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INTRODUCTION 

With the development of personal computers (PCs) in the early ‗70s and with the 

advent of the Internet (in 1989), there has been an unprecedented technological explosion, 

with major implications for all areas of human activity. 

The fast technological development has put pressure on education from the 

perspective of at least two essential requirements. First, it is necessary, more than ever, that 

the educational system equips students with the abilities and knowledge necessary to deal 

with the rapid changes that have taken (and still take) place in all areas of human activity. 

Second, information sources must be easy to access, create, change and be available anytime 

and anywhere the students desire, so that they may accomplish their goals and fulfill their 

personal learning needs. 

In an attempt to respond to these requirements, instructional design research has put 

forward two approaches: (a) using real-life learning tasks, with a high complexity that will 

help students acquire transferable abilities (Corbalan, Kester, & Van Merriënboer, 2006), and 

(b) increasing the flexibility of instructional programs (especially the computer-based ones), 

so that they correspond to demands such as just-in-time learning and education-on-demand. 

In a flexible educational program, not all learners benefit from the same instructional 

interventions (the same program for all); instead, each follows their own learning path, 

dynamically adapted to their personal needs, progress and preferences (education-on-

demand). Additionally, learners must be offered the possibility to benefit from instruction 

precisely when and where they need it (just-in-time learning). This approach implies in fact 

the personalization of instruction, which can be accomplished either by the computer 

program (e.g., the e-learning application assesses subjects‘ progress and selects adequate 

learning tasks of adequate difficulty and amount of support), or by the learners (students 

monitor their own progress and select the appropriate learning tasks). In the latter case we are 

talking about learner-controlled instruction. 

Both approaches can be found in this dissertation, as the learning tasks used in the 

computer program designed by us are characterized not only by realism – having a practical 

applicability – but also by complexity. Additionally, the sequence of learning tasks (in the 

adaptive program control) was conceived as a dynamic entity, in the sense that the tasks were 

permanently adapted to the learners‘ level of expertise. 

The aim of the studies presented in this dissertation was to investigate the degree to 

which personalized instruction, accomplished either by a computer program, or by the 

learners, optimizes the learning process, increases test performance and stimulates subjects‘ 

motivation, taking as a reference point fixed instruction, controlled by the program (a non-

adaptive program control). 

The analysis we conducted has sought to mainly answer two questions: (1) which type 

of instructional control (program control – adaptive vs. nonadaptive - or learner control) is 

more beneficial in terms of performance, time on task, learning efficiency (performance 

combined with invested mental effort and time on task) and motivation? and (2) to what 

extent does learners’ prior knowledge mediate these effects or influence the task selection 

process? 

The theoretical perspective that has guided our approach was cognitive load theory 

(Sweller, 1988), subsumed to the general cognitivist paradigm. The necessity to adapt 

instruction to the constraints of the learners‘ cognitive system represents the main concern of 

this theory, Sweller (1988) suggesting that, since a defining aspect of the human cognitive 

architecture is represented by the limited capacity of working memory, all instructional 

designs must be analyzed from the perspective of cognitive load theory. 
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The first three chapters in this dissertation are dedicated to the theoretical framework, 

the next five chapters present the empirical studies conducted, while the last chapter presents 

the final conclusions of the dissertation. 

In the first chapter, alongside the conceptual clarifications undertaken, we review the 

main learning paradigms that have had (and still have) an impact upon instructional 

technologies: behaviorism, cognitivism and constructivism. A relevant aspect in this sense is 

represented by the fact that in the field of instructional design there have been major changes 

both at the level of instructional technologies, as well as the level of learning paradigms that 

underlie them. Additionally, the first chapter also focuses on cognitive load theory (Sweller, 

1988), emphasizing theoretical and practical contributions of this approach for instructional 

design, but also the limits it has. 

Chapter 2 presents a theoretical framework of adaptive instructional technologies, 

with an emphasis on approaches and models of adaptation at the macrolevel, the microlevel 

and of aptitude-treatment interactions. From the point of view of the empirical approach 

developed in this dissertation, the most valid model of adaptation at the microlevel is the two-

level model of adaptive instruction (Tennyson & Christensen, 1988), which allows for the 

moment-to-moment adjustment of instruction to the learners‘ (ever-changing) performance. 

In chapter 3 we review operationalizations of learner-controlled instruction (internal 

control), the theoretical and research paradigms used in this field, and factors that influence 

(mediate) the effectiveness of this type of control. Extant research does not appear to support 

the hypothesis that learner-controlled instruction has a higher efficacy under all 

circumstances, compared to program-controlled instruction. 

Chapter 4 introduces a hybrid model of adapting instruction (put forward by us), 

which integrates the assumptions of the two-level model of adaptive instruction and of the 

four-component instructional design model (4C/ID; Van Merriënboer, 1997), as well as of the 

assumptions of cognitive load theory (Sweller, 1988). This personalized model allows for the 

dynamic selection of the learning tasks based on the learner‘s performance scores and 

invested mental effort. A computer-assisted instructional program for the learning of genetics 

has been developed to put the model into practice. Additionally, in this chapter we present the 

results of formative evaluation, whose purpose was to test the functionality, usability, but also 

the efficiency of the developed computerized learning environment in reaching the learning 

objectives set. 

Chapter 5 presents two closely related empirical studies investigating the effects that 

different types of instructional control have on the effectiveness and learning efficiency in 

learning genetics using students of different prior knowledge levels: students with low prior 

knowledge (i.e., high school students) vs. students with a higher prior knowledge (i.e., 

college students). More specifically, the first study compares – in terms of performance and 

learning efficiency– the following four types of instructional control: a non-adaptive program 

control, a full learner control, a limited learner control, and an adaptive program control. The 

second study represents a replication of the previous study with the purpose of verifying 

predictions regarding the influence of the type of instructional control on performance and 

learning efficiency in the context of increased level of learner expertise (inclusion of PhD 

students in the study). 

In chapter 6, the focus was on the task selection process and the features processed by 

the learners in this case (relevant vs. irrelevant task information). More specifically, the study 

aimed to investigate the differences between learners with a high prior knowledge level and 

those with a low prior knowledge level in the field of genetics, with respect to the manner of 

processing relevant information (structural fetures) versus irrelevant task information (surface 

features) in the selection process. To this end, several process-tracing techniques were 

combined, such as eye tracking, thinking aloud protocol, and cued retrospective reporting. 
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Chapter 7 presents two closely related studies whose purpose was to examine the 

influence of the type of instructional control upon the motivation of learners with different 

levels of expertise, as well as the relationship between their motivation and performance, 

invested mental effort, and time on task, respectively. 

In an attempt to capture mechanisms that explain the occurrence of significant 

individual differences in terms of performance obtained with the computer-based program 

developed, a quantitative analysis (semistructured interview) was conducted in chapter 8. The 

purpose of this analysis was to identify difficulties that learners have encountered in their 

interaction with the computer-based learning environment, and the manner in which these 

difficulties were reflected at the level of cognitive and metacognitive strategies used during 

the learning process (i.e., patterns of self-regulated learning).  

Chapter 9, dedicated to final conclusions, presents an overview of the results of the 

empirical studies included in the present dissertation, and their implications are discussed 

from the perspective of instructional design and educational applications. 

 

Chapter 1 

INSTRUCTIONAL TECHNOLOGY – THEORETICAL FRAMEWORK 

 

1.1 Conceptual conceptions 

Although for the people with no expertise in the educational field, the term 

instructional technology might only have a technical meaning (e.g., hardware components, 

etc), the instructional technology means more than those materials or equipment used in the 

instruction. They represent only the products of instruction, while the instructional 

technology is an applied field and, thus, involves a process often called instructional design 

(Lockee, Larson, Burton, & Moore, 2008). 

The terms educational technology, instructional design and instructional technology 

are used interchangeable in literature (Lockee et al., 2008) and so we do in the present 

dissertation. Some authors (e.g., Kim, Lee, Merrill, Spector, & Van Merriënboer, 2008) claim 

that although these terms are interchangeable used, they have a slightly different meaning. 

While the term educational technology has a more general meaning, including all 

technologies that support any type of learning in any environment, the term instructional 

technology has a narrower meaning and involves only the technologies developed for 

attaining some specific, planned learning outcomes. One of the most representative 

definitions of instructional technology is the one given by the Association for Educational 

Communications and Technology (AECT - 1994), according to which the instructional 

technology is „ the theory and practice of design, development, utilization, management, and 

evaluation of the processes and resources for learning.‖ (Seels & Richey, 1994). 

Instructional design is the discipline which studies these technologies, and their 

development and use in order to support instruction and learning. Reigeluth (1983) defined 

instructional design as a „linking science‖ between the learning theory and the educational 

practice, with the main purpose of prescribing some instructional actions necessary to 

optimize the desired learning outcomes. 

Kim et al. (2008) claimed that the study of the instructional design is represented by 

three distinct activities: (1). the development of tools and artifacts with the purpose to support 

learning; (2). the evaluation of the utility and efficacy of those tools in designing computer-

based learning environments, and (3) the evaluation of the impact these tools have upon 

learning. 
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1.2 History of instructional technologies 

Contrary to the general belief that the research, development and evaluation of the 

instructional technology began once the PCs started being used in the 1970s, it really took 

place long before that. Even from the early decades of the 20th century, instructional 

technology was constituted as a distinct field of research. The first research question was 

linked to the idea of enhancing learning with visual, and afterwards with audio-visual 

resources (for example the use of radio in instruction). As radio broadcasting grew in the 30s 

and the televison in the 50s, these mass media were easily accepted as methods of providing 

instruction both in schools and outside them. 

In the 60s, the interest towards teaching machines that incorporate programmed 

instruction (based on behaviorist perspective), invaded the field. Thus, the research field of 

the instructional technology extended from the audio-visual technologies to all the other types 

of instructional technologies, including the psychological ones (for example, programmed 

instruction). In the 80s, the interest had changed again, this time moving towards the design 

of some instructional systems which presume the clever application of the instructional 

methods, a change brought to life by the new insights from the constructivist and cognitive 

perspectives. 

As a result of the fact that in the 90s computers became pervasive, they have become 

the favourite way of supplying information/instruction. After the rapid global spread of the 

Internet after 1995, the computer networking started to have a function of communicating the 

information beside the one of storage and processing it. In the 21st century, the instructional 

technology focussed especially on the distance education, with the sole mission of helping 

people learn faster and more effective, in a less expensive manner. 

 

1.3 Paradigmatic perspectives to instructional technologies 

Learning and instructional theories are based on philosophical assumptions about 

knowing and learning, and these are implicit in the instructional design (Duffy & Jonassen, 

1992). Over the years, instructional design has been characterized by radical changes both at 

the level of technology and the level of paradigms which underlie it. The paradigms which 

provide theoretical framework for designing instructional technologies are behaviorism, 

cognitivism and constructivism. 

 

1.3.1. Behaviorism 

Behaviorism emerged in the first half of the 20th century and is based on a 

associationist approach. From an ontological perspective, this paradigm is based on an 

objectivist philosophy: the world is real and exists outside of the individual (Duffy & 

Jonassen, 1992). According to the behaviorism, in order to know something, individuals must 

accomplish specific behaviours in the presence of specific stimuli (Schuh & Barab, 2008). 

Programmed instruction represents an example of instructional design which 

facilitates learning by using reinforcement and feedback. In the case of programmed 

instruction, the instructional content is preplanned (based on the objective ontology), 

presenting the learners a plan of what needs to be learned. Teaching machines and the 

computer-assisted instruction,the descendants of programmed instruction, represent 

instructional technologies based on the reinforcement of the relationships between stimuli 

and responses. The essential aspect of these instructional technologies is represented by the 

content organisation so that the students might offer correct answers and benefit the 

reinforcement when they offer the correct answers (Saettler, 1995). 
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1.3.2. Cognitivism 

Cognitivism emerged with the cognitive revolution in the 50s, emphasizing on the 

necessity to focus on the human mind. Cognitivism focus on mind, seeing it as an 

information processing system ( the metaphor „mind-as-computer‖), with the purpose of 

understanding the way knowledge is organised, encoded and retrieval.  

Although the acquiring of knowledge structures underlie the cognitive perspective, as 

in behaviorsm, the rationalist epistemology (it considers that reason is the main source of 

knowledge) is the one that makes the distinction between behaviorism and cognitivism 

(Schuh & Barab, 2008). The unit of analysis of the cognitivism remains the individual, as in 

behaviorism, only it is not the behaviour that is analyzed, but the mental structures and the 

developed representations. 

Gagné‘s (1985) theory of instruction provides an exemplar within the cognitive 

perspective. This theory considers that during learning process, learners involve several 

capabilities, ierarchically organized, from simple to complex, and from particular to general. 

Gagné (1985) described five types of learning capabilities by which the learning can be 

facilitated: (1) intellectual skills; (2) verbal information; (3) cognitive strategies; (4) motor 

skills and (5) attitudes.  

 

1.3.3. Constructivism 

Constructivism emerged in 1990 as a alternative framework to the cognitive 

perspective. This paradigm states the existance of a real world that we experience (Duffy & 

Jonassen, 1992), so the ontological basis might as well be objectivist, but, because it is also 

states that this world cannot be directly know, the realism can also be the ontological base. In 

other words, like objectivism, constructivism considers that there is a real world which we 

experience, but the meaning of the world is imposed by us, it does not exist outside us (Duffy 

& Jonassen, 1992; Schuh & Barab, 2008). The individual remains unit of analysis of the 

constructivism, as in the case of cognitivism, but the focus is on the conceptual 

reorganization of the knowledge base, not on the extant structure of knowledge. 

În ciuda criticilor primite (vezi Driscoll, 2005), constructivismul a avut un „ecou‖ 

puternic în domeniul designului instrucţional. Din perspectiva acestei paradigme, strategiile 

instrucţionale trebuie să respecte următoarele principii generale (Driscoll, 2005): (1) procesul 

de învăţare să aibă loc în cadrul unor medii complexe şi realiste (de ex., microlumi); (2) să fie 

promovate mediile de învăţare colaborative (de ex., forumuri de discuţii); (3) sprijinirea 

perspectivelor multiple asupra problemelor; (4) încurajarea perfecţionării prin învăţare; (5) 

susţinerea procesului de construire a cunoştinţelor. 

Despite the critics (Driscoll, 2005), constructivism had a strong echo in the domain of 

instructional design. From this perspective, the instructional strategies must follow certain 

general principles (Driscoll, 2005): (1) the learning process must take place within complex 

and real environments (e.g., microworlds), (2) colaborative learning environments must be 

promoted, (3) multiple perspectives upon different problems must be supported, (4)  

mastering through learning should be encouraged, (5) the process of knowledge construction 

should be promoted.  

Without a solid theoretical framework and a systematic application of the paradigms 

in the design and development of the computer-based learning environments, it is very likely 

they will not improve performance (Spector, 2008). 

 

1.4 Cognitive load theory 

The necessity to adapt instruction to the constraints of the learner‘s cognitive system 

represented the main concern of the cognitive load theory, elaborated by Sweller et al. 

(Sweller, 1988; Sweller, Van Merriënboer, & Paas, 1998). The development of cognitive load 
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theory started in the late 1970s, now being one of the most influential theories in the field of 

instructional design. Numerous studies found empirical support for the assumption that 

without taking into account the limitations of the human cognitive system, the effectiveness 

of instructional design is absolutely accidental (Sweller et al., 1998). In other words, the 

design of the instructional materials must be aligned with the limited cognitive processing 

resources of the learners, in order to prevent the cognitive load and improve learning (Paas & 

Van Merriënboer, 1994). 

 

1.4.1. Basic assumptions of cognitive load theory 

The fundamental assumptions of cognitive load theory can be divided in two 

categories: (a) general assumptions and (b) specific assumptions (Gerjets, Scheiter, & 

Cierniak, 2009). 

(a) At the general level, cognitive load theory is based on the commonly accepted 

assumptions about human cognitive architecture, including the distinction between a limited 

working memory and a virtually unlimited long-term memory (see memory models 

elaborated by Atkinson and Shiffrin 1968; Baddeley 1999). From this perspective, the basic 

assumption is that the processing of instructional materials imposes a cognitive load which 

exceeds learners‘ working memory capacity, and as a result, interfere with learning.  

 (b) At the specific level, unique assumptions of cognitive load theory concern the 

differences between three types of cognitive load, namely, intrinsic, extraneous, and germane 

load (see Sweller et al. 1998). Cognitive load represents the mental resources which are 

allocated by the students to learn a particular material (Sweller & Chandler, 1994) or to 

perform a particular task (Sweller et al. 1998).  

1. Extraneous cognitive load  

One of the earliest versions of cognitive load theory focused on extraneous cognitive 

load only (Chandler & Sweller, 1991). This type of load is caused by the format of the 

instruction (Sweller 2005, Sweller et al. 1998), or by an inappropriate instructional design 

(Kalguya et al. 1998). A poor instructional design imposes a cognitive load because requires 

processes to overcome barriers imposed by this design. These processes are seen as irrelevant 

for learning because they are not directed to schema acquisition and schema automation 

(Sweller and Chandler 1994; Sweller 2005). From the cognitive load theory perspective, 

extraneous load interferes with learning and, thus, should be reduced as far as possible by 

eliminating irrelevant cognitive processes (Sweller et al, 1998).  

2. Intrinsic cognitive load  

Around 1993, another type of load was acknowledged, namely intrinsic cognitive 

load, which is imposed by the basic characteristics of the information, that is, the complexity 

of the information that must be processed (Sweller 1993). Complex materials are 

characterized by a high level of element interactivity, in this case, learners must to not only 

maintain information about these elements but also their interconnections simultaneously in 

working memory (Ayres, 2006; Gerjets et al., 2009). Both the element interactivity of the 

content and learners‘ prior knowledge determine the complexity of the information, and such 

as the intrinsic load (Sweller et al., 1998; Sweller, 2005). 

3. Germane cognitive load 

In 1998, Sweller et al.(1998) further augmented the cognitive load theory by 

introducing germane cognitive load. This type of load results from higher-level elaborative 

processes that go beyond the mere activation and memorization of information, being 

relevant to schema construction and schema automation. Germane load is caused by an 

adequate instructional design and is helpful for effective learning, as a result, it should be 

increased as far as possible.  
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Cognitive load theory assumes that intrinsic load, extraneous load and germane load 

are additive (Sweller et al., 1998). 

Cognitive load theory assumes that principal mechanisms of learning are schema 

acquisition and schema automation (Sweller & Chandler, 1991; Sweller et al., 1998). In order 

to promote learning, the main purpose of the instructional strategies should be to reduce 

extraenous load, optimize intrinsic load, and increase germane load (Gejerts & Scheiter, 

2003; Van Merriënboer & Sweller, 2005).  

 

1.4.2 Measuring cognitive load 

Mai multe studii au indicat că efortul mental investit de utilizatori constituie „esenţa‖ 

încărcării cognitive şi, prin urmare, efortul mental este adesea considerat un indicator fidel al 

încărcării cognitive (Paas, 1992; Paas et al., 2003).  

There are three major methods of cognitive load measurement (Paas et al., 2003; 

Schnotz & Kürschner, 2007): physiological measures (papillary dilation or heart rate 

variability), subjective ratings (experienced difficulty and mental effort can be measured with 

subjective rating scales), and performance-based measures (dual task methodology; 

Brüncken, Plaas, & Leutner, 2003).  

 

1.4.3 Limitations of cognitive load theory  

Principalele critici aduse în acest sens se referă la modul de măsurare a conceptelor 

fundamentale ale teoriei încărcării cognitive şi la testarea asumpţiilor specifice (Schnotz & 

Kürschner, 2007).  

Cognitive load theory has many conceptual, methodological and practical limitations, 

which need to be surmounted before the research can adequately test the predictions (Bannert 

2002; Brünken et al. 2009; Horz and Schnotz 2009; Moreno 2006; Schnotz and Kürschner 

2007). The main conceptual and methodological issues surrounds the lack of clarity of 

cognitive load concept itself and lack of standard, reliable, and valid measures for the 

constructs of the theory. 

 

 

 



Chapter 4 

PERSONALIZATION OF THE LEARNING TASKS  TO THE LEARNERS’ 

EXPERTISE LEVEL 

 

4.1 Study 1: A methodological contribution  

Adapting instruction to the individual student‘s progress seems a good way to reduce 

learners‘ cognitive load and improve learning results (Kalyuga & Sweller, 2005; Salden, 

Paas, & van Merriënboer, 2006). More specifically, in order to prevent a possible cognitive 

overload, the task difficulty and amount of support of each newly selected learning task 

should be adapted to the learners‘ expertise level and perceived mental effort (Corbalan, 

Kester, & van Merriënboer, 2006). According to adaptive models, the use of a computer 

program allows personalization of instruction by dynamically changing the instruction (i.e., 

task difficulty) as a response to input from the learners (i.e., performance scores and invested 

mental effort of each learning task). 

Research using such adaptive program instruction has shown to lead to a more 

efficient training and higher transfer test performance compared to a non-adaptive program 

control (Camp, Paas, Rikers, & van Merriënboer, 2001; Corbalan et al., 2006; Kalyuga & 

Sweller, 2005; Salden, Paas, Broers, & van Merriënboer, 2004).  

In the domain of Air Traffic Control, Camp et al. (2001) and Salden et al. (2004) 

compared a fixed, predetermined sequence of learning tasks with dynamic task selection 

which reflected a personalization of difficulty level of the tasks based on performance and 

mental effort scores (i.e., a measure of expertise level). They found that dynamic task 

selection yields more efficient transfer test performance compared to the fixed, predetermined 

sequence of learning tasks. Furthermore, in a study conducted by Salden et al. (2004) that 

compared two personalized methods (i.e., personalized efficiency and learner control) to 

yoked conditions revealed that personalized efficiency condition showed more effective 

training compared to the learner control condition, whereas the latter one proved to be more 

efficient than the personalized efficiency condition. Additionally, in Kalyuga and Sweller‘s 

study (2005) both the difficulty level and the support level for the next learning task were 

adapted to learner expertise. Results of their study showed that learners who received 

personalized support and difficulty obtained higher pre-to-post-test gains and higher 

cognitive efficiency than learners in a yoked control group. 

These findings are consistent with the results obtained in the genetics domain  by 

Corbalan, Kester, and van Merriënboer (2008) which showed that adaptive instruction 

including limited learner control (i.e., shared control) for both difficulty and support level 

based on the learners‘ growing level of competence and associated mental effort yields more 

effective and efficient learning. Additionally, the adaptive instruction including shared 

control increased learners‘ motivation (i.e., their task involvement) since the program ensured 

avoidance of overloading students‘ cognitive capacities and the limited given learner control 

was beneficial to their learning process.  

 

4.1.1 Towards a personalized task selection model  

Componentele modelelor instruirii personalizată cu ajutorul computerului (şi a celui 

propus de noi) sunt esenţiale pentru adaptarea nivelului de dificultate şi suport al sarcinilor la 

expertiza utilizatorilor şi vizează: (a) caracteristicile sarcinilor de învăţare; (b) caracteristicile 

sau profilul utilizatorilor, şi (c) componenta personalizării sau adaptării.  

The personalized task selection model presented in this chapter aims at providing each 

individual learner the best next learning task based on her/his expertise level, thus yielding a 

personalized sequence of taks in a complex environment. The proposed model includes three 
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components: (a) learning tasks characteristics, (b) learner characteristics, and (c) 

personalization.  

Learning tasks characteristics include the level of complexity (i.e., from simple to 

complex, or from easy to difficult), embedded support (i.e., from full support to no support), 

and other task features (e.g., the surface features). According to 4C/ID model (Van 

Merriënboer, 1997), (1) learning tasks should be organized in easy-to-difficult categories or 

task classes, (2) learners should receive full support for the first learning task in each task 

class after which support is gradually reduced to none for the last learning tasks, and (3) 

learning tasks provide a high variability of practice. 

In the proposed model, each of the five difficulty levels contained three support 

levels, differing with regard to the amount of embedded support and diminishing in a 

scaffolding process according to the completion strategy (van Merriënboer, 1997). The three 

levels of embedded support, ordered from high to no support are: (1) completion problems 

with high support which provided many, but not all solution steps (i.e., four out of five 

solution steps are worked out, learners have to complete the final step); (2) completion 

problems with low support that provided a few solution steps (i.e., three out of five solution 

steps), and (3) conventional problems that did not provide any support, learners had to solve 

all the sub-steps in the problem on their own.  

The learner portofolio contains the information about the learners in terms of obtained 

performance and invested mental effort. The 4C/ID model indicates that in addition to 

performance, the amount of effort that a learner invests to reach this level of performance 

may be important. Since subjective rating scales have been repeatedly proven to be a reliable 

measure of cognitive load (for an overview see Paas, Tuovinen, Tabbers, & van Gerven, 

2003), the current model utilized a subjective rating scale to measure mental effort. The 

perceived mental effort was measured after each learning task and after each pre-and post-test 

as well as after each far transfer test task on a 5-point rating scale, with values ranging from 1 

(very low) to  5 (very high) (Paas, 1992).  

The personalization component of the proposed model aims to prevent cognitive 

overload of the learners by dynamically adapting the level of task difficulty and embedded 

support  to the expertise level. According to the 4C/ID assumptions, performance measures 

alone are not a sufficient basis for dynamic task selection, and may be improved by taking 

into account the effort that students invest in reaching this performance. Therefore, the 

dynamic process of task selection (in the proposed model) is based on the continuous 

assessment of the level of expertise of individual learners (after each learning task the learner 

portofolio is updated).  

 

4.1.2 The learning environment developed on the basis of the personalized model 

The aim of this study was to developed an personalized learning environment 

according to our model. The learning environment developed for the current study was a Web 

application written in PHP scripting language. A MySQL database connected to the learning 

environment contained all learning material and registered all the student interactions with 

the system: participants‘ competence and invested mental effort scores, their task selection 

choices, and time spent (in minutes) on each activity. Furthermore, this database contained a 

basic introduction to genetics, a pre- and post-test, a far transfer test, three motivational 

questionnaires, algorithm selection tables, and a glossary with the main genetics concepts 

used in the learning environment. 

The basic components of the personalized learning environment are presented in 

Figura 1. 
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Fig. 1. The basic components of the personalized learning environment  

 

Figure 2 presents the tasks that are represented in the learning-task database as a 

combination between five difficulty levels (i.e., from low to high), three levels of support 

(high, low and no support) and three tasks per support level with different surface features 

(this was also the task-selection screen in learner control instruction). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Overview of database structure; this was also the task-selection screen. 

 

For the personalization of the instruction, the performance and invested mental effort 

scores were used as a variable for dynamic task selection, an approach used in other studies 

too (Camp et al., 2001; Corbalan et al, 2006; Salden et al., 2004). Based on these scores a 

task selection algorithm determined the appropriate difficulty and support level of the next 

learning task for each individual learner. The task selection algorithm for determining the 
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difficulty and support level of the first learning task in the training phase using pre-test 

performance and associated mental effort is presented in Table 1, and task selection 

procedure for the remainder of the training phase using the performance and mental effort 

scores of the preceding solved learning task is presented in Table 2 (for completion problems 

with high support) and Table 3 (for completion problems with low support and conventional 

problems). 

More specifically, the difficulty level of the first training problem would always be 

level 1 and the pre-test performance and associated mental effort scores determined the 

support level. Overall, most pre-test scores would lead to completion problems with high 

support (+1), some led to completion problems with low support (+2) and only a few led to 

conventional problems (+3). 

Once working in the training phase, the selection algorithm determined the difficulty 

and support level of the next problem considering the support level the participants 

previously worked in. For instance, if a participant has successfully solved a completion 

problem with high support in difficulty level 1 by obtaining a performance score of 3 and a 

mental effort score of 1, s/he must jump 2 steps ahead, meaning that the amount of support 

increases two levels. Therefore, the learner will move to a conventional problem at the 

current difficulty level. For completion problems with high support, the mental effort scores 

determine changes in the support level within a certain difficulty level, since the performance 

score is preset to a fixed value (3). 

 

Table 1 shows the selection decisions for completion problems with low support and 

conventional problems. The students receive a similar problem when their performance and 

corresponding mental effort scores are the same (+0) and they can jump to a higher or lower 

support level (+/-1 and +/-2) when these scores are different. If a learner solved a completion 

problem with low support obtaining a mean performance score of 5 and a mental effort score 

of 1, s/he must jump 3 steps ahead. But since there are less than three support levels available 

at the current difficulty level, the learner has to advance to a low support level of the next 

difficulty level. Therefore, only by obtaining the highest performance while investing the 

lowest mental effort can students jump between difficulty levels (+3). Similarly, participants 

can also drop to the previous difficulty level when obtaining the lowest performance (1) and 

the highest mental effort (5). 

 

Tabelul 1. Selection table indicating step size between pre-test and first learning task  

Performance 

Mental effort            1                         2                        3                         4                         5 

1                                1                         2                        2                         3                          3 

2                                1                         1                        2                         2                          3 

3                                1                         1                        1                         2                          2 

4                                1                         1                        1                         1                          2 

5                                1                         1                        1                         1                          1 
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Tabelul 2. Selection table indicating step size for completion problems with high support   

Performance 

Mental effort             1                        2                         3                         4                         5 

1                                 1                        1                         2                         2                         3 

2                                 0                        1                         1                         2                         2 

3                                -1                       0                         0                          1                         1 

4                                -1                      -1                         0                         0                         1 

5                                -2                      -1                        -1                         0                         0 

 

 

Tabelul 3. Selection table indicating step size for completion problems with low support and 

conventional problems  

Performance 

Mental effort            1                        2                         3                         4                         5 

1                                0                         0                        1                         2                         3 

2                               -1                         0                        0                         1                         2 

3                               -1                       -1                        0                         0                          1 

4                               -2                       -1                       -1                         0                         0 

5                               -3                       -2                       -1                        -1                         0 

 

The selection tables 2 and 3  apply some additional rules to make the instruction 

encouraging for the learners: (1) if the learner completed all three available problems of a 

certain support level in a current difficulty level s/he will move to the next support level at 

the current difficulty level; (2) if the learner completed two successive problems of the same 

support level at a certain difficulty level , s/he can progress to the next support level at the 

current difficulty level; (3) the learner will finish the training after s/he successfully 

completed either one conventional problem at the highest difficulty level or after having 

worked through all conventional problems available in the highest difficulty level (i.e., 

difficulty level 5).  

 

4.1.3 Discussion and conclusions 

This chapter discussed a personalized task selection model which integrates the 

assumptions of the two-level model of adaptive instruction and of the four-component 

instructional design model (4C/ID; Van Merriënboer, 1997). The proposed model combines 

the strong points of both approaches and was therefore expected to make learning more 

effective (i.e., higher transfer test performance) and more efficient (i.e., a more favorable 

ratio between performance and time on task or mental effort). This personalized model allows 

for the dynamic selection of the learning tasks based on the learner‘s performance scores and 

invested mental effort, that is the expertise level of the learners. 

There are two main differences between the proposed personalized model (and the 

learning environment developed according to this model) and the previous developed 

personalized models. First, the present model applies different measurement scales and 

another selection algorithm. The scales used in the proposed model are sensitive to the 
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differences between the support level within the same complexity level of the tasks. As a 

result, the selection algorithm that is used for selecting a new learning task of a certain 

complexity and support level, is different for problems with high support and for problems 

with low support. Furthermore, the maximum jump size between complexity levels was 

decreased from four  (Camp et al., 2001; Corbalan et al., 2006) to three in the implemented 

selection algorithm forcing a smoother increase or decrease in task complexity (see Salden et 

al., 2004). Secondly, unlike the previous personalized models in which the selection of the 

first training task is arbitrary, the support level of the first training problem would be adapted 

to the learners‘ expertise level (combination of performance and mental effort scores).  

 

4.2 Formative evaluation of the computer-based learning environment developed on the 

basis of the model  

 

The learning environment was pilot tested with 28 high school for functionality and 

usability assessment (formative evaluation). The results indicated that the program promotes 

learning and the provided content is suitable for target population. 

 

 

Chapter 5 

THE EFFECTS OF THE INTERNAL INSTRUCTIONAL CONTROL VS. 

EXTERNAL INSTRUCTIONAL CONTROL (ADAPTIVE AND NONADAPTIVE) ON 

EFFECTIVENESS AND LEARNING EFFICIENCY OF LEARNERS WITH 

DIFFERENT LEVELS OF EXPERTISE 

 

5.1 Study 1  

Aims and hypotheses 

The purpose of the current study was to assess the effectiveness (i.e., training and test 

performance) and learning efficiency (i.e., test performance, its associated test mental effort 

and training time) of a non-adaptive program control, a full learner control, a limited learner 

control and an adaptive program control in learning genetics using students of different prior 

knowledge levels. The main research question entails what effects do these four types of 

instructional control, students‘ prior knowledge (i.e., high school, first year and second year 

college students), and the interaction between both factors have on learning outcomes and 

learning efficiency. It was hypothesized that the adaptive program control would yield higher 

performance and be more efficient than the other three conditions. Whereas the non-adaptive 

program instruction was expected to be insensitive to individual students‘ learning needs, the 

learner-controlled instruction might overload the students. 

With regard to students‘ prior knowledge it was hypothesized that higher prior 

knowledge students (i.e., college students) would achieve higher performance and be more 

efficient than students with a low prior knowledge (i.e., high school students). Furthermore, it 

was expected that higher prior knowledge level students perceive their current learning state 

and instructional needs more accurately, and thus would be better able to manage their own 

instruction. Additionally, it was expected that the high prior knowledge students would spend 

more time-on-task due to engaging in deeper cognitive engagement and self-reflecting (see 

Chi, 2006) than the low prior knowledge students. 

Method 

Participants 

Two hundred and sixty nine students (99 high school students, 117 first year college 

students, and 53 second year college students; 44 males and 225 females; M = 18.63 years, 

SD = 3.95) participated in this study. The high school students were novices and the college 
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students were intermediate students with regard to the genetics domain used in this 

experiment. All participants were randomly assigned to one of the four experimental 

conditions: a non-adaptive program condition (n = 65, 25 high school students and 40 college 

students), a full learner control condition (n = 70, 25 high school students and 45 college 

students), a limited learner control condition (n = 68, 25 high school students and 43 college 

students), and an adaptive program control condition (n = 66, 24 high school students and 42 

college students).  

Materials 

Electronic learning environment. The learning environment developed for this study 

was a Web application written in PHP scripting language. A MySQL database connected to 

the learning environment contained the learning material and registered student actions: 

performance and mental effort scores, problem selection choices, and time-on-task. 

Furthermore, this database contained a basic introduction to genetics, a pre-test and post-test, 

a far-transfer test, and a glossary with the main genetics concepts. The content of the 

instructional program was part of the regular biology curriculum for high school students and 

Neuropsychology curriculum for first year college students from Psychology. 

The introduction included the main genetics concepts required for solving problems 

such as dominant and recessive genes, genotype, phenotype, homozygous and heterozygous 

gene pairs. 

The pre-test and post-test consisted of the same ten multiple-choice questions on the 

subject of heredity (i.e., Mendel‘s Laws). The maximum score was 10 points, one point for 

each correct answer. 

The participants received genetics problems represented in a database (see Figure 1) 

as a combination between five difficulty levels (i.e., from low to high), three levels of support 

(i.e., high, low, and no support) and three problems per support level with different surface 

features (i.e., aspects of the tasks that are not related to goal attainment such as eye color, hair 

shape). The selection of problems from the database of the 45 genetics problems (Figure 1) 

differed between the experimental conditions.  

In the non-adaptive program control condition, participants received 15 problems 

with three randomly chosen problems of each support level within each of the five difficulty 

levels. These problems were presented in a predetermined simple to complex sequence, 

designed according to the 4C/ID model (Van Merriënboer, 1997).  

In the full learner control condition, participants received an overview of all 45 

problems with an indication of their difficulty and support level, and they could choose any 

problem to solve next. The limited learner control condition differed from the first in having 

to solve a conventional problem in each difficulty level before being allowed to start solving 

tasks from a higher difficulty level. 

For the adaptive program control condition the performance and invested mental 

effort scores were used as a variable for dynamic problem selection (see chapter 5). 

Far-transfer test. The far-transfer test consisted of five problems which differed 

structurally from the training problems and measured students‘ ability to apply the learned 

procedures to new learning situations. Specifically, participants had to solve problems on 

dihybrid crossings, problems involving sex-linkage and co-dominant genes (i.e., blood types). 

The transfer problems had distinctive solution steps, resulting in a maximum total score of 

16. The reliability (Cronbach‘s alpha) of the pre-test, post-test, and far-transfer test was: .52, 

.69, and .75 respectively. 

Mental effort. The perceived mental effort was measured after each problem during 

each phase of the study (i.e., pre-test, post-test, training, far-transfer test) on a 5-point rating 

scale adapted from Paas (1992), with values ranging from 1 (very low) to 5 (very high). 
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Learning efficiency. Learning efficiency was determined using the following formula 

derived from the original formula proposed by Paas and Van Merriënboer (1993; see also 

Tuovinen & Paas, 2004): 

 

                                                              P + TT – ME 

 E =   

                                                                     √ 3 

In this formula, E = learning efficiency, P = test performance, TT = total training time, 

and ME = mental effort during test. To calculate learning efficiency, all variables were 

standardized before being entered into the formula. 

 

Procedure 

All participants were given a pre-test and a basic introduction before the training 

phase started. Participants were free to consult this basic introduction during the entire 

training session. Immediately after the training, participants received the post-test and far-

transfer test, and mental effort was measured after each solved problem. Overall, the 

experiment lasted about two hours. 

Results 

All the analyses were done using ANOVAs with between-subjects factors (1) type of 

instructional control and (2) prior knowledge, and a significance level of .05 was used. 

Dependent variables were performance, mental effort, time on pre-test, time on training, time 

on post-test, and time on far-transfer test, total solved problems, total solved problems per 

difficulty and support level, and learning efficiency. 

Table 4 provides an overview of the results during training and test phase for factor 

(1) and Table 5 provides an overview of the results for factor (2). 

 (1) Type of instructional control 

An ANOVA showed significant differences for training performance, F(3, 265) = 

2.94, MSE = 3075.45, p < .05, ηp
2 

= .03 and time during training, F(3, 265) = 13.57, MSE = 

218.93, p < .0001, ηp
2 

= .13. Planned comparisons revealed that participants in the adaptive 

program condition attained higher performance scores (t(265) = 2.59, p < .05) than the 

participants in the non-adaptive condition and both learner control conditions. Furthermore, 

participants in the adaptive program condition spent more time on training (t(265) = 5.06, p < 

.0001) than the mean training time of participants in the non-adaptive condition and both 

learner control conditions. No effect on the invested mental effort during the training was 

found for type of instruction, F(3, 265) = 1.37, MSE = 1.10, ns. 

With regard to the number of learning tasks that was completed during training, an 

ANOVA revealed a main effect for type of instruction, F(3, 265) = 4.41, MSE = 19.16, p < 

.01, ηp
2 

= .05. Participants in the adaptive program condition solved more problems during 

training (t(265) = 3.53, p < .0001) than the participants in the non-adaptive condition and 

both learner control conditions. 

With regard to total solved problems for each difficulty level, ANOVAs revealed 

significant differences for type of instruction on total solved problems for difficulty level 1, 

F(3, 260) = 16.39, MSE = 6.16, p <.0001, ηp
2 

= .16; difficulty level 2, F(3, 265) = 11.60, 

MSE = 5.46, p <.0001, ηp
2 

= .12; difficulty level 4, F(3, 188) = 19.46, MSE = 1.69, p <.0001, 

ηp
2 

= .24, difficulty level 5, F(3, 167) = 3.29, MSE = 1.36, p <.05, ηp
2 

= .06. Overall, 

participants in both learner control conditions solved more problems from lower difficulty 

levels (i.e., difficulty level 1) and fewer problems from higher difficulty levels (i.e., difficulty 

level 4) than participants in the adaptive program condition and the non-adaptive condition.  
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An ANOVA of total solved problems for each support level revealed a main effect for 

type of instruction on total solved completion problems with high support F(3, 258) = 4.64, 

MSE = 7.05, p <.01, ηp
2 

= .05, and total solved completion problems with low support F(3, 

254) = 6.18, MSE = 3.61, p <.0001, ηp
2 

= .07. Overall, participants in both learner control 

conditions solved less completion problems with low support and conventional problems 

compared to participants in the adaptive program condition and the non-adaptive condition. 

No significant differences in post-test and far transfer test performance, invested 

mental effort during the post-test and the far transfer test, time during the far transfer test (all 

Fs < 1), and time during the post-test (F(3, 265) = 1.42, MSE = 28.39, ns) were found. 

(2) Prior knowledge 

An ANOVA revealed significant differences on pre-test performance, F(2, 266) = 

18.28, MSE = 3.8, p < .0001, ηp
2 

= .12; invested mental effort, F(2, 266) = 28.34, MSE = .59, 

p < .0001, ηp
2 

= .18; and pre-test time, F(2, 266) = 13.67, MSE = 20.75, p < .0001, ηp
2 

= .09. 

High school students achieved lower pre-test performance scores (t(266) = 5.29, p < .0001) 

than first year college students and second year college students. Furthermore, second year 

college students achieved higher pre-test performance (t(266) = 3.12, p < .0001) compared to 

the mean of performance of high school students and first year college students. With regard 

to invested mental effort, planned comparisons showed that high school students experienced 

higher mental effort (t(266) = -7.49, p < .0001) than first year college students . Additionally, 

high school students spent less time on the pre-test (t(266) = 2.30, p < .05) than first year 

college students and second year college students. Furthermore, second year college students 

spend more time on the pre-test (t(266) = 4.78, p < .0001) than first year college students. 

ANCOVAs revelead main effects of prior knowledge factor on training performance, 

F(2, 265) = 15.13, MSE = 2551.96, p < .0001, ηp
2 

= .10; invested mental effort on the 

training, F(2, 265) = 14.31, MSE = .70, p < .0001, ηp
2 

= .10; and training time, F(2, 265) = 

31.87, MSE = 151.29, p < .0001, ηp
2 

= .19. First year college students achieved higher 

training performance scores (t(265) = 4.41, p < .0001) than high school students, whereas 

second year college students achieved higher training performance scores (t(265) = 3.69, p < 

.0001) than the high school students and first year college students (M = 116.26, SD = 48.26). 

Furthermore, first year college students experienced a lower mental effort on training (t(265) 

= -3.54, p < .0001) than high school students, whereas second year college students 

experienced lower mental effort (t(265) = 4.58, p < .0001) than the high school students and 

first year college students.  

ANOVAs showed significant main effects for prior knowledge on total solved 

problems for difficulty level 1, F(2, 261) = 5.09, MSE = 7.02, p < .01, ηp
2 

= .04; and 

difficulty level 2, F(2, 261) = 8.10, MSE = 5.61, p < .0001, ηp
2 

= .06. Overall, high school 

students solved more problems for lower difficulty levels (i.e., difficulty level 1) and fewer 

problems for higher difficulty levels (i.e., difficulty level 5).   

With regard to the solved problems for each support level, an ANOVA revealed a 

main effect for prior knowledge level only for total completion problems with high support, 

F(2, 259) = 12.40, MSE = 7.76, p <.0001, ηp
2 

= .09. First year college students solved less 

completion problems with high support (t(259) = -3.65, p < .0001) than the high school 

students, whereas second year college students solved less completion problems with high 

support (t(259) = -3.55, p < .0001) than the solved completion problems with high support of 

high school students and first year college students. 

ANCOVA revealed a main effect on post-test performance, F(2, 265) = 8.05, MSE = 

4.23, p <.0001, ηp
2 

= .06, invested mental effort, F(2, 265) = 17.46, MSE = .51, p <.0001, ηp
2 

= .12 and time spent on post-test, F(2, 265) = 72.97, MSE = 13.05, p <.0001, ηp
2 

= .36. First 

year college students achieved higher post-test performance (t(265) = 3.04, p < .01) than high 

school students, whereas second year college students achieved higher post-test performance 
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(t(265) = 2.89, p < .01) than the mean score of high school students and first year college 

students. Furthermore, first year college students experienced lower mental effort during the 

post-test t(265) = -3.34, p < .01) than high school students, whereas second year college 

students experienced lower mental effort during the post-test (t(265) = -4.93, p < .0001) than 

the mean score of high school students and first year college students. Finally, first year 

college students spent more time on the post-test (t(265) = 10.10, p < .0001) than high school 

students, whereas second year college students spent more time during the post-test (t(265) = 

7.36, p < .0001) than the mean score of high school students and first year college students. 

Furthermore, an ANCOVA revealed a significant effect for prior knowledge on far 

transfer test performance, F(2, 259) = 84.27, MSE = 5.23, p <.0001, ηp
2 

= .39, and time spent 

on the far transfer test F(2, 265) = 146.67, MSE = 27.54, p <.0001, ηp
2 

= .53. First year 

college students achieved higher far transfer test performance (t(258) = 10.78, p < .0001) than 

high school students whereas second year college students achieved higher far transfer test 

performance (t(258) = 4.21, p < .0001) than the mean score of high school students and first 

year college students. Additionally, first year college students spent more time during the far 

transfer test (t(265) = 15.56, p< .0001) than high school students, whereas second year 

college students spent more time during the far transfer test (t(265) = 8.30, p < .0001) than 

the mean score of high school students and first year college students.  

Using paired t-tests a significant gain from pre-to-post-test in performance (t(268) = - 

7.51, p <.0001) as well as a significant drop in mental effort (t(268) = 8.52, p <.0001) were 

found, indicating that learning did take place across all groups. 

No significant interaction effects were found on performance, invested mental effort 

and time spent for the pre-test phase, training phase and the test phase (all Fs < 1). Regarding 

the training phase, significant main effects were found on total solved problems, F(6, 257) = 

2.80, MSE = 18.14, p <.05, ηp
2 

= .06; completion problems with high support, F(6, 250) = 

2.64, MSE = 6.17, p <.05, ηp
2 

= .06; conventional problems, F(6, 248) = 2.58, MSE = 2.98, p 

<.05, ηp
2 

= .06; on total solved problems for difficulty level 1, F(6, 252) = 4.80, MSE = 5.44, 

p < .0001, ηp
2 

= .10; difficulty level 2, F(6, 252) = 6.55, MSE = 4.38, p < .0001, ηp
2 

= .14, 

and difficulty level 3, F(6, 238) = 2.86, MSE = 1.49, p < .05, ηp
2 
= .07. (see Figure 3). 
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Figura 3. Graphical representation of the interaction between type of instruction and prior 

knowledge level on total solved problems, completion problems with high support, conventional 

problems, total solved problems for difficulty level 1, difficulty level 2, and difficulty level 3. 

 

Using an ANOVA, a significant effect was found for learning efficiency related to the 

post-test scores, F(3, 265) = 2.72, MSE = 1.70, p <.05, ηp
2 

= .03, and for learning efficiency 

related to the far transfer test scores, F(3, 258) = 3.92, MSE = 1.57, p <.01, ηp
2 

= .04. for 

posttest performance, adaptive program condition was more efficient (t(265) = 2.23, p < .05) 

than the non-adaptive condition and both learner control conditions, and for far transfer test 

performance, adaptive program condition is more efficient (t(258) = 2.96, p < .01) than the 

non-adaptive condition and both learner control conditions. 

An ANOVA revealed a significant effect of prior knowledge on learning efficiency 

for post-test scores, F(2, 266) = 67.64, MSE = 1.16, p <.0001, and for far transfer test scores 

F(2, 259) = 88.84, MSE = .97, p <.0001, ηp
2 

= .41. For post-test performance, first year 

college students are more efficient (t(266) = 10.16, p < .0001) than high school students, 

whereas second year college students are more efficient (t(266) = 6.04, p < .0001) than the 

high school students and first year college students. Furthermore, for far transfer 

performance, first year college students are more efficient (t(259) = 12.34, p < .0001) than 
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high school students , whereas second year college students are more efficient (t(259) = 5.66, 

p < .0001) than the high school students and first year college students.  
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Tabelul 4. Overview of results from the pre-test and the training phase for factor type of instruction 

Type of instruction 

 Non-adaptive program 

control         
    Full learner control                Limited learner control      Adaptive program control 

 Dependent variables   M  SD    M SD    M  SD    M  SD  

Pretest         

    Time (min)   11.49  3.97  11.95  4.92 10.66  4.91  13.23  4.90 

    Mental effort  3.10 .86  3.08  .83 3.21  .84  3.04  .85 

    Performance 4.15  2.21 4.19  1.86  4.19 2.03  3.89  2.22 

Training          

Total  N  of learning tasks 14.82 .83  15.03 5.33 14.37 5.46 16.92 4.06 

    Total solved steps 42.32  2.92 39.07 15.72 39.32 14.22  46.41 10.23 

    Time (min)   39.38 13.95 32.53 15.76    29.82 14.79 44.51 14.57 

    Mental effort  2.96 1.05 2.63 1.21  2.84 1.06 2.92  .83 

    Performance      127.20 37.70 117.26 71.16  114.04 61.54 139.85  43.13 

Posttest         

    Time (min)   6.20 4.42 7.83 5.38 7.71 5.38 7.72 6.00 

    Mental effort 2.73 .97 2.67 1.04 2.74 1.04 2.69 1.11 

    Performance 5.18 2.45 5.14 2.58 5.00 2.60 5.17 2.48 

   Learning efficiency .01 1.27 -.21 1.36 -.39 1.28 .22 1.31 

Far transfer          

    Time (min)   11.13 7.42 12.67 8.05 12.50 8.08 13.37 8.24 

    Mental effort 4.01 .92 3.87 .97 3.96 .98 3.76 .98 

    Performance 3.95 3.02 3.93 2.87 3.60 2.81 4.04 3.06 

  Learning efficiency -.05 1.22 -.22 1.34 -.42 1.19 .30 1.24 
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Tabelul 5. Overview of results from the test phase for factor prior knowledge 

Prior knowledge 

 High school students    First year college students      Second year college students 

Dependent variables   M  SD    M  SD    M  SD  

Pretest       

    Time (min)   9.92 4.39 12.90 4.78 13.02 4.34 

    Mental effort 3.52 .80 2.73 .76 3.18 .72 

    Performance 3.17 1.39 4.58 2.19 4.81 2.27 

Training        

    Total  N of tasks 15.98 4.41 15.15 4.56 14.25 4.16 

    Total solved steps 42.00 12.59 41.79 12.87 2.47 .86 

    Time (min)   28.31 1.28 40.32 1.15 43.04 1.70 

    Mental effort 3.17 .09 2.73 .08 2.43 .12 

    Performance 101.60 5.29 133.60 4.73 146.70 7.03 

Posttest       

    Time (min)   3.80 .38 8.99 .34 10.52 .50 

    Mental effort 3.01 .08 2.65 .07 2.29 .10 

    Performance 4.46 .22 5.36 .19 5.84 .29 

   Learning efficiency -.1.09 .98 .40 1.07 .65 1.25 

Far transfer        

    Time (min)   4.81 .54 16.43 .49 17.37 .73 

    Mental effort 3.98 .09 3.92 .08 3.72 .11 

    Performance 1.66 .24 5.17 .21 4.88 .31 

  Learning efficiency -1.20 .80 .49 1.07 .50 1.07 
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Discussion  

As predicted, the results show that the adaptive program control condition achieved 

higher training performance scores compared to the non-adaptive program control and learner 

control conditions. Therefore, adapting the difficulty and support of problems to the students‘ 

expertise level makes learning more effective (only for training) and efficient. Additionally, 

the adaptive program condition needed more time to complete the training than the other two 

experimental conditions. This difference in time could be attributed not only to the fact that 

the adaptive program condition solved significantly more problems, but possibly participants 

also noticed the relationship between their accuracy in solving the problems and the difficulty 

plus embedded support of the subsequent problems and consequently spent more time 

analyzing and self-reflecting (Corbalan et al., 2008). 

Although the non-adaptive program control condition attained the same training 

performance as the learner control conditions, the former needed significantly more time to 

complete the training phase. A possible explanation could be that participants in the two 

learner control conditions solved more problems from lower difficulty levels, less problems 

from higher difficulty levels, and more completion problems with a high support than the 

non-adaptive program control condition. Not only did the learner control condition solve 

mostly easier problems, they also received more support in their problem solving than the 

non-adaptive program control condition. 

Unfortunately, the higher training effectiveness of the adaptive program condition is 

not reflected in superior post-test or far-transfer performance. A possible explanation for the 

lack of higher test performance could be related to the difficulty levels the participants mostly 

worked in. The participants in the adaptive program control condition mostly worked in 

lower difficulty levels compared to the non-adaptive program control condition yet did not 

attain inferior post-test or far-transfer performance. More precisely, despite the fact that 

roughly 66% of the participants in the adaptive program control did not reach difficulty level 

5 they did not do worse in terms of post-training performance. Another possible explanation 

could be related to the so-called ‗perverse effects of help/ support‘(Mircea Miclea, personal 

communication) or the acquisition of ‗limited‘ schemas which interfere with the generation of 

new solutions for similar problems (Smith. et al., 1993).   

Regarding learning efficiency, the results confirm that the adaptive program condition 

is more efficient than the other three experimental conditions. The inclusion of the training 

time in the 3D efficiency formula allows taking into account other differences besides those 

related to performance and invested mental effort. We chose to add the total training time 

instead of subtracting it as in Salden et al. study (2004) due to the fact that spending more 

time during training is considered to be beneficial in this study. This is in agreement with Chi 

(2006) who stated that experts spend a relatively great deal of time on solving learning tasks 

and self-reflection in comparison to novices. 

Regarding the students‘ prior knowledge level, the prediction that the college students 

would outperform the high school students, spend more time-on-task and experience less 

mental effort was confirmed. While the same pattern was found for the second year college 

students over both first year college students and high school students, the differences 

between first and second year college students were relatively small. 

The interaction effects found in this study show that the students‘ prior knowledge 

strongly affects the students learning path in the learner control and the adaptive program 

control conditions.  
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Chapter 6 

EXPERTISE- RELATED DIFFERENCES IN TASK SELECTION:  

COMBINING EYE MOVEMENT, CONCURRENT AND CUED RETROSPECTIVE 

REPORTING 

 

A series of studies indicated that low levels of prior knowledge may negatively affect 

learners potential to be aware of the task features that are relevant for the learning process 

(Quilici & Mayer, 2002). Corbalan et al. (2008) showed that low prior knowledge students 

typically focus on the more salient surface task features (e.g., cover stories that are irrelevant 

to understand how problems can be solved) rather than on the less salient structural task 

features (e.g., underlying problem-solving procedures that are relevant to understand how 

problems can be solved). Learners who do not possess or use appropriate schemas (i.e., one 

chunk of information, which increases the amount of information that can be held and 

processed in working memory), will not be able to recognize problem similarities on the basis 

of structural features (Chi, Feltovich, & Glaser, 1981; Quilici & Mayer, 1996, 2002). 

However, as learners‘ levels of knowledge in a particular domain increase, more useful 

schemas are constructed, which improve their ability to recognize structural task features 

(Quilici & Mayer, 2002) and consequently learning (Sweller, Chandler, Tierney, & Cooper, 

1990). 

Eye movement studies investigating how novices and experts perceive relevant versus 

irrelevant information have indicated that learners‘ attention allocation is indeed influenced 

by expertise. More specifically, it has been shown that with increasing domain knowledge, 

learners tend to focus more on task-relevant information (e.g., Van Gog & Scheiter, 2010). 

The tendency of experts to focus more on task-relevant features and less on salient, but 

irrelevant features can be seen as an example of the information-reduction hypothesis 

(Canham & Hegarty, 2010; Haider & Frensch, 1999; Jarodzka, Scheiter, Gerjets, & Van Gog, 

2010). According to information-reduction hypothesis, improvements in task performance 

reveal that learners possess the necessary level of knowledge to discern between task features 

that need to be processed and those that do not.  

Useful as eye movement data may be, they do not explain why learners focus their 

attention on certain areas for a certain amount of time and in a certain order (Kaakinen & 

Hyönä, 2005). In other words, eye tracking does not reveal any information about the success 

or failure of learners‘ ability to understand task-relevant information. In order to obtain a 

more comprehensive picture of the learning performance processes, eye movement data can 

be complemented with concurrent, retrospective or cued retrospective verbal protocols (cf. 

Van Gog et al., 2005). 

The so-called cued retrospective reporting technique (Kaakinen & Hyönä, 2005; Van 

Gog et al., 2005; Van Gog et al., 2009) has been recognized as a valuable alternative for 

concurrent or restrospective reporting. Whereas ―standard‖ retrospective reporting relies 

exclusively on memory processes, cued retrospective reports are less prone to omissions and 

constructions of actions. With this technique, records of eye movements and mouse/keyboard 

actions are used to stimulate retrospective verbal reports of a task performance process. 

Though this unburdens the learner from reporting what they are thinking during task 

performance, it does require stimulated memory-based recall.  

 

Aims and hypotheses 

The aim of the current study was to examine the differences in attention paid to 

relevant and irrelevant task-features during task selection processes between low and high 

prior knowledge learners by combining eye tracking measures, think-aloud and cued 

retrospective protocols (see e.g., Ericsson & Simon, 1993; Van Gog et al., 2005). Note that 
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the cue consisted of a record of participants‘ eye movements as well as their actions on the 

computer screen (i.e., mouse/keyboard actions). 

A prediction was that high prior knowledge students would focus on structural 

features during task selection as compared to low prior knowledge students, who would be 

more likely to focus on surface task features. The high prior knowledge students, by having at 

their disposal higher level schemas, were expected to be better able to discern which 

information is relevant to the task performance than low prior knowledge students. 

Furthermore, it was predicted that participants who were exposed to multiple examples of 

learning tasks (i.e., three task selections) would be more likely to select subsequently 

presented tasks based on their structural features than on their surface features. It was 

expected that in the later stages of processing irrelevant task information would become ‗less 

salient‘. Consequently, participants‘ eye fixations were expected to reveal a trade-off between 

surface features and structural features, indicating that more fixations would be made on 

structural features. 

Also, it was expected that high prior knowledge students would verbalize more 

information, and implicitly would spend more time for verbalizing during both think-aloud 

and cued retrospective protocols than low prior knowledge students, and that their 

verbalizations would contain more relevant task information (i.e., structural features). 

Method 

Participants 

Participants in the study were 30 students in first (n = 9), second (n = 10), third (n = 3) 

or fourth (n = 8) year of higher professional education. Four participants had to be excluded 

from the final analyses of the data due to technical difficulties. The remaining sample 

contained 26 students (12 females and 14 males) with a mean age of 21.15 years (SD = 2.34). 

All participants had normal or corrected-to-normal vision and all had at least some basic 

knowledge of Mendel‘s Laws, the topic of the study. The students received €10 for their 

participation.  

Apparatus and Materials 

Electronic learning environment. The learning environment consisted of a Web 

application written in PHP scripting language, and a MySQL database connected to it (based 

on Corbalan, Kester, & Van Merriënboer, 2011). The database contained 54 genetics 

completion tasks addressing Mendel‘s laws (i.e., inheritance tasks), which varied in terms of 

surface features (e.g., species type, traits), and structural features (to-be-completed solution 

steps). Completion tasks present a given state, a goal state, and a partial solution that must be 

completed by learners (Paas, 1992). In our study, completion tasks contained three to-be-

completed solution steps and four steps that were already completed by the program. Table 6 

shows all possible surface features and structural features of the genetics completion tasks 

(based on Corbalan et al., 2011).  
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Table 6.Composition of the Database with Learning Tasks (based on Corbalan et al., 2011) 

Surface Task Feature  Structural Task Features 

Species (species type) Traits (part traits) To-be-Completed Solution Steps 

Humans 

(European/African/Asian) 

 

 

 

Animals 

(dog/cat/guinea pig) 

 

 

 

Plants 

(pea/corn/bean) 

 

Color (hair/eyes) 

Shape (hair/nose) 

Length (nose/lips) 

 

 

Color (fur/eyes) 

Shape (ear/fur) 

Length (tail/fur) 

 

 

Color (flower/leaf) 

Shape (fruit/pod) 

Length (axis/fruit) 

 

(1) Determine the genotype of one parents based on 

information of the individual given 

(2) Determine the genotype of one parents based on 

the given percentage in her/his generation 

(3) Determine the genotype of one of the offspring of 

the first generation 

(4) Determine the genotype based on the information 

of the prior partner and related offspring 

(5) Draw a Punnett‘s square by combining the 

genotype of the parents 

(6) Determine the genotype (and percentage) of the 

offspring 

(7) Determine the phenotype (and percentage) of the 

offspring 

 

The selection screen always presented a set of four learning tasks, which contained a 

description of both surface features and to-be-completed steps (see Figure 4). Each set of 

learning tasks (i.e., three sets of learning tasks) represented a combination of low and high 

dissimilarity levels (i.e., in terms of surface and structural features), from which the learner 

selected and solved one task. 

 



 29 

 
Figure 4. Example of a task-selection screen. 

Eye tracking equipment. Participants‘ eye movements were recorded with a 50Hz 

Tobii 1750 eye tracking system, which is integrated into the stimulus PC monitor. Screen 

resolution of the stimulus PC was set at 1024 x 768 pixels, with a spatial accuracy better than 

0.5 degrees. ClearView 2.7.1 software was used to record participants‘ eye movements and 

their keyboard and mouse actions, and to replay these recordings at half speed as a cue. This 

so-called ―gaze replay‖ showed fixations, which represent gaze-points that fell within a 

radius of 50 pixels, and together had a minimal duration of 200 ms. The fixations were 

represented as a single red dot, which became larger with increasing fixation duration and 

smaller with decreasing fixation duration, and had a gaze trail of 1,000 ms (for an example 

screenshot of the gaze replay see Figure 5). 

Audio recordings. The verbal data were recorded with Audacity 1.2.6 software using a 

standard microphone attached to the stimulus PC.  
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Figura 5. Exemple of gaze reply during first warming-up task 

 

Verbal instructions. The instructions were formulated in line with the 

recommendations by Ericsson and Simon (1993; see also Van Gog et al., 2005).  

Basic introduction. The basic introduction included the main genetics concepts 

required for solving completion tasks, and a worked-out example containing all the solution 

steps.  

Pre-and post-test. The pre-test and post-test consisted of the same ten multiple-choice 

questions on the subject of heredity. The maximum score was 10 points, one point for each 

correct answer.  

Warming-up tasks. Because learners vary in their ability to verbalize their own thoughts 

(Pressley & Afflerbach, 1995), two warming-up tasks were used to familiarize participants 

with the thinking aloud and cued retrospective reporting procedures. Although, those tasks 

were not related to the domain used (i.e., genetics), they required the participants to 

distinguish between relevant and irrelevant choices.  

 

Procedure 

The experiment was run in individual sessions of approximately 60 minutes. First, 

participants were given general instructions explaining the procedure and introducing the 

topic. They were asked to sign an agreement. The participants then started with the pre-test, 

for which they were given a total of eight minutes.  

The pre-test was administered to all participants in order to assign participants in two 

groups: low and high prior knowledge students. Out of a possible ten points, participants‘ 
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average pre-test score was 6.12 (SD = 2.53) with a median score of 6.50. Based on the 

median split we created two groups of equal size: low prior knowledge students (n = 13, age 

M = 20.69 years, SD = 1.97, 6 female, 7 male) and high prior knowledge students (n = 13, 

age M = 21.62 years, SD = 2.66, 6 female, 7 male). The high prior knowledge participants 

achieved an average score of 8.23 (SD = 1.01) on the pre-test, while the low prior knowledge 

students achieved an average score of 4.00 (SD = 1.63). The resulting independent samples t 

test was significant, t(24) = 7.94, p < .001, d = 3.12. 

After completing the pre-test, participants were seated in front of the stimulus PC and 

the eye tracking system was calibrated. To familiarize participants with thinking aloud and 

cued retrospective procedures, they were given two warming-up tasks. When participants had 

finished the warming-up tasks, they received the basic introduction to read for ten minutes, 

and then started with the completion learning tasks. Before solving the learning tasks (i.e., 

three tasks), participants had to select one task from each set of tasks (i.e., a set contained 

four learning tasks), which represented a combination of low and high dissimilarity levels. 

During the task selection process, participants were asked to think aloud, while during 

the task performance they had to complete the task in silence. Subsequently, all participants 

were exposed to the gaze replay and they were asked to provide the cued retrospective 

reports. The gaze replay was at half speed in order to allow participants to utter enough 

information about their thought processes. 

 

Data analysis 

Eye tracking data. To analyze participants‘ eye movements, eight areas of interest 

(AOIs) on the tasks features that were either relevant (i.e., structural features) or irrelevant to 

goal attainment (i.e., surface features) for each task selection were defined. AOIs were 

defined to determine whether and for which amount of time participants were looking at a 

specified area during the task selection process.  

The dependent variables were the fixation count, the gaze time, and the average 

fixation duration (total fixation time divided by the number of fixations per AOI).  

 Verbal data. The concurrent reports obtained during the task selection process, and 

the cued retrospective reports obtained during the gaze replay were transcribed and analyzed 

with a coding scheme. The verbal protocols were analyzed to determine whether participants 

referred to either relevant (structural features) or irrelevant features (surface features) during 

task selection process. Therefore, the coding scheme was developed based on the 

participants‘ ‗actions‘ during the task selection process (‗reading‘, ‗decision making‘, 

‗comparing the tasks‘, ‗description of the tasks‘) and the task features types (surface features 

and structural features). Next to these, categories like ‗reference to prior knowledge‘, 

‗picture‘, and ‗rest‘ (i.e., other aspects) were included. The total number of words used during 

the thinking aloud and retrospection was counted.  

Two raters familiarized with the experimental tasks coded 70 percent of the 

transcribed protocols with an inter-rater reliability of .72 (Cohen‘s kappa). Since the inter-

rater reliability was sufficiently high (i.e., higher than .70; Van Someren, Barnard, & 

Sandberg, 1994), one rater scored the remaining protocols.  
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Results 

Learning outcomes 

Table 7 shows the descriptive statistics of the pre-test scores, training scores, post-test 

scores, pre-to-post-test gain, and time spent in the pre-test and post-test. 

 

Table 7. Means (M) and standard deviations (SD) for learning outcomes as a function of 

expertise 

Dependent variables High prior knowledge students Low prior knowledge students 

 M SD M SD 

Pre-test 

Training performance 

Post-test 

Pre-to-post-test gain 

Time on pretest (min) 

Time on post-test (min) 

8.23 

8.00 

8.92 

.69 

7.00 

5.31 

1.01 

1.38 

.95 

1.11 

1.15 

1.70 

4.00   

7.35   

6.46 

2.46  

6.15 

 5.62           

1.63   

1.77  

1.45  

2.11    

1.52 

1.39              

 

Participants in the two conditions (i.e., high prior knowledge students and low prior 

knowledge students) did not differ significantly in terms of training performance, t(24) = 

1.05, ns. A t-test on post-test scores showed that the high prior knowledge students attained 

higher post-test performance than the low prior knowledge students, t(24) = 5.11, p < .001, d 

= 2.01. No significant differences were found on time spent for the pre-test, t(24) = 1.60, ns, 

and post-test, t(24) = -.51, ns. 

The high prior knowledge students gained less knowledge than the low prior 

knowledge students, t(24) = - 2.68, p <.05, d = .36. However, using paired t-tests a significant 

gain from pre-to-post-test in performance, t(25) = -4.28, p <.0001, d = .72, as well as a 

significant drop in time from pre-to-post-test, t(25) = 3.59, p <.001, d = .77, were found, 

indicating that learning did take place across both groups. 

Eye tracking data 

Regarding the number of fixations over surface features, a repeated measures 

ANOVA with expertise (i.e., high and low prior knowledge students) as the between subjects 

factor and number of task selections (i.e., first, second and third task selection) as within 

subjects factor was performed. Results showed a marginally effect of the number of task 

selections on fixation number over surface features, F(2, 46) = 3.10, p = .055, ηp
2 

= .12, but 

no effect of expertise or interaction between expertise and number of task selections, Fs < 1. 

For factor number of task selections, planned contrasts revealed that the number of fixations 

over surface features was significantly lower for the third task selection compared to the first 

task selection, F(1, 23) = 5.30, p < .05, ηp
2 

= .19, but was only marginally lower for the third 

task selection compared to the second task selection, F(1, 23) = 3.96, p = .059, ηp
2 
= .15.  

With respect to the number of fixations over structural features, ANOVA showed no 

significant main effect either for expertise or for number of task selections, and no interaction 

between expertise and number of task selections, Fs < 1. 

An ANOVA on the duration of fixations over surface features revealed a significant 

main effect of number of task selections, F(2, 46) = 3.48, p <.05, ηp
2 

= .13, but no effect of 

expertise or interaction between expertise and number of task selections, Fs < 1. The duration 

of fixations on surface features was significantly shorter in the third task selection than in the 

first task selection, F(1, 23) = 5.01, p <.05, ηp
2 

= .18, and significantly shorter in the third 

task selection compared to the second task selection, F(1, 23) = 4.40, p <.05, ηp
2 
= .16.  
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For the fixation duration over structural features, ANOVA revealed no significant 

main effect either for expertise or for number of task selections, Fs < 1, and no interaction 

between expertise and number of task selections, F < 1. 

ANOVA revealed that there was a no significant effect of expertise, F < 1, and of 

number of task selections, F(2, 36) = 1.31, ns, on average fixation duration over surface 

features. A marginally significant interaction was found between expertise and number of 

task selections, F(2, 36) = 3.04, p = .06, ηp
2 

= .14 (see figure 6). This marginal interaction 

showed that the average fixation duration over surface features was higher for the high prior 

knowledge students than for the low prior knowledge students in the first task selection, but 

lower for the high prior knowledge students than for the low prior knowledge students in the 

third task selection. 

 

Finally, for the average fixation duration over structural features, the ANOVA showed 

no significant main effect of expertise or of number of task selections, Fs < 1. The interaction 

between expertise and number of task selections was also not significant, F < 1. Means and 

standard deviations for the eye movement parameters are displayed in Table 8. 
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Tabelul 8. Means (M) and standard deviations (SD) for the eye tracking data as a function of expertise  

 High prior knowledge students  Low prior knowledge students 

 1
st
 selection 2

nd
 selection 3

rd
 selection Overall  1

st
 selection 2

nd
 selection 3

rd
 selection Overall 

Eye tracking data M (SD) M (SD) M (SD) M (SD)  M (SD) M (SD) M (SD) M (SD) 

Fixation number          

    Surface features   72.69 (37.86) 62.85 (31.27) 57.77 (35.16) 64.44 (25.31)  67.67 (30.89) 66.42 (33.24) 45.50 (31.12) 59.86 (24.87) 

    Structural features 66.00 (63.99) 52.50 (49.25) 48.83 (49.99) 55.78 (42.50)  41.92 (46.18) 51.77 (62.72) 39.08 (45.99) 44.26 (46.01) 

Fixation duration          

    Surface features   19959.15 

(12565.13) 
16512.39 

(9714.19) 
14564.39 

(11020.80) 
17011.97 

(8507.53) 
 

19613.08 

(14207.78) 
20000.17 

(13610.12) 
12594.83 

(10117.94) 
17402.69 

(10649.75) 

          

    Structural features 
15488.33 

(16192.85) 
12719.42 

(13160.60) 
11955.58 

(12665.70) 
13387.78 

(10861.32) 
 

10686.08 

(10775.31) 
13498.31 

(18070.30) 
9582.77   

(10809.41) 
11255.72 

(10938.00) 

Average fixation duration          

    Surface features   
1086.88 
(157.90) 

1089.97 
(142.52) 

1005.63 
(197.03) 

1060.83 
(131.64) 

 
982.26 

(238.03) 
1103.63 
(301.66) 

1096.02 
(350.80) 

1060.64 
(282.86) 

          

    Structural features 
783.48 

(214.60) 
828.05 

(246.98) 
808.98 

(205.09) 
806.83 

(216.28) 
 

835.63 
(99.71) 

945.93 
(285.76) 

993.37 
(304.21) 

924.98 
(216.92) 
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Verbal protocols 

Because the numbers of the utterances in the response categories were unequal, 

nonparametric tests were used to analyze the verbal data. To test the effects of expertise (i.e., 

level of prior knowledge) on the categories produced in the thinking aloud and cued 

retrospective protocols, Mann-Whitney U tests were used. One-tailed significance is reported 

when a directional prediction is stated; otherwise two-tailed results are reported. Means and 

standard deviations of the main categories and subcategories are reported in Table 9.  

On the main (sub)categories of both concurrent and cued retrospective protocols, Mann-

Whitney U test was significant (two-tailed) only for a few (sub)categories. More specifically, 

the high prior knowledge students showed significantly less verbal utterances during 

concurrent reporting with respect to the category ‗comparing the tasks‘ based on surface 

features (i.e., subcategory ‗within one selection moment‘) compared to the low prior 

knowledge students, U = 28.00, p < .01. There was also a significant main effect of expertise 

on the category ‗comparing the tasks‘ based on structural features (i.e., subcategory ‗within one 

selection moment‘) from concurrent protocols, U = 3.50, p < .05. The high prior knowledge 

showed more verbal utterances during concurrent reporting with regard to the category 

‗comparing the tasks‘ based on structural features than the low prior knowledge students.  

For the cued retrospective reporting, Mann-Whitney U test results were marginally 

significant only for two categories, ‗comparing the tasks‘ based on surface features and 

‗description of the tasks‘ based on structural features (i.e., subcategory ‗like/dislike‘). For high 

prior knowledge students, we found a marginally decrease in the use of category ‗comparing 

the tasks‘ based on surface features, U = 50.50, p = .08 (see Table 9), but a marginally increase 

in the use of the category ‗description of the tasks‘ based on structural features (i.e., 

subcategory ‗like/dislike‘), U = .0, p = .076, compared to the low prior knowledge students. 

With regard to the category ‗comparing the tasks‘ based on surface features, during both 

concurrent and cued retrospective reporting, a strong trend was found, U = 46.50, p = .05 

favouring the low prior knowledge students (see Table 9).  

 As shown in Table 10, most eye tracking parameters, especially the number and 

duration of fixations were positively correlated with the aggregated categories referring to 

surface and structural features of the verbal protocols. Notably, there were significant positive 

correlations for the number and duration of fixations over surface features with the variable 

indicating total surface features for both concurrent and cued retrospective protocols, as well as 

across verbal protocols. 
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Table 9. Means (M) and standard deviations (SD) of the main (sub)categories as a function of expertise in the two verbal protocols  

                                           High prior knowledge students                                                    Low prior knowledge students  

      TA
a
            CR

b
             Overall

c
                              TA

a
                CR

b
             Overall

c
 

Main sub(categories)   M (SD)          M (SD)       M (SD)                              M (SD)          M (SD)          M (SD) 

Reading  

     Surface features        13.85 (6.47)     15.77 (7.87)      29.54 (12.41)                                   9.77 (5.28)     18.23 (8.97)     28.00 (13.50) 

     Structural features         6.08 (3.85)     11.23 (10.38)     16.85 (13.51)                               .33 (4.80)     10.91 (6.38)     16.91 (10.56) 

Decision making 

     Surface features         4.08 (3.15)       6.62 (3.88)     10.38 (6.80)                                     4.00 (2.35)        7.54 (3.62)      11.54 (4.98) 

     Structural features         2.43 (1.62)       2.91 (2.02)        4.08 (3.48)                                     1.80 (.84)          2.50 (1.52)        3.43 (2.51) 

Comparing the tasks 

     Surface features         2.67 (2.27)       7.00 (4.04)        9.46 (5.88)                                     3.69 (2.02)        10.54 (4.93)     14.23 (6.22) 

     Structural features         3.83 (3.71)       6.75 (6.18)        8.00 (8.90)                                     3.33 (3.27)         6.73 (7.09)      7.83 (9.54) 

Description of the tasks 

     Surface features                    3.50 (2.59)       6.82 (5.51)       8.00 (7.52)                                      3.63 (3.74)         4.64 (6.31)        6.67 (9.01) 

     Structural features        3.33 (1.75)       3.71 (3.64)       5.75 (4.62)                                      2.17 (1.47)         2.40 (1.14)        3.57 (2.30)

                                                
a TA – thinking aloud protocol (i.e., concurrent reporting);  
b CR – cued retrospective protocol;  
c cumulated verbal protocols: TA and CR.  
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Table 10. Correlations between the eye tracking parameters and the aggregated categories referring to surface and structural features of 

the verbal protocols 
  Aggregated categories of verbal protocols 

Eye tracking parameters  TA surface CR surface Total surface  TA surface CR surface Total surface 

 

Fixation number          

Surface features  .44* .47* .49*  -.02 .17 .09 

Structural features  .15 .34 .29  .69** .72** .74** 

Fixation duration         

Surface features  .41* .45* .46*  -.13 .05 -.02 

Structural features  .16 .32 .28  .65** .66** .69** 

Average fixation duration         

Surface features  .25 .19 .23  -.64** -.32 -.42 

Structural features  -.74 -.38 -.55  -.35 -.31 -.32 

 

Note: *p < .05; **p < .0



Discussion 

The results show that high prior knowledge students achieved higher post-test 

performance scores compared to low prior knowledge students. In terms of performance on 

training, no significant differences between high prior knowledge and low prior knowledge 

students were found. 

No differences were found between high prior knowledge and low prior knowledge 

students with regard to the eye tracking data. More specifically, expertise (i.e., level of prior 

knowledge) did neither affect the number or duration of fixations nor the average fixation 

duration on both surface and structural features. The lack of differences between high and low 

prior knowledge students regarding the frequency and duration of fixations might be due to the 

fact that these eye tracking parameters indicate different things depending on the expertise level. 

For example, for high prior knowledge students, longer fixation durations might indicate 

productive involvement during learning, whereas for low prior knowledge students it could 

suggest unproductive processing (Schwonke, Berthold, & Renkel, 2009).  

Although we found no differences in viewing behavior between groups over the three 

task selections, we did find a remarkable difference in participants‘ viewing behavior between 

those selections. The number and duration of fixations over surface features was significantly 

lower for the third task selection compared to the first task selection, and even compared to the 

second task selection (only marginally lower). This pattern of results was not found for the 

number or duration of fixations over structural features. These findings indicate that the 

participants‘ allocation of visual attention was less affected by surface features of the tasks when 

viewing tasks with the same format of presentation a second or third time. 

However, high prior knowledge students differed in their verbal utterances made during 

concurrent reporting from low prior knowledge students in that they showed more verbal 

utterances with regard to the category ‗comparing the tasks‘ based on structural features, but less 

utterances related to the category ‗comparing the tasks‘ based on surface features. As indicated 

by the marginally significant effect of prior knowledge, during retrospection the verbal 

utterances related to the category ‗description of the tasks‘ based on structural features (i.e., 

subcategory ‗like/dislike‘) grow with increasing prior knowledge, whereas utterances referring to 

the category ‗comparing the tasks‘ based on surface features decrease. Furthermore, the results 

from both concurrent and cued retrospective reporting revealed that high prior knowledge 

students showed less verbal utterances with respect to the category ‗comparing the tasks‘ based 

on surface features than low prior knowledge students. 

Finally, there is evidence of a correlation between increases in the perceptual processing 

of irrelevant or relevant task-features and increases in the number of statements referring to 

surface features, and structural features, respectively.  
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Chapter 9 

CONCLUSIONS. APLICATIONS. FUTURE RESEARCH  

 

The review of the literature, presented in the theoretical part of the dissertation, has 

outlined the fact that one of the major problems of the complex instructional designs is the 

control of the overload imposed on the learners‘ cognitive system (Paas, Renkl, & Sweller, 2003, 

2004). From cognitive load theory perspective, in order to promote learning, the instructional 

designs have to decrease extraneous cognitive load and increase germane load (Kirschner, 2002).  

The overarching goal of this dissertation is to control the cognitive load which impede 

learning, and this goal is reached in two ways: (a) using cognitive load (invested mental effort as 

input - together with the obtained performance- for the dynamic selection of the level of 

difficulty and support of the tasks which are about to be solved (in the case of personalized task 

selection model) and (b) assigning learners an active role in their own learning process (learner-

controlled instruction; Paas, 2003). 

A review of the main results and conclusions of this dissertation is given, following the 

suggestions of Van Gog et al. (2005) related to the implications for instructional design research 

as indicated by the relations between cognitive load theory assumptions and the framework of 

expert performance research. 

 

1.    Personalization of instruction 

Chapter 4 instroduces a personalized task selection model which integrates the 

assumptions of the two-level model of adaptive instruction and the assumptions of the four-

component instructional design model (4C/ID; Van Merriënboer, 1997) This personalized model 

combines the strong points of the above mentioned models and allows for dynamic selection of 

the appropriate learning tasks based on the learners‘ level of expertise (represented by the 

combination of the performance and invested mental effort).  

The main purpose of this dynamic selection of the tasks is to prevent learners‘ cognitive 

load through a continous adaptation of the level of difficulty and support of the tasks to the 

learners‘expertise. The utilization of invested mental effort as input for the process of the 

dynamic selection of the tasks is only at the beginning. Only few studies have explored the 

benefits of integrating the assumptions of cognitive load theory into the microadaptive models of 

instructional technologies upon learning. The model form the basis of the most of empirical 

studies described in this dissertation. In order to put this model into practice, we designed a 

computer-based learning environment for learning genetics and preliminary results were 

discussed. Chapter 4 also reports the results of a formative evaluation carried out with a twofold 

purpose: (a) to test the functionality and usability of the personalized learning environment and 

(b) to do the necessary changes in the interface as a result of the ―field testing‖.  

Unlike the previous developed learning environments, this learning environment applies 

different measurement scales and includes another selection algorithm for adapting the level of 

dificulty and support of the tasks to the learners‘ expertise. In this case the maximum jump size 

between complexity levels is decreased forcing a smoother increase or decrease in task 

complexity.  

The results of the formative evaluation provides some preliminary evidence that the 

personalized learning environment is a promising approach to improve learning and efficiency in 

reaching the pre-established objectives. 
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2. Improving learning and performance 

The experiments presented in chapter 5 tested the effects of prior knowledge (expertise 

level) and type of instructional control on performance and learning efficiency. The results of the 

first study in this chapter confirm the hypothesis that the adaptive program instruction has 

positive effects on the training effectiveness and learning efficiency, but this is not reflected in a 

superior post-test performance, a higher pre-to-post learning gain or higher transfer test 

performance. A possible explanation could be that the participants in the adaptive instruction 

have acquired ‗restricted‘ cognitive schemes (as a result of ―the perverse effect of the help‖) 

which only allow for a ‗routine‘ completion of the steps (Van Merriënboer, 1997). 

Although the participants in the non-adaptive condition attained the same training 

performance as the students in both learner control conditions, the non-adaptive condition 

needed significantly more time to complete the training phase. A possible explanation could be 

related to the fact that participants in the two learner control conditions chose to solve easier 

learning tasks (i.e., difficulty level 1 and 2), and more tasks with a high support (i.e., completion 

problems with high support). These results suggest the fact that learners who control their 

instruction have the tendency to minimize the effort involved in problem solving process rather 

than try to maximize this effort. 

Regarding the students‘ prior knowledge level, the prediction that learners with a 

relatively higher prior knowledge (i.e., college students) would outperform lower prior 

knowledge students (i.e., high school students) on performance measures and efficiency was 

confirmed. In addition, college students spent more time on the training compared to high school 

students and their longer training time is assumed to be related to a deeper cognitive engagement 

and self-reflecting (see Chi, 2006).  

Consistent with the literature on age differences in cognitive capacity which has found 

that adolescents demonstrate adult-like levels of maturity by the time they reach 15 or 16 (see 

Steinberg, Cauffman, Woolard, Graham, & Banich, 2009), it is unlikely that age differences 

between high school students and college students might affect the results regarding prior 

knowledge since after these ages cognitive performance does not change 

Finally, the interaction effects found in this study show that the students‘ prior knowledge 

strongly affects the students learning path in the learner control and the adaptive program control 

conditions. 

The second study described in chapter 5 is a replication of the previous study with the 

purpose of verifying predictions regarding the influence of the type of instructional control on 

test performance and learning efficiency in the context of increased level of learner expertise 

(inclusion of PhD students in the study). Contrary to the results of the first study (see also 

Mihalca et al., 2011), adapting the difficulty and support of the learning tasks for learners with a 

higher level of expertise would not make learning more effective (neither the training 

effectiveness) and efficient. These results support Lee and Lee‘findings that differences between 

the different types of instructional control decrease whereas the learners‘ previously acquired 

knowledge increases.  

 

3. Cognitive structures 

The aim of the experiment presented in chapter 6 was to examine the differences between 

low and high prior knowledge learners in attention paid to relevant and irrelevant task-features 

during task selection processes by combining eye tracking measures, thinking-aloud and cued 

retrospective protocols. Contrary to our expectations, no differences were found between high 

prior knowledge and low prior knowledge students with regard to the eye tracking data. More 
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specifically, learners‘ expertise level did neither affect the number or duration of fixations nor 

the average fixation duration on both surface and structural features. However, the findings 

indicate that the participants‘ allocation of visual attention was less affected by surface features 

of the tasks when viewing tasks with the same format of presentation a second or third time. In 

contrast, the number and duration of fixations over structural features in the first task selection 

were very similar to those in the last task selection, in other words the pattern of fixations on 

structural features was relative stable over the multiple viewings (i.e., the three tasks selections).  

As indicated by the marginally significant effect of prior knowledge, during retrospection 

the verbal utterances related to the category ‗description of the tasks‘ based on structural features 

(i.e., subcategory ‗like/dislike‘) grow with increasing prior knowledge, whereas utterances 

referring to the category ‗comparing the tasks‘ based on surface features decrease. Furthermore, 

the results from both concurrent and cued retrospective reporting revealed that high prior 

knowledge students showed less verbal utterances with respect to the category ‗comparing the 

tasks‘ based on surface features than low prior knowledge students. 

Furthermore, there is evidence of a correlation between increases in the perceptual 

processing of irrelevant or relevant task-features and increases in the number of statements 

referring to surface features, and structural features, respectively. The finding that the type of 

processing indicated by the participants‘ verbal responses was related to the amount of 

processing time (indicated by eye tracking data) was in line with results of Kaakinen and Hyönä 

(2005). 

In sum, the results of the present study suggests that combining different process 

measures, such as eye tracking, concurrent and cued retrospective reporting can provide a better 

understanding of the processes that underlying the selection decisions. As is suggested by this 

study, in addition to investigating the perceptual processing that occurs during task selection 

decisions, it is imperative to consider decision making from a cognitive perspective (i.e., verbal 

explanations of the task selections), because the results can differ.  

 

To conclude, the results of this dissertation partially supported the idea that adapting 

instruction to the individual needs of the students makes training more effective and efficient yet 

had no effects on improving test performance. It seems necessary to conduct further studies in 

order to address the benefits and shortcomings of the types of instructional control used in this 

study, as well as explore the effects of feedback and advisory models to assist learners with their 

decisions.
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