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Chapter 1

Introduction

Systems made of a large number of complex parts often show simple pat-
terns in their collective behaviour despite the complexity of the individual
parts. The methods of statistical physics are well suited for the study of such
phenomena. In recent decades, statistical physics has found applications in
an ever increasing number of interdisciplinary fields. It has been applied to
problems in such diverse disciplines as ecology, biology, economy, sociology,
information science, etc. The systems encountered in these fields are often
not easily treated by purely analytical mathematical methods, so the use
of computer modelling is necessary. Applying statistical physics methods
and modelling in these disciplines has in part been made possible by the
cheap availability of powerful computers. Modern technology has also made
it possible to collect and store very large datasets which can be used to test
theoretical models and to discover new patterns and phenomena.

In this work, three complex systems from three very different disciplines
are described. They are studied using Monte Carlo simulations as well as
analytical methods. The first part of the thesis describes a spatially expli-
cit model, based on the neutral theory of biodiversity, that can reproduce
the spatial distribution of tree species in tropical forests. In particular, the
model introduced can reproduce with great accuracy the number of differ-
ent species that can be found on a given area. In the second part, basic
thermodynamic considerations are used to draw conclusions about the final
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2 CHAPTER 1. INTRODUCTION

expansion stage of the quark gluon plasma created in an ultra-relativistic
collision of heavy atomic nuclei. The method is applied to interpret the
output of a relativistic fluid dynamical simulations describing the expan-
sion. The third part describes several variations on a simple synchronization
model of bimodal oscillators with a pulse-like coupling. The phase space of
the oscillator system is explored in great detail, revealing an unexpectedly
complex structure. It is shown that the system is capable of spontaneous
synchronization under more general conditions than previously thought.

1.1 Structure of the thesis

The thesis is structured into three parts, each of which describes a different
kind of complex system. Methods of statistical physics and Monte Carlo
simulations are used to study each of them. The results have been published
in four papers and accepted at a conference (see references [4], [3], [5], [6]
and [7]). My contributions to each one are described below.

1. The first part describes a spatially explicit version of the neutral the-
ory of ecology. The neutral theory of ecology was created to explain
the distribution of similar biological species according to their abund-
ance. There have been efforts to extend this theory to describe the
distribution of species in space as well. We have developed a spatially
explicit version of the neutral model of ecology which can successfully
reproduce certain characteristics of the spatial distribution of tree
species in tropical forests. In particular, our model can reproduce
precisely the species-area curve, i.e. the number of different species
found in an area of a given size. The findings have been published in
the following paper:

Sz. Horvát, A. Derzsi, Z. Néda, and A. Balog, A spatially explicit
model for tropical tree diversity patterns, Journal of Theoretical
Biology, vol. 265, no. 4, pp. 517-523, 2010.

My main contribution to this paper was developing the software to
simulate the spatially explicit model, running the simulations and
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fitting the parameters to the empirical data, then finally analysing
the results.

2. The second part describes a simple thermodynamic approach to study-
ing the final stages of the expansion of the quark gluon plasma created
in a high energy collision of heavy nuclei.

Sz. Horvát, V. Magas, D. Strottman, and L. Csernai, Entropy develop-
ment in ideal relativistic fluid dynamics with the Bag Model equation
of state, Physics Letters B, vol. 692, no. 4, pp. 277-280, 2010.

I developed a method to correctly calculate thermodynamic variables
during the final stages of expansion in a fluid dynamical model of
heavy-ion collisions, when the pressure approaches zero, and applied
the method to interpret the output of a relativistic fluid dynamical
simulation, considering the effects of numerical viscosity. I performed
all the necessary analytical and numerical calculations.

3. The third part of the thesis describes a system of bimodal stochastic
oscillators with pulse-like coupling. The oscillators are coupled through
an interaction that does not include explicitly phase-difference min-
imizing forces. Instead, the coupling between the oscillators aims to
minimize the difference between the output level of the system and
a threshold level. As a side effect of this optimization interaction,
the oscillators become synchronized. Several models of this type have
been studied using numerical modelling, and a phase space with a re-
markably complex structure has been uncovered while exploring the
behaviour of the oscillator ensemble as as a function of the ratio of
the periods of the modes and the threshold parameter.

Sz. Horvát, E. Á. Horváth, G. Máté, E. Káptalan, Z. Néda, Unexpec-
ted synchronization, Journal of Physics: Conference Series, vol.
182, 012026, 2009

Sz. Horvát, Z. Néda, Complex phase space of a simple synchronization
model, manuscript submitted to the New Journal of Physics, http:
//arxiv.org/abs/1203.1699

http://arxiv.org/abs/1203.1699
http://arxiv.org/abs/1203.1699
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My main contributions are developing software that can simulate the
system of oscillators significantly faster than previous methods, and
the development of an adaptive sampling method that allows mapping
the phase space of the system with high precision while needing to run
the simulation only for relatively few points in the phase space. I used
numerical modelling to study the system as a function of the ratio of
the periods of the oscillation modes and the threshold parameter.



Chapter 2

Neutral models in ecology

Ecology is the science that studies interactions between various living or-
ganisms, as well as these organisms and their environment. Living organ-
isms are highly complex, thus, in practice it is not possible to describe and
model their relationships in a completely general and precise mathemat-
ical way. Despite this, in certain cases some strikingly simple patterns can
be observed in data collected about ecological systems, which hint at the
existence of relatively simple dominant mechanisms that are responsible
for shaping them. Mathematical ecology aims to discover and model these
mechanisms using the tools of mathematics.

The neutral theory of biodiversity was developed to better understand
the abundance distribution of species. Why are there so many different
species in tropical forests? How can they all coexists in the same envir-
onment? Why are some species more common than others? The classical
answer of ecology to this question is that all species differ in some important
ways from all others, thus they can share the available range of resources
by specialization and avoiding strong competition.

The classical viewpoint of ecology is based on the concept of ecological
niches. Niche means the collection of all factors that influence the survival
of a particular species. This includes all resources a species consumes, such
as food sources, its habitat, its hunting grounds and breeding grounds, its
predators and parasites, etc. Does a herbivore eat grass or leaves? Does
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6 CHAPTER 2. NEUTRAL MODELS IN ECOLOGY

a bird nest on the ground or in the canopy? All these factors differentiate
species from each other and reduce the surface of competition between them.
In this way each species has it own “ecological compartment” or niche, which
it occupies alone, without needing to compete for each resource with another
species. According to the principle of competitive exclusion, no two species
can share the same ecological niche. It is held that if two species consume
the exact same resources under constant environmental conditions, then one
of them will always be better adapted to these conditions than the other,
and will displace the other one.

In the recent two decades a new viewpoint has emerged which starts
from the assumption that all similar species can be considered equivalent
to each other. The idea was set forth in a now classical work by Stephen
Hubbell [8]. Theories built on this assumption are called neutral theories.
These have caused some controversy because their fundamental assumption
contradicts the principle of competitive exclusion [14]. Despite the obvious
oversimplification they make, stochastic models built on the neutral theory
have managed to reproduce the distribution of similar species according
to their abundances quite well [19, 18, 1]. This suggests that at least in
the case of similar species, stochastic processes play an important role in
determining species abundances.

A new spatially explicit neutral model

The original version of the neutral model of biodiversity [8] easily lends itself
to a spatially explicit extension where each of the individuals has an assigned
spatial position [14, 20]. This is a particularly appropriate description when
considering species that do not move around, such as trees in a forest. For
simplicity, from now on we shall refer to individuals as “trees”.

Zillio et al. have described such a spatially explicit version of Hubbell’s
neutral model, based on the voter model [20]. Following in Zillio’s footsteps,
we extended Hubbell’s original model to include the spatial positions of
individuals (in this case: trees). The most straightforward way to do this is
to consider a lattice model: each site of a square lattice is occupied by a tree.
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Like in Hubbell’s original model, each individual has the same probability of
dying, regardless of species or age. The rules describing the time evolution
of the system are the following:

In each discrete time step, randomly choose a lattice site.

1. With probability 1− q − p, the state of the chosen site is changed to
one of its 8 Moore-neighbours. This is the most probable outcome,
and models the quite common case of the new individual being an
offspring of a neighbouring tree.

2. With probability q, a randomly selected species is assigned to the
chosen site. This species is selected with a uniform probability from
the ensemble of possible species. If the potential number of species
from which the selection is made is big enough and q is much smaller
than one, this process is suitable for modelling speciation or immig-
ration into the considered territory.

3. With probability p, the species identity of the new tree is chosen to
be the same as the species of a randomly selected individual from
among the remaining N − 1 ones. This rule models the diffusion
of the seeds in the considered area, allowing seeds originating from
faraway individuals to reach the location.

Although this is a relatively simple, two-parameter model, handling it
analytically has proven difficult. Therefore it was studied using Monte Carlo
simulations on a computer.

Empirical data used to test the model

The experimental results used for testing the model are from a detailed 50
hectare tropical forest tree census in Barro Colorado Island (BCI), realized
by the Smithsonian Tropical Research Institute, Center for Tropical Forest
Science (CTFS) [2]. BCI is located in the Atlantic watershed of the Gatun
Lake (Panama) and was declared a biological reserve in 1923. It has been
administrated by the Smithsonian Tropical Research Institute since 1946.
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Figure 2.1: The spatial distribution of the most abundant species, Hyb-
anthus prunifolius, in the Barro Colorado Island tree census, census year
1995. The square on the right shows the area that was used for calculating
statistic.

From the viewpoint of ecological studies, this island is ideal because it is
covered with a rainforest that is still undisturbed by humans. The flora and
fauna of BCI have been studied extensively and inventories have reported
1369 plant species, 93 mammal species (including bats), 366 avian species
(including migratory), and 90 species of amphibians and reptiles. The trop-
ical tree census was performed only on a small part of the island, precisely
on a 1000 × 500 metre (50 hectare) area. The first census was completed
in 1982, revealing a total of approximately 240,000 stems of 303 species
of trees and shrubs. The importance of this CTFS programme consists in
the fact that in each census all free-standing woody stems at least 1 cm
diameter at breast height are identified, tagged, and mapped, and hence
accurate statistics can be made. Data is publicly available for the years
1982, 1985, 1990 and 1995 [2].

Relevant macroecological measures

Three quantitative measures were used to compare the simulation results
to the empirical data. They are briefly described in the following.
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Figure 2.2: Simulation results (dark grey) for the relative species abundance
curve after 50,000 Monte Carlo steps, compared with the measurement data
(light grey), and the predictions of the Fisher log series for α = 33.64

(solid black lines). Panel (a) shows the Preston plot, (b) the probability
density function, and (c) the rank-abundance plot. Simulation parameters:
L = 500, p = 0.3 and q = 1.3× 10−4.

Relative species abundance distribution (RSA)

There are three simple ways of representing the relative abundance of spe-
cies. The first and most widespread is called a Preston-plot and is simply
an illustration of how many species are there that have 1, between 2 and 4,
4 and 8, 8 and 16, etc. individuals in the considered experimental sample.

It is mathematically more rigorous to work with an actual probability
distribution. This can be represented as either as a probability density
function or a cumulative distribution function. These have been used as
well.

Species-area relationship (SAR)

The species area relationship is the function S(A) that gives the mean
number of species, S, that can be found on an area of size A. In the past
it has been conjectured that S(A) often follows a power law, therefore a
logarithmic scale was used to show it (and highlight the differences from a
power law behaviour).
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Figure 2.3: Species-area curves: comparison of simulation (grey shaded
area) and experimental (black line) results. The shaded area was computed
from a set of 50 simulation runs, and represents the mean value± 2 standard
deviations. The white circles represent one simulation result that fits the
experimental data best. Simulation parameters: L = 500, p = 0.3 and
q = 1.3× 10−4. Experimental data: BCI 1995.

The spatial auto-correlation function

The final quantitative measure used for testing the model is the spatial
auto-correlation functions of the density of common species.

Let Ni,j denote the number of individuals belonging to a given species
that can be found in cell (i, j) of a square grid. Then the auto-correlation
function associated with the distribution of this species is defined as

Cp,q =
〈
(Ni,j − 〈N〉)(Ni+p,j+q − 〈N〉)

〉
i,j

(2.1)

〈N〉 denotes an average over all cells. It is reasonable to assume that the
density of individuals is isotropic, so it is advantageous to use the azi-
muthally averages auto-correlation function:

C(r) =
〈
Cp,q{r ≤

√
p2 + q2 ≤ r + ∆r}

〉
p,q

(2.2)
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Figure 2.4: The C(r) spatial auto-correlation function for the three most
abundant species of the BCI census: Hybanthus prunifolius (white squares),
Faramea occidentalis (black circles), and Trichilia tuberculata (grey tri-
angles). Census year: 1995. The same function is plotted on a log-log
scale on panel (a) and a linear-log scale on panel (b).

The spatial auto-correlation function of the most abundant species in the
BCI dataset was found to decay as a power law function, as shown in
figure 2.4.

2.1 Simulation results

The model was studied using Monte Carlo type simulations.
When the parameter p is set to 0, out model becomes equivalent to

Zillio’s. However, in this case individuals belonging to the same species will
cluster together in a way that is clearly unrealistic. Thus a p > 0 parameter
value was used.

The model parameters p and q were optimized to reproduce two quant-
ities from the BCI dataset: (1) the number of species present on a 25 ha
area; (2) the slope of the log–log SAR curve in the neighbourhood of the 25
ha area. By optimizing for these two quantities only, the RSA, as well as
the SAR for the whole range of available area values could be reproduced.

An extensive search of the parameter space using numerical modelling
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Figure 2.5: The auto-correlation function of the most abundant species
obtained from the simulation after 50000 Monte Carlo steps. Note that
the scale for C(r) is logarithmic, while the scale for the radius is linear.
Simulation parameters: L = 500, p = 0.3 and q = 1.3× 10−4.

gave the parameter values p = 0.3 and q = 1.3×10−4, which resulted in the
best fit to the empirical data. As expected, the spatial model can reproduce
the relative species abundance curves observed in nature very well. These
are shown in figure 2.2.

The optimal parameter values were then used to run a new set of simula-
tions for the purpose of comparing the species-area relationship for the full
range of area values. The results are shown in figure 2.3. The black curves
represents the SAR computed from the Barro Colorado Island census data
while the grey shaded area shows 50 simulation results, and represents their
mean value ±2 standard deviations. The white circles represent the model
result that matches the empirical SAR best.

Even though the model parameters were optimized by fitting only two
numbers (the total number of species found on a given area and the deriv-
ative of the SAR curve at this point), the empirical SAR is reproduced by
the model very accurately. This is a significant result because it shows that
the model can be practically used to predict the number of species that can
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be found on a given area, based on measurements at a different area scale.
Unfortunately this model was not able to reproduce the spatial auto-

correlation function well. The auto-correlation function of the abundant
species decays exponentially in simulation results, as shown in figure 2.5.
This contradicts the power-law decay observed in nature and shown in fig-
ure 2.4.





Chapter 3

Entropy production during the
final stages of expansion in heavy
ion reactions

In high energy collisions of heavy atomic nuclei, a new state of matter can
be created, the Quark-Gluon Plasma. This is a remarkable state of matter
because the quarks are able to move freely within it.

The Quark-Gluon Plasma was shown to behave like a low viscosity fluid
in experiments, therefore fluid dynamical approaches are suitable for study-
ing it. Except for the most trivial configurations, the equations of relativ-
istic fluid dynamics can only be solved numerically, on a computer. How-
ever, numerical methods can only give an approximate solution to equations.
The difference between the (unknown) analytic solution and the numerical
solution is called the numerical error. Part of the numerical error in fluid
dynamical computations arises in the form of numerical viscosity. That
is, even when solving the equations of a perfect fluid, some viscosity will
be present in the solution due to the effect of the finite resolution of the
computational grid.

It is important to note that the equations of perfect fluid dynamics are
unstable. In real fluids, some viscosity is always present, therefore large
instabilities do not always arise. Therefore it is not our goal to find the
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Figure 3.1: Change of the mean specific entropy S/N in time during expan-
sion in a numerical fluid dynamic computation. The dashed line corresponds
to the assumption that the Bag energy density is constant. This leads to
decreasing entropy, which conflicts with the second law of thermodynamics.
The solid line represents an adiabatic expansion of the quark gas compon-
ent. The slight entropy increase here (of 5-6%) is due to the numerical
viscosity of the computational method. The dotted line corresponds to the
assumption that the total energy of the gas component is constant during
expansion. The cell size was dx = dy = dz = 0.575 fm

exact solution of the equations of non-viscous fluid dynamics. Instead, the
numerical viscosity arising from the discretization of these equations is set
equal to the (slight) physical viscosity.

The numerical fluid dynamics code that we use is based on the Particle
in Cell method and is highly stable. It can run stably up to the final stages
of expansion where the pressure becomes zero. Our approach is to let the
fluid dynamical model run beyond the point of freeze-out. The freeze-out
hypersurface can then be determined from external parameters that are not
used in to solve the fluid dynamical model. The temperature and density
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can provide guidelines.
To be able to solve the equations of fluid dynamics, it is necessary to

complement them with an equation of state that connects the pressure,
baryonic density and energy density. Note, however, that quantities such
as temperature and entropy do not appear in the calculation. These can
be determined from the baryonic density and energy density after the code
has run. In our code, we used the simple Bag model equation of state. This
equation of state yields negative pressures for low energy densities, which
would indicate an (unphysical) tendency for clusterization. To avoid this,
the pressure was set to zero at low energy densities. Then the entropy and
temperature must be calculated in accordance with this change.

The Bag model assumes that a gas of partons is moving in a back-
ground field of constant energy density. When calculating the entropy and
temperature in the energy density regions where the total pressure is zero,
it is necessary to consider the exact nature of energy exchange between the
parton gas and the background field. We used thermodynamic methods to
consider three cases, each of which results in a different entropy evolution
of the system.

It was found that in order for the entropy not to decrease (and to satisfy
the second law of thermodynamics), it is necessary that the energy density of
the background field decreases during expansion. The interaction measure
was calculated as well, and compared to curves obtained from Lattice QCD
calculations.

The method developed was applied to interpreting the output of a fluid
dynamical simulation. The results for the change in entropy are shown in
figures 3.1.

It is conjectured that the hadronization and freeze-out may proceed
through a Quarkyonic phase, where the chiral symmetry is broken and the
quarks gain mass. This corresponds to the gradual disappearance of the
background field in these calculations.





Chapter 4

Spontaneous synchronization of
oscillators

Synchronization means the adjustment of the rhythm of periodic oscillators
by means of a weak interaction between them, so that they begin operating
at the same frequency.

Spontaneous synchronization appears in a wide variety of systems in
nature. Well-known examples include biological systems such as fireflies
flashing in unison or crickets chirping together [15], rhythmic applause
[10, 11], pacemaker cells in the heart [13], the menstrual cycles of women
living together [16], oscillating chemical reactions, mechanically coupled
metronomes, pendulum clocks hung on the same wall, and many other sys-
tems.

Several models exist that aim to describe spontaneous synchronization.
These can be grouped into two broad categories: those that have a phase-
minimizing coupling between individual oscillators and those that have a
pulse-like coupling. The basic example of a phase-coupled system is the
Kuramoto model, while a simple example of a pulse-couple oscillator model
is the integrate-and-fire model. Both of these model types have a parameter
characterizing the tightness of coupling between the oscillating units. When
global coupling is present, a phase transition is possible in these models:
they demonstrate a sudden appearance of partial synchronization when the

19
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coupling parameter is increased above a threshold level.
Recently a new synchronization model has been described. It consists of

stochastic bimodal oscillators with a pulse-like coupling. At any time, each
oscillator can be active, emitting a signal, or inactive. The sum of the emit-
ted signals gives the total output level of the system. This synchronization
model is remarkable in that unlike previous models, it does not contain any
explicitly phase difference minimizing interactions. Instead, the dynamic of
the units strives to minimize the difference between the total output of the
system and a threshold level. Each oscillator can operate in a fast or slow
mode, “flashing” quickly or slowly. The periods of the two modes are not
constant, but random variables. The average output intensity of the units
is different in the two modes. At the beginning of each period, an oscillator
will choose which mode to follow depending on the total output level in the
system. If the total output is greater than a threshold, it will choose the
slow mode so as to decrease the total average output. If the total output is
less than a threshold, it will choose the fast mode to increase the output.
Interestingly, this optimization dynamic leads to the emergence of partial
synchronization in the system. When the system reaches a steady state,
the oscillators will flash in union [12, 9].

Several variations on this model are possible, depending on the duration
of the active and inactive phases in the two modes [12, 4, 17, 6]. We have
studied three different models using numerical simulations, as a function of
the threshold level [4, 6], the parameter characterizing the randomness of
the periods and the ratio of the periods of the two modes. A fast numerical
simulation code was developed in conjunction with an adaptive sampling
method to map the structure of the phase space of the model. When study-
ing the models as a function of the ratio of the oscillation mode periods,
a complex phase space has been uncovered with many phases (figure 4.1,
in each of which the total output level of the system has a different shape
(see figure 4.3. It was shown that partial synchronization can emerge un-
der very general conditions, and synchronization is possible even when the
coupling does aims to maximize (not minimize) the difference between the
total output and the threshold level.
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Figure 4.1: The order parameter σ shown as a function of the parameters
τ2/τ1 and f ∗, for the three different models. (a) Model 1: the duration
of the lit phase (C) is fixed while the duration of the dark phase (B) is
variable. Simulation parameters: N = 10000, τC = 0.15. (b) Model 2: the
duration of the dark phase (B) is fixed while the duration of the lit phase
(C) is variable. Simulation parameters: N = 10000, τB = 0.8. (c) Model
3: the duration of the dark phase (B) is variable and the duration of the lit
phase is fixed, like in the case of model 1, however the interaction strived to
maximize the difference between the total output level and f ∗. Simulation
parameters: N = 10000, τC = 0.15.
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The synchronization model

The basic version of the model considers an ensemble ofN identical bimodal,
globally coupled, stochastic oscillators. At any time, an oscillator can either
be active, emitting a signal of strength 1/N , or inactive, emitting no signal.
Therefore the total output level of the system can vary between 0 and
1. These oscillators can be intuitively thought of as flashing units. For
simplicity, from now on we shall refer to active ones as lit and inactive
ones as being in an unlit or dark state. In accordance with this intuitive
picture, the sum of the units’ output levels can be thought of as the total
light intensity in the system.

The units are stochastic bimodal oscillators. They can operate in two
oscillation modes, one with a shorter and one with a longer period. These
will be referred to as mode 1 and mode 2, respectively. The periods of the
modes are random, and their mean values are denoted by τ1 and τ2.

An oscillation period consists of three phases, A, B and C. During phase
A and B the units are dark, while during phase C they are lit. The duration
of phase A, τA, is an exponentially distributed random variable with mean
〈τA〉 = τ ∗. The duration of phase B, τB, can have two values, τB1 and τB2,
corresponding to the two oscillation modes. The duration of the lit phase,
τC , is fixed. The average lengths of the periods of the modes is the sum of the
mean durations of these three phases: τ1 = 〈τA〉+〈τB1〉+〈τC〉 = τ ∗+τB1+τC

and similarly τ2 = τ ∗+τB2+τC . Since the units stay lit for a greater fraction
of the short period mode than the long one, the average light intensity will
be larger when the units are oscillating in the short period mode.

The coupling between the oscillators is realized through an interaction
that strives to optimize the total light intensity in the system, denoted f .
At the beginning of each period, a unit decides which mode to follow based
on whether the total light intensity, f , is greater or smaller than a threshold
level f ∗:

• If f ≤ f ∗, the shorter period mode will be chosen. Since an oscil-
lating unit stays lit for a greater fraction of a full period when it is
operating in the short mode, this will help in increasing the average
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light intensity in the system.

• If f > f ∗, the longer period mode will be chosen, reducing the average
total light intensity in the system.

According to these rules, each oscillating unit individually aims to achieve
a total output intensity as close to f ∗ as possible, based on their instantan-
eous measurements of the output level. As a side effect of this optimization
procedure, synchronization can emerge: the total output intensity of the
system becomes a periodic function and the units will flash in unison.

Modelling and results

In this work we have focused on three variations of the basic model described
above: model 1. the basic model described above with a fixed-duration lit
phase, and a variable duration dark phase; model 2. a model with variable
duration lit phase and a fixed-duration dark phase; and model 3. fixed-
duration lit phase and variable duration dark phase with a reversed choice
of the long or short modes depending on the f ∗ value. This last case will be
referred to as “anti-optimization” because the oscillators strive to achieve
an output as different from f ∗ as possible. Partial synchronization emerges
in all three cases.

To detect partial synchronization in the system, i.e. a global output
intensity function f(t) that corresponds to “flashing”, the standard deviation
of the total output function, σ, was used:

σ = lim
x→∞

√
1

x

∫ x

0

(f(x)− 〈f(x)〉)2 dx

where
〈f(x)〉 = lim

x→∞

1

x

∫ x

0

f(x) dx.

A large standard deviation indicated a large variation in the output intens-
ity.

The behaviour of the models was explored as a function of the ratio of the
periods of the average oscillation modes, τ2/τ1 and the threshold parameter
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Figure 4.2: The sampling mesh used to compute part of figure 4.1a. Note
that most points are clustered around the discontinuities. An irregular
triangular mesh was used as starting point, and then iteratively refined.

f ∗. Mapping the phase precisely space takes a huge computation effort, so
an adaptive sampling method was developed to reduce computation efforts.
The method made it possible to use more sampling points around parameter
values where the behaviour of the system changed quickly, while using only
a few points in regions where a change of parameters does not induce a
significant change in behaviour. An example point mesh generated by this
adaptive sampling method is illustrated in figure 4.2.

We found that the phase space of this system has a strikingly complex
structure with several phases separated by a discontinuous jump in the
order parameter σ. In each of these phases, the shape of the total output
intensity function of the ensemble, f(t), is different.
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Figure 4.3: The shape of the output signal for model 1 for various parameter
values. The simulation parameters were N = 10000 oscillators and τC =

0.15.
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Figure 4.4: The shape of the output signal for model 2 for various parameter
values. The simulation parameters were N = 10000 oscillators and τB =

0.80.
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