iee.org.uk/PAB/SCS/wrkshop.htm/, Workshop report, March 20 1995.

[Tei77] Teichroew D. and Hershey E.A. III, PSL/PSA: A Computer-Aided Technique for

Structured Documentation and Analysis of Information Processing Systems, IEEE

Transactions on Software Engineering, SE-3, January 1977, p. 41-48.

[Tuc99] Tucker R. I., Automatic summarising and the CLASP system, Ph.D. Thesis,

University of Cambridge, Computer Laboratory, 1999.

[Wil06] Wilkinson M. and Good B., Construction and Evaluation of OWL-DL Ontologies,

Microsoft Research Faculty Summit, Redmond, USA, July 17-18 2006,

http://research.microsoft.com/en-us/um/redmond/events/fs2006/agenda_mon.aspx.

[Woo96] Woodcock J. and Davies J., Using Z, Specification, Refinement and Proof,

Prentice Hall, 1996.

[Yil07] Yildiz, B. and Miksch, S., ontoX - a method for Ontology-driven information

extraction, Proceedings of the 2007 international conference on Computational science

and its applications - Volume Part III, Workshop on CAD/CAM and web based

collaboration (CADCAM 07), Springer-Verlag Berlin, Heidelberg 2007, p. 660-673.

[You79] Yourdon E. and Constantine L.L., Structured Design: Fundamentals of a

Discipline of Computer Program and Software Design, Prentice Hall, Englewood

Cliffs, NJ, 1979.

[***Adr] http://www.cs.ubbcluj.ro/adriana/Teaching.html, December 2010

[***BrC] http://www.archive.org/details/BrownCorpus

[***Por] http://ir.dcs.gla.ac.uk/resources/linguistic_utils/

[***RTE] http://www.pascal-network.org/Challenges/RTE/

[***Sem] http://www.gabormelli.com/RKB/SemCor_Corpus

[***Sen] http://www.senseval.org/

[***SPW] Probably the most widely used stopword list,

http://www.lextek.com/manuals/onix/stopwords1.html

[***STO] The Stanford Natural Language Processing Group, Stanford Parser,

http://nlp.stanford.edu:8080/parser/

[***STS] The Stanford Natural Language Processing Group, The Stanford Parser: A

statistical parser, http://nlp.stanford.edu/software/lex-parser.shtml

[***WHR] A Wikipedia article about Human Resources,

http://en.wikipedia.org/wiki/Human_resources

[***WnB] The definition of the noun business http://www.wordnet-

online.com/business.shtml.

[***WNt] http://wordnetweb.princeton.edu/perl/webwn

[***WSM] http://en.wikipedia.org/wiki/Small_business

http://www.iee.org.uk/PAB/Safe-rel/
http://research.microsoft.com/en-us/um/redmond/events/fs2006/agenda_mon.aspx
http://www.cs.ubbcluj.ro/adriana/Teaching.html
http://www.archive.org/details/BrownCorpus
http://ir.dcs.gla.ac.uk/resources/linguistic_utils/
http://www.pascal-network.org/Challenges/RTE/
http://www.gabormelli.com/RKB/SemCor_Corpus
http://www.senseval.org/
http://www.lextek.com/manuals/onix/stopwords1.html
http://nlp.stanford.edu:8080/parser/
http://nlp.stanford.edu/software/lex-parser.shtml
http://en.wikipedia.org/wiki/Human_resources
http://www.wordnet-online.com/business.shtml
http://www.wordnet-online.com/business.shtml
http://wordnetweb.princeton.edu/perl/webwn

	Titlul_rezumat_2011_en
	Cuprins-rezumat_2011_en
	Rezumat_2011_EN-septembrie
	Bibliografie_rezumat_en

