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Chapter 1

Introduction

This chapter contains a short introduction and the problem statement. The

main contributions on the field are also presented. The organization of the

thesis is in final section of this part.

Computational Game Theory (GT) is extensively used in economics,

social sciences, biology, engineering, computer science, and as well in philoso-

phy. It is the attempt to capture the agents’ behavior in strategic situations,

in which an individual’s success in making choices depends on the choices of

others.

Game equilibria are the most common solutions proposed in GT. In or-

der to provide a adequate solutions many equilibrium concepts have been

developed. Probably among these equilibria the most famous one is the Nash

equilibrium.

The equilibrium concepts are motivated differently, depending on the field

of application, although they often overlap or coincide. Detecting game equi-

libria is a fundamental computational problem within non-cooperative game

theory, having non-trivial connections with multi-criteria optimization.

Problem statement

The aims are to detect all game equilibria, of a certain type, and to develop

other types of equilibria that model the behaviour of real players.

Computing Nash equilibrium is one of the central open problems in compu-

tational game theory due its complexity.Some classic deterministic algorithms

for approximating equilibria in n-players games have been proved to be expo-

nential.

We will consider normal form games with pure strategies in order to sim-

plify the players’ choices. If the payoff functions are semi-continuous and

strongly quasi-concave, for example, then an ε- Nash equilibrium exists in

pure strategies for every positive ε. The mathematical models involved in the

numerical simulations respect these conditions.
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In order to cope with players different rationalities the concept of strategic

game must be generalized. The non-homogeneity of players behaviour must

be also considered.

Contributions

The main contributions of this dissertation to the field include:

• A new concept of non-cooperative generalized game, where the players

are allowed to have different types of rationality. Nash assumed that all

players are selfish, pursuing their own goals, however in reality humans

also have altruistic behaviour. The strategy profile is modified in order

to include the players biases.

New equilibria for the generalized games are introduced by combining

existing equilibrium concepts, thus offering new solutions. Evolutionary

methods to detect the new equilibria type are applied. A fitness based on

non-domination is build by combining different relations of domination

(such as Pareto or Nash ascendancy).

• Several new relations of domination for Nash and ε-Nash equilibrium.

The new relations are used in order to detect approximations of the

Nash, and ε-Nash equilibrium respectively, by guiding the evolutionary

search towards solution.

Non-uniform ε-Nash equilibrium is introduced generalizing the concept

of ε-Nash equilibrium. Generative relations for the new equilibrium are

establish and the solution is computed using evolutionary techniques

based on non-domination.

Investigation of the generative relations for Nash equilibria by compar-

ison with the Pareto domination in order to attempt equilibria com-

putation for large games, games with great number of players. Also

evolutionary methods are developed in order to attempt detecting game

equilibria in large games.



Chapter 2

Background and Related Work

Chapter 2 presents several basic notions from game theory such as non coop-

erative games in normal form, pure strategies, and strategies profiles. After

these definitions, several examples of famous games are described (Oligopoly

markets of Cournot and Bertrand type games, quantum games, prisoners

dilemma). The solution concepts in game theory are discussed and a formal

framework for generative relations is depicted.

A game consists of a set of players (agents), and each player has a set of

strategies available to her as well as a payoff function.

With respect to the relationship between the players point of view GT can

be divided in two major parts: cooperative game theory and non-cooperative

game theory. We will consider here the non-cooperative game theory with

solutions in pure strategies.

The players will also be rational, and they will have complete information

on the game. This means that each player makes the best rational decision

in order to achieve his/her goal (maximaze the profit for example) and that

every player has complete knowledge of the other players strategies, options

and payoffs.

A player’s strategy space is the set of all strategies available to him. The

set of strategies available to a player can be discreet (for example in Prisoners

dilemma game) or continuous (like in the oligopolies of Cournot type).

A strategy profile (or simple ’a strategy’) is a complete plan of action for

every stage of the game, regardless if that stage actually arises in play.

The payoff function for a player is a mapping from the cross-product of

players’ strategy spaces to the player’s set of payoffs, i.e. the payoff function

of a player takes as its input a strategy profile and yields a representation of

payoff as its output.

The games will be represented in normal-form as a matrix for discreet

strategies sets.
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Definition 1 A finite strategic game is defined [27] as a system

Γ = (N, S, U)

where:

• N = {1, ..., n} is a set of n players;

• for each player i ∈ N , Si = {si1, si2 , ..., sim} represents the set of the

actions (pure strategies) available to player i;

• S = S1 × S2 × ...× Sn is the set of all possible situations of the game;

• an element from S is a strategy profile (or strategy) of the game;

• for each player i ∈ N , ui : S → R represents the payoff function

U = (u1, u2, ..., un).

Let s∗ be a strategy profile.

Denote by (sij, s
∗

−i) the strategy profile obtained from s∗ by replacing the

strategy of player i by sij i.e.

(sij, s
∗

−i) = (s∗i , s
∗

2, ..., s
∗

i−1, sij, s
∗

i+1, ..., s
∗

n).

where s∗
−i is a strategy profile where player’s i strategy has been removed.

In order to detect all equilibria for a certain game Γ using evolutionary

techniques the search can be guided similar with the detection of the Pareto

set for a multi objective optimisation problem. There are many similarities be-

tween the multi objective optimisation problems and solving games. Recently

an evolutionary technique has been developed for Nash equilibria detection.

We will exemplify the similarities between the two evolutionary techniques

and a possible framework to detect and define more equilibria types.

A particularity of the games is, if we look from a multi objective problem

point of view, that the number of players equals the number of variables and

the number of objectives.



Chapter 3

Game Equilibria

Chapter 3 describes several game equilibria and the corresponding generative

relations for them. The concept of non-cooperative game is generalized by tak-

ing in account the players’ rationalities. A new generative relation for ε-Nash

and non-uniform ε-Nash is introduced. Also by combining Nash and Pareto

rationalities (selfish and altruistic behaviour) a new equilibrium is defined –

Joint Nash-Pareto equilibria.

Definition 2 Profile strategy s∗ is a Nash equilibrium if the inequality ui(s
∗) ≥

ui(si, s
∗

−i) holds for every action si of player i, si ∈ Si.

Remark 1 In a pure strategy Nash equilibrium each decision-maker plays

a pure, non necessarily dominant strategy, that is the best response to the

strategies of other players.

Let k(s′, s′′) denotes the number of individual strategies from s′ which

replaced in s′′ give better payoff for the corresponding player

k(s′′, s′) = card{i ∈ {1, ..., n}|ui(s
′

i, s
′′

−i)

> ui(s
′′), s′i 6= s′′i }.

Otherwise stated k(s′′, s′) is the number of players benefiting by switching

from s′′ to s′ and measures the sensitivity of s′′ with respect to perturbations

supplied from s′. The lower sensitivity, the higher is the stability of s′′ with

respect to s′.

We may use

m(s′′, s′) = n− k(s′′, s′)

as a measure for the relative quality of s′′ with respect to s′.
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Let us consider a relation RN on S × S:

(s′, s′′) ∈ RN

if and only if s′ is better than s′′ with respect to m, i.e.

m(s′, s′′) > m(s′′, s′).

Therefore (s′, s′′) ∈ RN if and only if k(s′, s′′) < k(s′′, s′).

Proposition 1 RN is the generative relation of the Nash equilibrium, i.e.

non-dominated strategies with respect to RN are the Nash equilibria of the

game.

A solution concept that reflects the idea that players might not care about

changing their strategies to a best response when the amount of utility that

they could gain by doing so is very small leads to the idea of an ε-Nash

equilibrium.

Definition 3 The profile strategy s∗ is a ε-Nash equilibrium if the inequality

ui(s
∗) ≥ ui(si, s

∗

−i) + ε

holds for every action si of player i, si ∈ Si.

In an n-player game is natural to assume that players have different dispo-

sitions towards the accepted risks and possible gains. There are several ways

to express the players particularities. In order to describe players different

interests each player can be characterized by a particular value of ε. This

represents a generalization of the standard ε-Nash equilibrium. We called it

non-uniform ε-Nash equilibrium.

The concept of ε-Nash equilibrium may be generalized by considering dif-

ferent ε for each player respectively. This generalization is useful in order to

cope with real situations.

Let us consider a vector

ε = (ε1, ε2, ..., εn),
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εi > 0 represents a perturbation associated to the player i.

Definition 4 The strategy s∗ ∈ S is a non-uniform ε-Nash equilibrium if the

inequality

ui(s
∗) ≥ ui(si, s

∗

−i) + εi

holds for every action si of player i, si ∈ Si, i = {1, 2, ..., n}.

Generalized Games

A natural question is what happens if the players compete against each

other relying on different types of rationality. A generalized game were agents

are not uniform with respect to the rationality type is introduced. The type

of rationality may be considered as reflecting the player interests, bias or

subjectivity. For instance the players can be more or less cooperative, more

or less competitive. In this way we can also allow players to be biased toward

selfish or altruistic behavior.

We assume the rationality type is described by an adequate meta-strategy

concept. In a game players may assume different meta-strategies. The new

paradigm offers a more realistic view and opens the possibility to further

development in the Game Theory and significant applications. For instance

multi-agent systems could benefit from the new approach.

The concept of generalized game with players characterized by several

types of rationality is investigated. The new concepts are exemplified by

considering a game were some players are Nash - and the other are Pareto-

driven. An evolutionary technique for detecting the corresponding equilibrium

for the generalized game is proposed.

A meta-strategy is a system

(s1|r1, s2|r2, ..., sn|rn),

where (s1, ..., sn) is a strategy profile. A finite strategic generalized game is

defined as a system by G = ((N,M,U) where:

• N represents the set of players, N = 1, ...., n, n is the number of players;

• for each player i ∈ N , Mi represents the set of available meta-strategies,
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• M = M1 × M2 × ... × MN is the set of all possible situations of the

generalized game and S = S1 × S2 × ...× SN is the set of all strategies;

• for each player i ∈ N , ui : S → R represents the payoff function

U = (u1, u2, ..., un).

N-P - efficiency relation

Let us consider two meta-strategies

x = (x1|r1, x2|r2, ..., xn|rn),

and

y = (y1|r1, y2|r2, ..., yn|rn).

Let us denote by IN the set of Nash biased players (N-players) and by IP the

set of Pareto biased players (P-players). Therefore we have

IN = {i ∈ {1, ..., n}|ri = Nash},

and

IP = {j ∈ {1, ..., n}|rj = Pareto}.

Let us introduce an operator E, measuring the relative efficiency of meta-

strategies:

E : M ×M → N,

defined as

E(x, y) = card({i ∈ IN |ui(xi, y−i) ≥ ui(y), xi 6= yi} ∪

{j ∈ IP |uj(x) < uj(y), x 6= y}).

Remark 2 E(x, y) measures the relative efficiency of the meta-strategy x with

respect to the meta-strategy y.

The relative efficiency enables us to define a relation between meta-stra-

tegies.
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Definition 5 Let M1,M2 ∈ M . The meta-strategy M1 is more efficient than

meta-strategy M2, and we write M1 < E M2, if and only if

E(M1,M2) < E(M2,M1).





Chapter 4

Evolutionary equilibria detection

Chapter 4 proposes different evolutionary techniques to detect fast a good

approximation of game equilibria. Several generative relations are proposed,

relations that intend to improve the ones already developed, among them:

differential generative relation for Nash equilibria, joint N-P differential gen-

erative relation, Probabilistic Nash ascendency. The relations are analysed

using a coefficient of relative domination in order to examine the possible use

of these relations for large games.

Let R be the generative relation for a the specific equilibrium E.

A sequence of approximations of equilibria set E may be constructed using

selection methods based on generative relation R and variation operators.

A population of strategies is evolved. A population member is an n-

dimensional vector representing a strategy s ∈ S. The initial population

is randomly generated. Strategy population at iteration t may be regarded

as the current equilibrium approximation. Subsequent application of the such

operators (like the simulated binary crossover (SBX) and real polynomial mu-

tation) is guided by a specific selection operator induced by the generative

relation.

Selection for survival can be done by using a procedure based on the same

selection operator or another one, also correlated to the generative relation.

In this way successive populations produce new approximations of the

equilibrium front, which hopefully are better than the previous one.

It important to note that the proposed method allows to obtain an ap-

proximation of certain equilibrium also for games that do not have such an

equilibrium.

The previous approach can be summarized in a technique called Relational

Evolutionary Equilibria Detection (REED) as described below.
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REED technique

1: Set t = 0;

2: Randomly initialize a population P (0) of strategies;

3: repeat

4: Binary tournament selection and recombination using the simulated

binary crossover (SBX) operator for P (t) → Q;

5: Mutation on Q using real polynomial mutation → P ;

6: Compute the rank of each population member in P (t) ∪ P with

respect to the generative relation. Order by rank (P (t) ∪ P );

7: Rank based selection for survival → P (t + 1);

8: until the maximum generation number is reached

Algorithm 1: Relational Evolutionary Equilibria Detection

Let us consider a Cournot duopoly.

Suppose there are two companies, that manufacture the same product in

quantities q1 and q2 respectively. Each one’s cost function is Ci(qi) = cqi for

all qi.

Let us consider the function

P (Q) =











a−Q , if Q ≤ a

0 , otherwise

The parameters a and c are experimental determined from direct compari-

son between the model and the real market. We may consider in the following

that a = 24 and c = 9.

The i firm profit is:

πi(qi, qj) = qiP (Q)− Ci(qi)

= qi [a− (qi + qj)− c] .

The Nash equilibrium for this game is:

q∗ = (q∗1, q
∗

2) = (
1

3
(a− c),

1

3
(a− c)).

The results for joint equilibria for diffrent rationalities are represented
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together in Figure 4.1.
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Figure 4.1: Discrete representation in the payoff space of the pure and joint equi-

libria detected using REED technique in 3 different runs, one for each equilibrium

type respectively.

Differential generative relation of Nash equilibria

A new generative relation for Nash equilibrium is presented [18]. This

relation relies on the payoff difference between perturbed and non perturbed

strategies.

We introduce the measure

m(y, x) =
∑

i∈N

(ui(xi, y−i)− ui(y)).

Definition 6 The strategy x dominates y, and we write x <DGN y, if the

inequality

m(x, y) < m(y, x),

holds.

Several numerical experiments have been performed for this game using

REED technique.

We use a symmetric Cournot model with parameters a = 24 and c1 = c2 =

c3 = 9.

According to the results, in less than 30 generations, the algorithm con-

verges to the Nash equilibrium point (14.00, 14.00, 14.00) for each relation. We
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observe that the differential Nash domination provides more accurate results

than the Nash ascendency. We must consider however the particular nature

of this game. For other types of games a normalisation of the deviations must

be done in order to sum them.

Figure 4.2: The payoffs for the Nash-Nash-Pareto front detected in less than 30

iterations for the symmetric Cournot game with the Nash–Pareto generative relation

The resulting front in the Nash-Nash-Pareto case spreads from the stan-

dard Nash equilibrium corresponding to the two player–Cournot game (25.00,

25.00) to the Nash equilibrium corresponding to the three player–Cournot

game, and from there to the edges of Pareto front for the Nash–Pareto equi-

libria (see Figure 4.2).

Other experiments with other combinations of rationalities is presented in

the thesis.
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Evolutionary techniques for

equilibria detection in large games

Chapter 5 investigates the use of evolutionary techniques for large games,

games that have a great number of players. Several methods are investigated,

like differential evolution or memetic algorithms. A step-stone reinforcement

method is developed in order to perform a local search.

Increasing the number of players is one of the challenges facing algorithmic

game theory just as increasing the number of objectives is for multi-objective

optimization.

Coefficient of relative dominance

Let us consider P a set of m strategy profiles,

R ⊂ S1 × S2 × ...× Sn.

In order to compare Nash-ascendancy and Pareto dominance in the pop-

ulation P we consider a coefficient of relative dominance[32]

Krd =
D

T
,

where D denotes the number of pairs from P in which one individual domi-

nates the other, and T the total number of unique pairs of individuals form

P .

If we consider a game of Cournot type, and a random population P of

strategies, and we compare Krd for Pareto and Nash ascendency we obtain

the results presented in Figure 5.1. For Pareto the results are similar with

the ones in current literature. As the number of players increases, the chances

that two individuals from P to dominate one another get extremely low.

For the Nash-ascendancy generative relation, things are quite different. As
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large games

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18  20

K
rd

Number of players

for Nash ascendency
for Pareto domination

Figure 5.1: The coefficient of relative dominance computed for Nash-ascen-
dency and for Pareto dominance respectively, for the Cournot oligopoly and
for a random generated population of 50 strategies.

the number of players increases so does Krd (see Figure 5.1) and the number of

indifferent individuals with respect to the ascendancy relation tends to zero.

Probabilistic Nash ascendancy relation

When evaluating the Nash ascendancy relation for two strategy profiles,

2N payoff functions have to be computed. For a large number of players this

number increases the computational complexity of the algorithm by increasing

the number of fitness function evaluations [23]. One way to reduce this number

is to consider only a subset of players when computing the k operator. This

subset can be randomly chosen from the player and its size can be constant

or it can vary.

Thus, we may consider a subset I ∈ N composed of a percent q of randomly

chosen players from N . The operator kq : S × S → N can be defined as

kq(x, y) = |({i ∈ I|ui(yi, xi)ui(x), yi = xi}|.

kq(x, y) counts the number of players from the set I that benefit from changing

their strategies from xi to yi , i ∈ I while the others keep theirs unchanged.

Thus only players selected in I participate in the evaluation of the ascendancy
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relation reducing the number of payoff function evaluations to

2qN

100
.

In order to evaluate the efficiency of the probabilistic generative relation

we will use several evolutionary methods.

In DE (differetial evolution) algorithm, introduced by Storn and Price in

1995 [42], new candidate solutions (offspring) from a weighted difference of

parent solutions.

In DE, first, all individuals are initialized and evaluated according to a

given fitness function. Instead we will evaluate in the process the correspond-

ing payoffs for each strategy profile of the game.

Afterwards as long as the termination condition is not fulfilled (e.g. the

current number of fitness evaluations performed is below the maximum num-

ber of evaluations allowed) the following process will be executed: For each

individual in the population, an offspring is created.

In the traditional DE, the offspring replaces the parent if it is fitter. Oth-

erwise, the parent survives and is passed on to the next generation (iteration

of the algorithm). Since on our approach the fitness is determined by non-

domination with respect to the generative relation, an offspring replaces the

parent only if it dominates it.

In order to detect all equilibria we used a Crowding DE (CrDE) algorithm.

This method extends DE with a crowding scheme modifying the conventional

DE only regarding the individual (parent) being replaced.

A DE/rand/1/exp scheme is used. In the form presented here, CrDE has

already been used in Nash equilibria detection for large Cournot games [29].

Within CrDE individuals from population P represent strategy profiles of

the game that are randomly initialized in the first generation.

As long as the final condition is not fulfilled (e.g. the current number of

fitness evaluations performed is below the maximum number of evaluations

allowed) for each individual i from the population, an offspring O[i] is created,

where U(0, x) is a uniformly distributed number between 0 and x, pc denotes

the probability of crossover, F is the scaling factor, and dim is the number of

problem parameters (problem dimensionality).

In the traditional CrDE, the offspring O[i] replaces the closest parent P [i]
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large games

if it is fitter. Otherwise, the parent survives and is passed on to the next

generation (iteration of the algorithm).

Since on our approach the fitness is determined by non-domination with

respect to the generative relation, an offspring replaces the parent only if it

dominates it with respect to the proper generative relation for equilibria.

Stepping-Stone Reinforcing Search

An initial strategy profile x is randomly generated.

A mutation operator that modifies a position xi, where i is randomly

chosen with a value ± (± is also randomly chosen) is considered. Thus x′

i =

xi ± ε, where x′ denotes the potential offspring.

Each step a value of i is randomly generated until an offspring Nash as-

cending the parent is produced using the mutation operator described above.

This is equivalent to randomly searching for a player that improves its payoff

when modifying its strategy with ε (either + or −). In this case the offspring

becomes the parent. This step is aimed at reinforcing the Nash ’characteris-

tics’ of the current strategy profile.

The search ends when no such i is found for the current parent, i.e. within

the current strategy profile no player can improve its payoff by modifying its

strategy with ε.

All operators with all variants of generative relations are tested for 10, 20,

50 and 100 players. Because the number of payoff functions is equal to the

number of players, this setting creates the equivalent of four many-objective

optimization problem which are known to be difficult to solve by evolutionary

algorithms.

The probabilistic ascendancy relation was tested for q = 10%, 30%, 50%

and 100%. When q = 100% we have the Nash ascendancy relation.

The distance to Nash equilibria for the different values of q for SSRS and

CrDE indicate a better performance in the case of 100 individuals for SSRS

when using the probabilistic ascendancy relation. CrDE also exhibits a better

performance for a higher number of player for different values of q.

Although SSRS’s accuracy is better than CrDE’s, its main disadvantage

is that, in the current form, SSRS is only capable of detecting one NE at a

time.

Memetic approaches
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The above-mentioned Nash-based domination concept facilitates the com-

parison of two solutions, ascertaining that one is "closer" than the other to the

equilibrium. Applying this domination concept in the framework of evolution-

ary computation, by using the generative relation within the EA comparison

procedures, leads to algorithms for search and detection of a game’s Nash

equilibria, as the algorithm will converge to the Nash non-dominated solu-

tions. An evolutionary model that incorporates a global search within the

game solutions’ space is proposed. This search is performed using a genetic

algorithm that has been adapted so it detects a game’s Nash equilibrium.

Then, a local search algorithm is used, aimed to improve the quality (thus

reducing the ”distance” to the NE) of the new population’s best candidate

solution.

Nash Extremal Optimization

Extremal Optimization (EO) [51, 50] is a general-purpose heuristic for

finding high-quality solutions for hard optimization problems. EO has been

adapted to detect NEs of noncooperative games resulting in a new method

called Nash Extremal Optimization (NEO).

The main feature of EO is that the value of undesirable variables in a

sub-optimal solution are replaced with new, random ones. A single candidate

solution is used to search the space. Depending on the problem and the

representation used this solution may be formed of several components. EO

assigns a fitness to each individual component of the candidate solution and

ranks them accordingly. Each iteration of the EO the component having the

worst fitness is randomly and unconditionally altered; if the new solution is

better then the best so found so far, it will replace it.

Within NEO the candidate solution represents a strategy profile s ∈ S,

s = (s1, s2, ..., sn) of the game to be solved. Each component j, j = 1, ..., n of

strategy profile s represents the strategy of player j in that situation of the

game. A natural fitness for each player i is its payoff ui(s) of which the ’worst’

uj(s) is identified:

uj(s) ≤ ui(s), ∀i ∈ {1, ...n}, i 6= j.

The only measure of quality on s is provided by the ranking of the player j,

implying that all the other players are gaining more than this player for this
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large games

state of the game.

Aside from this ranking there are no other parameters to adjust for select-

ing better solutions. The strategy of player j is randomly altered irrespective

the new strategy is better or not than the previous one. Thus the near -

optimal solutions are enforced by the bias against the worst solutions of the

game.

Using the generative relation for Nash equilibria the new profile strategy

s′ is compared with the best candidate for a solution found so far sbest. If s′

dominates sbest, with respect to the Nash ascendancy relation, s′ becomes the

new best candidate, and the search continues until a termination condition is

met.

However, within NEO, as well as in EOs, the worst solution may be blocked

(no further improvement is possible). This could represent a problem as the

step always selects only the worst solution/player to be altered. If this happens

the search process may stop without reaching even a local optimum.

Numerical experiments aim at illustrating how NEs can be computed by

means of evolutionary algorithms based on appropriate generative relations

for the large Cournot oligopoly model [5].

The operators are tested for 10, 50, 100, 250, 500, 750, and 1000 players.

Because the number of payoff functions is equal to the number of players, this

setting creates the equivalent of seven many-objective optimization problem

which are known to be difficult to solve by evolutionary algorithms.



Chapter 6

Conclusions and Further Work

Chapter 6 summarizes the content of the thesis and some conclusions and

further possible developments are presented.

Different equilibria, considered solutions in GT, can be characterised by

generative relations between game strategy profiles. Binary generative rela-

tions for Nash and ε-Nash equilibria are considered.

An evolutionary technique (REED) based on non domination, similar with

the NSGA, for detecting approximations of non cooperative game equilibria

is developed. The method is validated trough comparison with the analytical

results for some well known games. Cournot and Bertrand models are used

to exemplify the detection of (ε-) Nash, (ε-) Pareto.

The use of generative relations allows equilibria hybridization. Each equi-

librium is characterized by a particular generative relation. In this way new

types of equilibria can be easily defined.

The concept of game is generalized attaching to each player his rationality.

For example combining selfish players (Nash) and altruist players (Pareto) a

new equilibrium concept is developed: Joint N-P equilibria.

Generative relations for Nash equilibrium based on differences between

perturbations are presented. Generative relations between meta strategies

induce corresponding solutions concepts named Joint differential Nash–Pareto

equilibrium.

Using again REED evolutionary technique an approximation of the new

defined equilibrium is detected.

Proposed method allowed to visualize the shape of equilibrium region and

a qualitative study of equilibria can be accomplished. This approach is a first

step toward a synthesis between computational game theory and evolutionary

games.

Further work will address more equilibria types and also the detection of

equilibria in mixed strategy with the use of generative relations. Designing
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specific algorithms for equilibria detection are other different possibilities of

further development.

Some properties of the generative relation for Nash equilibria in large game

are presented. As the number of players increases, the number of strategy

profiles indifferent to each other with respect to Nash ascendency relation

decreases, unlike the case of Pareto dominance.

The intransitive property of Nash equilibria is also outlined. All these as-

pects rise different challenges from those in many-criteria optimization, based

on Pareto dominance.

While the Pareto dominance relation becomes useless in many-objective

optimization due to too many indifferent individuals, it may be that the use

of the Nash ascendancy relation would become problematic because the lack

of indifferent individuals. In both cases - for many objectives/players - both

relations fail to indicate efficient solutions.

The study of these properties may be useful in improving the results of

evolutionary search operators designed for solving large games.

The use of a probabilistic generative relation versus the deterministic one

for Nash equilibria detection in non cooperative games is studied for several

Cournot oligopoly models. The probabilistic relation is introduced in order

to reduce the computational complexity of the search.

Two methods, a Crowding based Differential Evolution algorithm and a

Stepping Stone Reinforcing Search algorithm are used for numerical exper-

iments. Both proposed methods, when using the probabilistic ascendancy

relation are able to cope with higher number of payoffs (100) better than with

less (10). This indicates the potential of the proposed approach in surpassing

the problem of solving games with large number of players.

Further work includes a hybridization method for the two algorithms in

order to enhance their capabilities and solve multi-player games presenting a

set of multiple Nash equilibria.

Another hybrid method, called Global Search and Local Ascent algorithm

is presented. GSLA combines a generational evolutionary algorithm with a

hill climbing procedure in order to compute the Nash equilibria for a large non-

cooperative game. The search is guided using a generative relation allowing

the comparison of two strategy profiles within a game.
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The efficiency of the method is evaluated for an oligopoly taking into

account up to one hundred competing companies.

Results are compared with a modify version of the NSGA-II algorithm.

For the given setting, GSLA significantly outperforms NSGA-II, suggesting a

very good search potential.

Further work will consist in exploring this potential by using GSLA for

equilibria detection in games characterized by the existence of multiple Nash

equilibria.
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