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CHAPTER 1

INTRODUCTION

How artificial neural systems can reproduce the rich information processing and self-organizational
capabilities displayed by realistic cortical microcircuits remains a major unanswered question in the
world of computational neuroscience. Moreover, despite several interesting results (Kempter et al.,
1999; Del Giudice et al., 2003; Vogels et al., 2005; Cessac et al., 2009; Bialek and Rieke, 1992; Vic-
tor and Purpura, 1997; Mazor and Laurent, 2005) the precise effects of synaptic plasticity on the
dynamics and computational performance of spiking neural networks together with how is input
represented by the spatio-temporal patterns of activity exchanged by neurons still remain poorly
understood. The present Thesis constitutes a small step towards achieving these goals, by provid-
ing among other contributions, novel spike train measures and new insights regarding some of the
effects of synaptic plasticity and inhibitory cells on the activity of spiking neural networks. Our re-
sults are particularly interesting in the context of designing better controllers of artificial intelligent
systems and in the analysis of the information contained in the signals exchanged by neurons.

The purpose of Chapter 2 is to make the thesis self contained. It briefly presents the most ba-
sic biological structures that lie at the core of state of the art computational models. Several types
of artificial neural networks are also discussed with emphasis on their biological resemblance and
computational power. At the end of the chapter, we present several plasticity mechanisms that un-
derlie and shape the activity of realistic cortical microcircuits and their computational models.

Among artificial neural networks, spiking networks remain the most biological relevant as they
represent information in the shape of spiking times not unlike the brain does. In addition, such
networks have been shown to be computationally superior and more robust to noise than previ-
ous generations of networks (Maass, 1996, 1997). In Chapter 3 we present a biologically plausible,
universal computational paradigm featuring spiking neurons suitable for real-time computing sep-
arately introduced as the Echo State Network (ESN) (Jaeger, 2001b) and the Liquid State Machine
(LSM) (Maass et al., 2002b). Due to their intrinsic computational properties and high biological re-
semblance, these special types of spiking networks make suitable controllers of artificial intelligent
systems. Evolutionary computational techniques such as Particle Swarm Optimization (PSO) have
been applied to solve a number of optimization problems from finding the shortest path in a graph,
designing optimal communication networks to developing learning algorithms like supervised or
reinforcement learning for neural networks, by optimizing the synaptic connections between neu-
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1. INTRODUCTION 2

rons. In Chapter 3 we show how PSO can be used in such an application and propose how it could
be employed to increase LSM performance.

Several studies (Florian, 2010b; Brickhard, 1993; Chiel and Beer, 1997; Steels and Brooks, 1995) sug-
gest that intelligent behaviour can emerge only in an embodied system emerged in an environment,
through a process of continuous interaction. This constant interaction between the cognitive sys-
tem and its surrounding environment creates a closed loop in which the actions of the agent shape
the environment which in turn affect the sensory information and the way it is perceived by the
agent. Through such a continuous process of interaction and discovery the system self-organizes,
develops its own conceptualization of the environment and is eventually able to learn. However,
additional studies (Oka et al., 2001) claim that embodiment could not necessarily be given by ma-
teriality and that the physical interaction between the cognitive system and the environment are
arguably not needed. This essentially suggests that the relation between the environment and cog-
nitive system emerges computationally through a surrogate. A major disadvantage of such an ap-
proach is that these computational interactions and virtual measurements lack the intrinsic noise
found in ones from the material world. Thus noise should be artificially added and it might intro-
duce in the process unnecessary artefacts which would make experiments either too difficult or too
simple. In this context neural simulators which are able to simulate large-scale neural networks ef-
ficiently and robotic frameworks allowing them to control robotic devices are highly desirable. Such
frameworks allow the facile control of physical cognitive agents and enable one to spend less time
on programming details and more on detailing experiments. In Chapter 3 we introduce a flexible
distributed control framework for robotic interaction with spiking neural networks ideal for large-
scale simulations. The framework enables the control of different robotic platforms by multiple
types of neural networks featuring different synaptic plasticity mechanisms. It has been success-
fully used at the Center for Cognitive Studies (Coneural) and we think it might be relevant for the
scientific community interested in robotic control.

In the context of constructing artificial neural networks for robotic control, analyzing the neural
code together with determining how sensorial information is represented in patterns of neural dis-
charge becomes crucial. The distance between two spike trains reflects their similarity. Spike train
distances (or measures) were successfully used in classification of neural recordings in response to
different stimuli in an attempt to predict the presented stimulus, to measure the variability of neu-
ral responses to same stimulus across multiple recordings and to quantify the degree of synchrony
between neurons. To this end, in Chapter 4 we derive several novel spike train measures which en-
able the analysis of neural variability and the information content of a spiking sequence. The newly
introduced spike train measures are inspired by the Pompeiu-Hausdorff distance between two non-
empty compact sets. They compute the distance between pairs of spike trains and yield a value
that is dependent on the precise timing of the differences across the two spike trains. The principle
which underlies their functioning is that a single spike may become as important as the spike train
itself (Rieke et al., 1997).

A fundamental issue in neuroscience is understanding how learning and memory emerge out
of neural plasticity. There has been a considerable interest in the past decade in Spike-timing De-
pendent Plasticity (STDP), a phenomenon where synaptic changes depend on the relative timing of
pre- and postsynaptic action potentials. Such plasticity rules are considered to be a basis for learn-
ing (Hebb, 1949). Temporal difference (TD) methods are incremental techniques which enable a
system to predict its future behavior based on the difference between two successive predictions
(Sutton and Barto, 1998). Using a complex biophysical model of a cortical neuron and a simple

2



3 1. Introduction

setup (a single presynaptic spike followed by a single current pulse) Rao and Sejnowski (2001) have
shown that TD learning reproduces a Hebbian window of plasticity similar to those observed ex-
perimentally. However, it is not clear whether the result is a consequence of their complex model
and holds in the case of simpler neurons, like the ones that are commonly used in large scale com-
puter simulations; nor whether the phenomenon holds for more complex setups that are likely to
appear both in simulations and in the brain. In Chapter 5 we show that in general TD learning in
spiking neurons does not lead to Hebbian STDP. Using simple neural models, we verify that such
a spike-timining based TD learning mechanism enables the prediction of input sequences by spik-
ing neurons moments before their expected arrival. Additionally, we show that the same predictive
capabilities can be obtained using a plasticity rule that reproduces only the causal part of Hebbian
STDP used together with a homeostatic regulatory mechanism. Moreover, we show that the synap-
tic modifications are achieved in an optimal way when they are proportional to the value of the
postsynaptic potential.

Spatio-temporal patterns of activity have been observed in the hippocampus and cortex, and were
associated to memory traces. The coding of information in the phases of spikes relative to a back-
ground oscillation has been observed in many brain regions such as auditory or visual with such
patterns found to be stimulus dependent and convey more information than for example firing rate
alone (Gerstner and Kistler, 2002). In a simple simple setup, consisting of a spiking neuron receiv-
ing input from a number of presynaptic neurons, STDP was shown (through computer simulations)
to enable the detection of spatio-temporal patterns of activity embedded in the input spike trains
(Masquelier et al., 2008, 2009). In Chapter 6 we analytically derive a set of values for the input
synaptic weights which facilitates such a detection. In addition to that, we study the effects of hav-
ing multiple input patterns in the case of a single output neuron (the case of multiple neurons was
treated in Masquelier et al. (2009)). We show that in the presence of Intrinsic Plasticity, a homeo-
static regulatory mechanism, the neuron is able to respond to more than one input pattern. Such
a mechanism is extremely desirable because, in contrast to other supervised learning approaches
(Guetig and Sompolinsky, 2006; Florian, 2010a), it is simple, computationally cheap and biologi-
cally plausible and in addition to that also allows a fast, online implementation.

Non-invasive brain stimulation techniques such as Transcranial Magnetic Stimulation (TMS)
have been hypothesized to improve learning, facilitate stroke rehabilitation, treat depression, schizo-
phrenia, chronic pain, or addictions such as alcoholism. In a standard TMS paradigm, single-pulse
stimulation over motor cortex produces high-frequency repetitive responses of around 600Hz in
descending motor pathways called I-waves. Although this paradigm is well-established experimen-
tally, the detailed mechanisms of I-wave generation have remained unclear. In Chapter 7 we in-
troduce a model that reproduces I-waves similar to those observed in epidural responses during in
vivo recordings of conscious humans. The model consists of a detailed layer 5 (L5) pyramidal cell
and a population of layer 2 and 3 (L2/3) neurons projecting to it. The model parsimoniously ex-
plains the mechanisms underlying I-wave generation together with some of their basic properties
such as frequency and timing. We argue that I-waves are a product of both extrinsic and intrinsic
factors. By depolarizing large populations of L2/3 cells, magnetic stimulation causes a synchronized
volley of postsynaptic potentials to impinge onto the dendritic trees of L5 cells. The intrinsic mem-
brane properties and spiking mechanism of the L5 cells are then responsible for generating trains
of action potentials at the characteristic I-wave frequency. Our model is shown to reproduce the
effects of pharmacological interventions with drugs affecting GABA-ergic transmission on I-waves.
By incorporating short-term synaptic depression of synapses from L2/3 onto L5 cells, our model

3



1. INTRODUCTION 4

also accounts for facilitation and inhibition effects observed in paired-pulse stimulation protocols.
Overall, our model parsimoniously explains findings from a range of experiments and brings us one
step closer to designing optimized protocols for specific clinical purposes. Such a model is relevant
not only because it can uncover the biophysical mechanisms behind magnetic stimulation but also
enables the study of the functional roles of inhibitory neurons and short-term plasticity in simple
cortical circuits containing complex compartmental cells – a central theme of the present Thesis.
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CHAPTER 2

BIOLOGICAL FOUNDATIONS

In this chapter we present the biological structures and biophysical mechanisms that underlie the
activity of cortical microcircuits and how they are reflected in state of the art computational models.

2.1 The neuron

2.1.1 Biological neurons

We discuss the anatomy together with the most basic features of biological neurons.

2.1.2 Neural models

We present a realistic model of a biological neuron.

2.1.2.1 Formal models

We discuss the need and advantages of introducing formal neuron models.

2.1.2.2 Modelling noise

We discuss methods of introducing noise into neural models.

2.2 The synapse

We present the anatomy of a synapse.

2.2.1 Synaptic plasticity

We discuss typical synaptic plasticity mechanisms present in cortical microcircuits.

5



2. BIOLOGICAL FOUNDATIONS 6

2.2.1.1 Spike-Timing Dependent Plasticity

We present a basic model of Spike-timing dependent plasticity.

2.3 From neural microcircuits to artificial neural networks

We present types of cortical microcircuits and how they are reflected in computational models.

2.3.1 Classes of neural networks

We present several classes of artificial neural networks.

2.3.1.1 Threshold gates

We discuss the basic features of threshold gates.

2.3.1.2 Analog networks

We discuss the basic features of analog networks.

2.3.1.3 Spiking networks

We discuss the basic features of spiking networks.

2.3.2 Biological resemblance of artificial models

We discuss the biological relevance of artificial neural network models.

2.4 Models of spiking neurons

We present several neural models which provide a reasonable balance between biological rele-
vance and computational efficiency.

2.4.1 The spike response model

We introduce the Spike Response Model (Gerstner and Kistler, 2002).

2.4.2 The integrate-and-fire neuron

We introduce the integrate-and-fire neuron (Gerstner and Kistler, 2002).

2.4.2.1 Pulsed input currents

2.4.2.2 Exponential input currents

2.4.3 The Izhikevich neuron

We introduce the Izhikevich (2003) neuron.

6



7 2. Biological foundations

2.4.4 The stochastic Poisson neuron

We introduce a probabilistic neuron model based on a Poisson process (Gerstner and Kistler, 2002;
Kempter et al., 1999).

2.4.5 The BMS neuron

We introduce a simplified discrete model (Soula et al., 2006; Cessac, 2008).

2.4.6 Measurements and typical parameters

2.5 Conclusion

We have briefly reviewed here the basic computational units – neurons and synapses – of neural
microcircuits and how their characteristics are reflected into formal models of artificial neurons and
networks.
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CHAPTER 3

RESERVOIR COMPUTING

In this chapter we present a biologically plausible, universal computational paradigm suitable for
real-time computing separately introduced as the Echo State Network (ESN) (Jaeger, 2001b) and
the Liquid State Machine (LSM) (Maass et al., 2002b). In this context we introduce a novel robotic
platform for distributed control of robotic agents with spiking neural networks.

The work presented in this chapter has been published and submitted as (Rusu, 2011; Rusu and
Ahn, 2011).

3.1 Introduction

The LSM and ESN universal online computational frameworks were introduced with the goal to
shift the focus away from training the entire set of connection within a pool of randomly connected
neurons to training instead the weights of a single set of neurons.

3.2 Model for robotic control

We present the basic building blocks of LSM.

3.2.1 Robby: a robotic platform

We present “Robby”, a robotic platform for distributed control, which enables an efficient and easy
manipulation of different devices by spiking neural networks.

3.2.1.1 Purpose

“Robby” aims to provide a distributed control interface that allows multiple controllers to access
and manipulate robotic devices located anywhere on a network. In the framework controllers are
primarily neural networks, but in principle they can be any custom user-defined controller as long
as it adheres to a specified control interface. Additional support for joystick controllers is provided
to allow direct manipulation of devices.

9



3. RESERVOIR COMPUTING 10

3.2.1.2 Architecture and implementation details

The architecture of “Robby” is modular. It consists of a control structure (the server), a behavioural
component (the client) and a common component. Figure 3.1 depicts the architecture in the form
of a component diagram (Cheesman and Daniels, 2000). The server is in strict relation with the
devices through an instantiation of corresponding drivers. It forwards commands received from
clients, and awaits and reads replies from devices. Besides providing the communication function-
ality it also provides an interface to plot the raw sensory data received from the devices together
with basic communication cycle parameters. The client reads data from the controller and maps it
into robot commands which are later sent to the server where they are processed and forwarded.
After it sends them to the server it awaits a reply before notifying the controller that its communi-
cation cycle is over. A controller implements the ControllerInterface and runs in a separate thread.
Currently the available controller types are: a NeuralController which is a spiking neural network
and a JoystickController which is useful for direct manipulation of devices. The common compo-
nent contains the neural simulator which facilitates the creation and simulation of spiking neural
networks (Gerstner and Kistler, 2002), device drivers and various image processing algorithms like
Laplacian of Gaussian and log-polar filters (Haralick and Shapiro, 1992; Wolberg and Zokai, 2000)
used to process device video data.

Server

ClientHandler

SensorHandler

RobotCommunication

Common

NeuralSimulator

NeuralRecorder

RobotDriver

ImageProcessing

SensorInterface

LoggingClient

TCPWriterInterface

TCPReaderInterface

ControllerInterface

NeuralController

JoystickController

Threading

SimpleController

World

Simulator

Figure 3.1: “Robby” architecture.

This server/client strategy acts as proxy between the client controller and server driver entities
to increase flexibility in control and allow the controller and robot to be located in different lo-
cations with server and client communication mediated through Ethernet. Figure 3.2 depicts the
communication processes inside “Robby”.

3.2.1.3 Robby as a framework for robot learning

We present a simple experiment to demonstrate some of the features of “Robby” and their applica-
tion.

10



11 3. Reservoir computing

TCP/IPRobot ControllerClientServer

Shared 
Memory

Bluetooth/Serial/  
Wifi

Figure 3.2: “Robby” communication. Communication between the server and client is implemented
using the TCP/IP protocol.

3.3 Model for particle swarm optimization

The Particle Swarm Optimization (PSO) computational paradigm introduced by Kennedy and
Eberhart (1995) has at its core a strong social interaction component.

3.3.1 Particle swarm optimization

We briefly present PSO.

3.3.2 Optimal network localization

We briefly present the problem of optimal network localization and how PSO could be used to solve
it.

3.3.2.1 Particle encoding

3.3.2.2 The complete algorithm

3.3.2.3 Equivalent problem and non-optimal solutions

We briefly consider the alternative problem of constructing a localizable network from any given
non-localizable one.

3.3.2.4 Simulation results

We investigate the convergence properties of the proposed PSO algorithm when applied to the prob-
lem of constructing minimal localizable networks.

3.3.3 PSO in reservoir computing

As previously outlined structured reservoirs have been shown to have better performances when
compared to unstructured ones. Using the technique outlined here PSO could be used to optimize
the weights and delays of the liquid with the aim of maximizing some of its computational proper-
ties (such as its separation property (Huang et al., 2009)). PSO could additionally be employed to

11



3. RESERVOIR COMPUTING 12

optimize the topology of the liquid in order to maximize the mutual information passed to the read-
out layer. More precisely, the topology of the liquid could be modeled as a directed graph and PSO
could optimize its structure by adding and removing connections while maximizing the estimated
mutual information at each moment in time.

3.4 Conclusion

In this chapter we have briefly presented the LSM (ESN) as a paradigm for online computa-
tion on continuous input streams. Because such systems allow computation in real time and are
extremely robust to noise (Goodman and Ventura, 2005b) they are suitable for the control of em-
bodied agents. In the literature they have been successfully used to control a robotic arm (Joshi and
Maass, 2005), to model an existing robot controller (Burgsteiner, 2005), to perform object tracking
and motion prediction (Maass et al., 2002a; Burgsteiner et al., 2007), or path planning (Zhang and
Wang, 2009). Reservoirs were also been successfully used in signal processing task such as speech
recognition (Verstraeten et al., 2005; Schrauwen et al., 2007). Additional applications include dy-
namic pattern classification (Jaeger, 2001a) and detection (Goodman and Ventura, 2005a, 2006),
autonomous sine generation (Jaeger, 2001b), the computation of highly nonlinear functions on the
instantaneous rates of spike trains (Maass et al., 2004), or chaotic time series generation and predic-
tion (Jaeger, 2003; Jaeger and Haas, 2004; Steil, 2005, 2006). Particle Swarm Optimization was also
presented and hypothesized to be a viable technique for the optimization of reservoirs. We have
also introduced a flexible distributed control framework for robotic interaction with spiking neural
networks ideal for large-scale simulations. Such control frameworks and computational paradigms
could provide a basis to easily explore the theoretical principles discussed in following chapters in
the context of real computational tasks involving physical autonomous agents.

12



CHAPTER 4

NOVEL SPIKE TRAIN MEASURES

In this chapter we introduce a new class of spike train metrics inspired by the Pompeiu-Hausdorff
distance between two non-empty compact sets. They compute the distance between pairs of spike
trains and yield a result that is dependent on the precise timing of the differences across the two
spike trains.

The work presented in this chapter has been published as (Rusu and Florian, 2010).

4.1 Introduction

Here we introduce a new class of spike train metrics inspired by the Pompeiu-Hausdorff dis-
tance between two non-empty compact sets. The new spike train metrics yield a result dependent
of the exact timing of differences among two spike trains. In the context of the information ex-
changed by two neurons, each spike may be as important as the spike train itself (Rieke et al., 1997).
Therefore, such metrics, based on the specific timing of differences within spike trains, become de-
sirable.

4.2 A new class of spike metrics

We consider bounded, nonempty spike trains of the form

T = {t (1), . . . , t (n)}, (4.1)

where t (i ) ∈R are the ordered spike times and n ∈N∗ is the number of spikes in the spike train. We
denote by a and b the bounds of the considered spike trains, i.e. a ≤ t (i ) ≤ b, ∀t (i ), with a,b ∈ R,
finite, and a < b. We denote by S[a,b] the set of all possible such spike trains. We study metrics that
compute the distances between two spike trains T and T̄ from S[a,b].

The new metrics that we introduce are inspired by the Pompeiu-Hausdorff distance Pompeiu
(1905); Hausdorff (1914). When applied to a pair of spike trains, the Pompeiu-Hausdorff distance h
returns the largest difference, in absolute value, between the timings of a spike in one train and of

13



4. NOVEL SPIKE TRAIN MEASURES 14

the closest spike in the other spike train:

h(T, T̄ ) = max

{
sup
t∈T

inf
t̄∈T̄

|t − t̄ |, sup
t̄∈T̄

inf
t∈T

|t − t̄ |
}

, (4.2)

or, equivalently, the minimal number ε such that the closed ε-neighborhood of T includes T̄ and
the closed ε-neighborhood of T̄ includes T :

h(T, T̄ ) = inf
{
ε≥ 0 such that |t − t̄ | ≤ ε, ∀t ∈ T, ∀t̄ ∈ T̄

}
. (4.3)

Another equivalent form of the Pompeiu-Hausdorff distance is (Ponulak, 2005, pp. 105–110; Rock-
afellar and Wets, 2009, pp. 117–118; Deza and Deza, 2009, pp. 47–48)

h(T, T̄ ) = sup
x∈R

∣∣∣∣inf
t∈T

|t −x|− inf
t̄∈T̄

|t̄ −x|
∣∣∣∣ . (4.4)

We introduce a distance d between an arbitrary timing x ∈R and a spike train T :

d(x,T ) = inf
t∈T

|t −x|. (4.5)

Eq. 4.2 can then be rewritten as

h(T, T̄ ) = max

{
sup
t∈T

d(t , T̄ ), sup
t̄∈T̄

d(t̄ ,T )

}
(4.6)

and Eq. 4.4 as
h(T, T̄ ) = sup

x∈R

∣∣d(x,T )−d(x, T̄ )
∣∣ . (4.7)

We also have (Section 4.6):
h(T, T̄ ) = sup

x∈[a,b]

∣∣d(x,T )−d(x, T̄ )
∣∣ . (4.8)

The Pompeiu-Hausdorff metric has a quite poor discriminating power, as for many variations of the
spike trains the distances will be equal and any spike train space endowed with this metric would be
highly clusterized. Our new metrics generalize the form of the Pompeiu-Hausdorff distance given
in Eq. 4.8, by introducing features that are more sensitive to spike timings.

We consider B to be the space of arbitrary continuous, strictly positive functions H : R→R+. On
compact sets such functions are bounded (Protter, 1998, p. 56). We denote by m the upper bound
of H on the interval [0,b −a], i.e.

0 <H (x) < m <∞, ∀ x ∈ [0,b −a]. (4.9)

By B+ we denote B class functions with domains restricted to R+.

4.2.1 The max-metric

Consider an arbitrary function H ∈B+. Typically, H (x) has a maximum for x = 0 and is a decreasing
function of x, for example an exponential,

HE (x) = 1

τ
exp

(
−x

τ

)
, (4.10)

14



15 4. Novel spike train measures

or a Gaussian,

HG (x) = 1

τ
p

2π
exp

(
− x2

2 τ2

)
, (4.11)

with τ a positive parameter.
We introduce the max-metric as

dm(T, T̄ ) =
∫ b

a
sup

x∈[a,b]

{|d(x,T )−d(x, T̄ )|H (|s −x|)}ds. (4.12)

The max-metric integrates, through the variation of s along the interval [a,b] that contains the two
spike trains, the maximum difference, in absolute value, between the distances from a point x in
that interval to the two spike trains, weighted by the kernel H (|s −x|) which focuses locally around
s. Figure 4.1 shows how the distance dm between two spike trains is computed.

The max-metric is a generalization of the Pompeiu-Hausdorff distance, since in the particular
case that H (·) = 1/(b − a) we have dm(T, T̄ ) = h(T, T̄ ). In Section 4.7 we show that dm is finite and
that it satisfies the properties of a metric. We also show that regardless of the kernel H all the
max-metrics are topologically equivalent to each other (O’Searcoid, 2007, p. 229) because they are
equivalent to the Pompeiu-Hausdorff distance. Each metric will generate the same topology and
thus any topological property is invariant under an homeomorphism. This means that the met-
rics generate the same convergent sequences in the space of spike trains S[a,b]. The implication
of this for learning is that learning rules derived from these metrics will converge in the same way,
independently of the choice of H .

4.2.2 The modulus-metric

We define the modulus-metric as

do(T, T̄ ) =
∫ b

a
|d(s,T )−d(s, T̄ )| ds. (4.13)

The modulus-metric is a particular case of the max-metric in the limit that H is

H (x) =
{

1, if x = 0,

0, otherwise.
(4.14)

The modulus-metric uses the d distance like the max-metric does, but it does not depend on
any kernels or parameters and it also allows a fast computer implementation in linear complexity.
Algorithm 1 presents a simple implementation of the do metric in pseudo-code. The algorithm first
builds P as an ordered set that contains all spikes in the two spike trains T and T̄ , the bounds a
and b, as well as the time moments that lie at the middle of the interval between two spikes from
the same spike train, for both spike trains. As exemplified by Fig. 4.3 D, the graph of the function
f (s) = |d(s,T )−d(s, T̄ )| is made out of line segments that join in points from P . In order to compute
the integral of this function do = ∫ b

a f (s) ds, it is sufficient to compute the function at the joining
points. Since between these joining points the function is linear, the integral can be then computed
exactly. The algorithm’s duration depends linearly on the number of spikes in the two spike trains,
n + n̄.

It can be shown that the distance do is finite and that it satisfies the properties of a metric by
particularizing the proofs in Section 4.10 with L (x) = 1, ∀x ∈R.

15



4. NOVEL SPIKE TRAIN MEASURES 16

Input: The pair of spike trains T1, T2 and the bounds a and b.
Output: The distance do between the spike trains.
n1 = length(T1); n2 = length(T2);
T1, T2 and P are ordered sets of real numbers, indexed starting from 0.
P := T1

⋃
T2

⋃
{a,b};

for i := 1. . .n1 −1 do
P := P

⋃
{(T1[i ]−T1[i −1])/2};

for i := 1. . .n2 −1 do
P := P

⋃
{(T2[i ]−T2[i −1])/2};

If P is not automatically sorted, it should be explicitly sorted:
P := sort(P );
sp := a; fp := |T1[0]−T2[0]|;
i1 := 1; i2 := 1;
for i := 1. . .length(P )−1 do

s := P [i ];
if s ≥ T1[i1] and i1 < n1 −1 then

i1 := i1 +1;

if s ≥ T2[i2] and i2 < n2 −1 then
i2 := i2 +1;

d1 := 0; d2 := 0;
if i1 > 1 then

d1 := s −T1[i1 −1];

d ′
1 = |T1[i1]− s|;

if d ′
1 < d1 then
d1 := d ′

1;

if i2 > 1 then
d2 := s −T2[i2 −1];

d ′
2 = |T2[i2]− s|;

if d ′
2 < d2 then
d2 := d ′

2;

We can now compute the value of f at s:
f := |d1 −d2|;
The integration is performed here:
do := do + (s − sp )( f + fp )/2;
sp := s; fp := f ;

return do ;

Algorithm 1: The algorithm for computing the distance do between two spike trains T1 and T2.
The text in italic represents comments.
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17 4. Novel spike train measures

T
T̄

d(x,T)d(x,T̄)d(x,T̄)

0 100 200 300 400 500
Time (ms)
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G

Figure 4.1: The max-metric modus operandi. (A) Spike train T = {20,150,350,400,440} ms. Each
spike time is represented as a vertical bar. (B) Spike train T̄ = {100,270,300,370,480} ms. (C)
The distance between a point x and the timings of spikes in the spike trains, d(x,T ) and d(x, T̄ )
as a function of x. (D) The difference

∣∣d(x,T )−d(x, T̄ )
∣∣ as a function of x. (E) The kernel

H (|s − x|) as function of s with a fixed x and a 50 ms decay constant. (F) The weighted differ-
ence

∣∣d(x,T )−d(x, T̄ )
∣∣H (|s − x|) as function of s for discrete values of x. (G) The supremum of the

difference weighted by the kernel, supx∈[a,b]

{∣∣d(x,T )−d(x, T̄ )
∣∣H (|s −x|)}. The distance dm is the

area under this curve.
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4. NOVEL SPIKE TRAIN MEASURES 18

4.2.3 The convolution max-metric

The max-metric can also be given in a convolution form. To construct this form of the metric we
consider an arbitrary continuous, positive kernel K : R→R+, with the property that

0 ≤K (x) ≤ 1 for every x ∈R, and K (0) > 0, (4.15)

and which is strictly increasing for x < 0 and strictly decreasing for x > 0. We convolve the two spike
trains T and T̄ with the filtering kernel K to obtain

f (x) =
n∑

i=1
K (t − t (i )) (4.16)

f̄ (x) =
n̄∑

i=1
K (t − t̄ (i )). (4.17)

We denote by F[a,b] the set of all possible filtered spike trains from S[a,b].
For the convolution max-metric, we request that H ∈B+ is derivable on (0,b−a) and that it has

bounded derivative.
The convolution max-metric is defined as

dc (T, T̄ ) =
∫ b

a
sup

x∈[a,b]

{| f (x)− f̄ (x)|H (|s −x|)}ds. (4.18)

The kernels influence the performance and response of the metric so they should be chosen
according to the task at hand. Figure 4.2 shows how the distance dc between two spike trains is
computed. In Section 4.8 we show that dc is finite and that it satisfies the properties of a metric.

4.3 Localized metrics

In the case of the max-metric, with or without convolution, the use of the kernel H served the
purpose of providing a local perspective, around each point within [a,b], of the distance between
the spike trains. These local perspectives were then integrated in the final distance. In this section
we introduce different metrics that also depend on a kernel L ∈B+, but for which it has a different
purpose. More precisely, it may be regarded as a magnifying glass to be used to focus on one specific
area of the spike trains.

Such a metric is biologically relevant if, for example, we take into consideration how a neuron
responds to input spikes. Recent spikes influence more the neuron than old ones. If we would like
to measure the distance between two spike trains according to how the differences between them
influence the activity of a neuron at a particular moment of time, recent differences should account
more than differences in the distant past. For the localized metrics, L could thus model the shape
of postsynaptic potentials (PSP) that reflects the dynamics of the effect of one presynaptic spike
on the studied neuron. Thus, L could typically be an exponential, LE = HE (Eq. 4.10), an alpha
function,

Lα(x) = x

τ2 exp
(
−x

τ

)
, (4.19)

a double exponential,

LD (x) = τ

τ−τs

[
exp

(
−x

τ

)
−exp

(
− x

τs

)]
, (4.20)

18



19 4. Novel spike train measures

T
T̄
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Figure 4.2: The convolution max-metric modus operandi. (A) Spike train T = {20,150,350,400,440}
ms. Each spike time is represented as a vertical bar. (B) Spike train T̄ = {100,270,300,370,480} ms.
(C) The spike trains T and T̄ filtered with an exponential kernel with a 10 ms decay constant. (D)
The difference

∣∣ f (x)− f̄ (x)
∣∣ as a function of x. (E) The kernel H (|s − x|) as function of s with a

fixed x and a 50 ms decay constant. (F) The weighted difference
∣∣ f (x)− f̄ (x)

∣∣H (|s − x|) as func-
tion of s for discrete values of x. (G) The supremum of the difference weighted by the kernel,
supx∈[a,b]

{∣∣ f (x)− f̄ (x)
∣∣H (|s −x|)}. The distance dc is the area under this curve.

or, if we model the PSP generated by a double exponential synaptic current for an integrate-and-fire
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4. NOVEL SPIKE TRAIN MEASURES 20

neuron,

LI (x) = τ

τs −τr

{
τs

τ−τs

[
exp

(
−x

τ

)
−exp

(
− x

τs

)]
− τr

τ−τr

[
exp

(
−x

τ

)
−exp

(
− x

τr

)]}
, (4.21)

where τ, τs , and τr are positive parameters.

4.3.1 Localized max-metric

We introduce the localized max-metric as

dl (T, T̄ ) =
∫ b

a
L (b − s) sup

x∈[s,b]
|d(x,T )−d(x, T̄ )| ds. (4.22)

Fig. 4.3 shows how the distance dl between two spike trains is computed. The differences between
the spike trains that account the most for the distance are those that are close to b. The shape of L

has a high impact on the behavior of the metric. In Section 4.9 we show that the distance dl is finite
and that it satisfies the properties of a metric.

4.3.2 Localized modulus-metric

The modulus-metric can also be given in a localized form. This form does not require the restriction
of the kernel to R+. Thus, we define it to depend on a kernel L ∈B,

dn(T, T̄ ) =
∫ b

a
|d(s,T )−d(s, T̄ )|L (b − s) ds. (4.23)

In Section 4.10 we show that dn is finite and that it satisfies the properties of a metric.

4.3.3 Localizing existing metrics

A property of the distances introduced here in Eq. 4.22 and 4.23 is their intrinsic sensitivity to the
timings of differences across the spike trains. A similar localization by a kernel can be applied to
existing metrics. Let f , f̄ ∈ F[a,b] be two filtered spike trains obtained by convolution of the spike
trains T, T̄ ∈S[a,b]. Consider the van Rossum (2001) distance defined as

dR (T, T̄ ) =
∫ ∞

−∞
( f (s)− f̄ (s))2 ds. (4.24)

When localized with L the distance becomes

dR l (T, T̄ ) =
∫ ∞

−∞
( f (s)− f̄ (s))2 L (b − s) ds. (4.25)

Here L may be chosen to have the same qualitative properties as the kernel used in Eqs. 4.19–4.21.

4.4 Application

We analyzed the behavior of the introduced metrics through computer simulations using simple
setups.

20



21 4. Novel spike train measures
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Figure 4.3: The localized max-metric modus operandi. (A) Spike train T = {50,180,200,300,400,480}
ms. Each spike time is represented as a vertical bar. (B) Spike train T̄ = {20,120,200,300,350,470}
ms. (C) The distance between a point x and the timings of spikes in the spike trains, d(x,T )
and d(x, T̄ ) as function of x. (D) The difference

∣∣d(x,T )−d(x, T̄ )
∣∣ as a function of x. (E)

The kernel H (b − s) as function of s with a 50 ms decay constant. (F) The supremum,
supx∈[s,b]

∣∣d(x,T )−d(x, T̄ )
∣∣. (G) The weighted difference

∣∣d(x,T )−d(x, T̄ )
∣∣H (b − s) as function of

s for discrete values of x. (H) The supremum weighted by the kernel, H (b − s)supx∈[s,b] |d(x,T )−
d(x, T̄ )|, as a function of s. The distance dl is the area under this curve.
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4.5 Conclusion

We have introduced a new class of spike train metrics inspired by the Pompeiu-Hausdorff dis-
tance. Their underlying principle of functioning is that the precise timing of each individual spike in
a spike train is important. Each metric is given dependent on a kernel H which can be particular-
ized to cause distinct behaviors. On one side the kernel can be used to provide a local perspective
around individual spikes while on the other it can be used as a magnifying glass to focus on spe-
cific parts of spikes trains. From a mathematical point of view the kernel H and can be just about
any function because the generated metrics are commensurable. Some, however, will have a lesser
physiological interpretation than others. Because the metrics generate the same topologies regard-
less of the choice of kernels, topological properties are the same across all spike train spaces. Since
they are not dependent on a filtering kernel and are able to use the raw spike times directly they
do not introduce additional time constants and therefore have the advantage of being less restric-
tive. An additional, convolution based distance, was also presented and shown to have a behaviour
similar to the van Rossum distance. A simple metric which uses the spike trains directly and is not
dependent on H was also presented. It was shown to have similar properties to the other intro-
duced metrics while allowing a much faster computer implementation. An optimal algorithm to
compute the metric, operating in linear time was also introduced.

All distances with the exception of the convolution based max-metric were shown to be neg-
atively correlated to the rate of the spike trains. In contrast, the convolution based max-metric
together with the Victor & Purpura and van Rossum distances were shown to be correlated with
spike rate. Regardless of their type all introduced metrics exhibited a behaviour dependent on the
precise timing of the differences across the two spike trains. In contrast to other metrics such as
Victor & Purpura and van Rossum they were shown to depend when single spikes were either in-
serted or moved depending on their precise timing. This essentially suggests that the location of a
spike within a spike train may become just as important as the inter-spike-interval and that a single
spike might be as important as the spike train itself.

4.6 Equivalent Pompeiu-Hausdorff form

Proposition 4.6.1. The Pompeiu-Hausdorff metric

h(T, T̄ ) = sup
x∈R

∣∣∣∣inf
t∈T

|t −x|− inf
t̄∈T̄

|t̄ −x|
∣∣∣∣ (4.26)

can be equivalently expressed as

h(T, T̄ ) = sup
x∈[a,b]

∣∣d(x,T )−d(x, T̄ )
∣∣ . (4.27)

4.7 Analysis of the max-metric

Proposition 4.7.1. dm(T, T̄ ) <∞.

Proposition 4.7.2. dm : S ×S →R is a metric.

Proposition 4.7.3. The metric dm : S[a,b] ×S[a,b] → R is topologically equivalent to the Pompeiu-
Hausdorff distance.
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23 4. Novel spike train measures

4.8 Analysis of the convolution max-metric

Lemma 4.8.1. Let g : [a,b] →R be a continuous function and h : [0,b−a] →R be a continuous func-
tion which is derivable on (0,b −a) and has bounded derivative. Then the function q : [a,b] →R,

q(s) = sup
x∈[a,b]

[
g (x) h(|s −x|)] (4.28)

is continuous on [a,b].

Proposition 4.8.1. dc (T, T̄ ) <∞.

Proposition 4.8.2. dc : S[a,b] ×S[a,b] →R is a metric.

4.9 Analysis of the localized max-metric

Proposition 4.9.1. dl (T, T̄ ) <∞.

Proposition 4.9.2. dl : S ×S →R is a metric.

4.10 Analysis of the localized modulus-metric

Proposition 4.10.1. dn(T, T̄ ) <∞.

Proposition 4.10.2. dn : S[a,b] ×S[a,b] →R is a metric.
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CHAPTER 5

EXPLORING THE LINK BETWEEN STDP
AND TD LEARNING

In this chapter we show that in general Temporal Difference (TD) learning in spiking neurons does
not lead to Hebbian Spike-timing Dependent Plasticity (STDP). Using simple neural models, we
verify that such a spike-timining based TD learning mechanism enables the prediction of input
sequences by spiking neurons moments before their expected arrival. Additionally, we show that
the same predictive capabilities can be obtained using a plasticity rule that reproduces only the
causal part of hebbian STDP used in conjunction with a homeostatic regulatory mechanism.

The work presented in this chapter has been published and communicated as (Rusu, 2008, 2009;
Florian and Rusu, 2009; Rusu and Florian, 2009).

5.1 Introduction

In an early study that tried to derive the experimentally-observed Spike-timing Dependent Plas-
ticity (STDP) from first principles, Rao and Sejnowski (2000, 2001, 2003) have shown that temporal
difference (TD) learning of the value of the membrane potential of a neuron, at a fixed delay after
the neuron received a presynaptic spike, leads to a plasticity rule that is very similar to STDP. The
results have been obtained using a relatively complex, but biologically plausible, biophysical model
and a simple setup (a single presynaptic spike followed by a single current pulse). It is thus not
clear whether TD learning also leads to STDP in networks of simpler neurons, like the ones that are
commonly used in large scale computer simulations; nor whether the phenomenon holds for more
complex setups that are likely to appear both in simulations and in the brain. It is important to
know this in order to establish whether STDP leads to TD learning in these networks and setups.

We thus study here the same phenomenon using integrate-and-fire (IAF) and Izhikevich (2003)
neurons, which are commonly used in large scale computer simulations of spiking neural networks.
We used setups that are more complex than the ones in the original study (Rao and Sejnowski,
2001), with postsynaptic spikes being generated by the irregular firing of synaptic afferents or by a
constant input current. The plasticity curves obtained from TD learning were determined not only
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through computer simulations, but also analytically, in the case of the IAF neuron. We also derive
and analyze a more general and biologically plausible form of such a plasticity rule. Using a simple
example we show how a neuron can learn to predict input sequences through recurrent excitation
by using both a TD based plasticity rule and a plasticity rule that reproduces only the causal part of
Hebbian STDP used in conjunction with a homeostatic plasticity mechanism.

5.2 TD learning

We briefly present TD learning.

5.3 TD learning for spiking neurons

Rao and Sejnowski (2000, 2001, 2003) implemented the prediction of the membrane potential
through TD learning by incrementing or decrementing the value of the synaptic strength by an
amount proportional to the TD in the postsynaptic membrane potential at time instants t +∆t and
t for presynaptic activation at time t . This can be written as

ẇ j =α ·∆u ·Φ j (t ), (5.1)

where
Φ j (t ) =∑

f
δ(t − t ( f )

j ) (5.2)

is the spike train of presynaptic neuron j represented as a sum of Dirac functions.
In the following we check whether the TD based learning rule (Eq. 5.1) reproduces an STDP-like

asymmetric window of plasticity (WOP) in the case of IAF and Izhikevich neurons.

5.3.1 TD learning in integrate-and-fire neurons

This section is divided into two parts. On one side we analytically derive the shape of the WOP while
on the other, using computer simulations we numerically check the assumption that STDP can be
expressed as a form of TD learning.

5.3.1.1 The model

Neurons are modeled as IAF (for a detailed introduction, see Section 2.4.2 and Gerstner and Kistler
(2002)).

5.3.1.2 Analytical results

In the analytical computations throughout this section we used setups with postsynaptic spikes be-
ing generated by a single input spike, a transient pulse of current, or by a constant input current and
using the IAF neuron in two distinct cases. In the first, we treated the IAF model as it is described in
Gerstner and Kistler (2002), while in the second, we added an action potential of non-zero duration
to the membrane potential in order to model a shape for the postsynaptic action potential. The
added action potential was modeled as a function ζ

ζ : [tθ, tθ+K ] −→R ζ(t ) = aeb
t−tθ

K . (5.3)
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Single input spike A neuron was stimulated by a single spike from some presynaptic neuron. Post-
synaptic action potentials were paired to this single input spike by some unspecified input. The
variation in membrane potential caused by the pairing is summarised in the following

∆u =



η0

[
exp

(
−∆t−τ

τm

)
−exp

(
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))
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[
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(5.4)

When an action potential is added to the IAF model the variation in membrane potential changes
correspondingly
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(5.5)

Figure 5.1 depicts the WOP obtained from an IAF stimulated by a single input spike with and with-
out an added action potential.

Figure 5.1: The WOP. An IAF neuron stimulated by a single input spike. The added action potential
was modeled by a function ζ(x) = aebx with K = 1 ms. The reset value of the potential was negative
and ∆t = 10 ms. (A) without the added action potential. (B) with the added action potential.
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Constant input current A neuron received input on a single excitatory synapse. The input con-
sisted of a constant current I (t ) = I0 which caused the neuron to fire output spikes periodically.
Postsynaptic action potentials were paired to presynaptic activation by test presynaptic spikes. The
test action potential was chosen such that the total charge q that it delivers to the neuron was much
smaller than I0. The variation in membrane potential caused by the pairing is summarised in the
following
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(5.6)

When an action potential is added to the IAF model the variation in membrane potential changes
correspondingly
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(5.7)

Figure 5.2 depicts the WOP obtained from an IAF stimulated by constant input current with and
without an added action potential.

Pulsed input current Finally, a neuron was stimulated by a presynaptic spike which did not cause
the generation of a postsynaptic action potential. The presynaptic activation was paired with the
postsynaptic action potential by a rectangular pulse of current I . Figure 5.3 depicts the WOP ob-
tained from an IAF stimulated by a rectangular pulse of current with and without an added action
potential.

28



29 5. Exploring the link between STDP and TD learning

A B

Figure 5.2: The WOP. An IAF neuron stimulated by a constant current. The added action potential
was modelled by a function ζ(x) = aebx with K = 1 ms. The reset value of the potential was negative
and ∆t = 10 ms. (A) without the added action potential. (B) with the added action potential. Note
that the plasticity window is smaller than the period of postsynaptic firing.

5.3.1.3 Simulations

We numerically checked the assumption that STDP can be expressed as a form of TD learning. We
used setups with postsynaptic spikes being generated by a transient pulse of current, a constant
input current or by presynaptic activity.

Pulsed input current A neuron which received input on a single excitatory synapse. Postsynaptic
action potentials were paired to presynaptic activation by an externally injected rectangular pulse
of current. Figure 5.4 shows such pre-postsynaptic pairings with a postsynaptic action potential
triggered ∆t = 30 ms before and after the presynaptic spike.

Figure 5.5 shows the changes in postsynaptic activity for different values of ∆t and ur . It can be
seen that the values of ∆t had a clear effect on the shape of the WOP. Similar to hebbian STDP, for
delays between presynaptic activation and postsynaptic spiking much larger than ∆t the change in
amplitude tends to zero.

Input caused by presynaptic activity A neuron was connected to a number N of presynaptic in-
puts and was stimulated by randomly generated spike trains which were generated using a random-
walk-like algorithm. The weights of the synapses were chosen randomly from the exponential dis-
tribution, with 80 % excitatory and 20% inhibitory. We chose the first synapse to monitor.

In the pairing between presynaptic spiking and postsynaptic activation some presynaptic spikes
can be paired with more than one postsynaptic activation. We therefore paired an input spike with
the first postsynaptic spike before –this corresponds to a negative τ, and with the first postsynaptic
spike after –which corresponds to positive values of τ (Figure 5.6).

Constant input current A neuron received input on a single excitatory synapse. The input con-
sisted of a constant current I (t ) = I0 which caused the neuron to fire output spikes periodically.
Postsynaptic action potentials were paired to the presynaptic activation by test presynaptic spikes.
The test action potential was chosen so that the total charge q that it delivers to the neuron was
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Figure 5.3: The WOP. An IAF neuron stimulated by a rectangular pulse of current. The added action
potential was modelled by a function ζ(x) = aebx with K = 1 ms. The reset value of the potential
was negative and ∆t = 10 ms. (A) without the added action potential. (B) with the added action
potential.

Figure 5.4: The membrane potential of an IAF neuron. (A) The neuron stimulated at time t = 0 ms
by a pulse of current paired at t = 30 ms with a presynaptic spike. (B) The neuron stimulated at time
t = 0 ms by a presynaptic spike paired at time t = 30 ms with a pulse of current.

much smaller than I0. We only constructed the WOP for values of the delay within the interval
]0,T [, where T is the period of postsynaptic firing. Within an interval of length T there is only one
postsynaptic spike and we considered interactions between the presynaptic spike and the closest
postsynaptic spike before –corresponding to a negative τ and after –corresponding to a positive τ.

Figure 5.7 shows the changes for different values of ∆t and ur . It can be seen that the values
of ∆t have a clear effect on the shape of the plasticity window while ur has no direct effect. For
negative τ much larger than ∆t the change in amplitude tends to zero (similar to Hebbian STDP),
but for positive τ>∆t the change is positive and ascending.

5.3.2 TD learning in Izhikevich neurons

Using the same test setups as in the case of the IAF neuron we numerically checked if STDP can
implement a form of TD learning using a regular spiking Izhikevich (2003) neuron.
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31 5. Exploring the link between STDP and TD learning

Figure 5.5: The WOP obtained by varying the delay between pre- and post-synaptic spiking. An IAF
neuron stimulated by a transient pulse of current. The reset potential ur and ∆t were modified. (A)
∆t = 5 ms and ur < 0. (B) ∆t = 10 ms and ur < 0. (C) ∆t = 5 ms and ur > 0. (D) ∆t = 10 ms and
ur > 0.

5.3.2.1 The model

Izhikevich (2003) introduced a model that has the advantage of being able to reproduce the rich
dynamics (bursting, chattering, adaptation, resonance) displayed by complex neurophysiological
models, like the Hodgkin-Huxley model, while at the same time being far less computationally ex-
pensive (for a detailed introduction, see Section 2.4.3 and Izhikevich (2003)).

5.3.2.2 Simulations

Pulsed input current Postsynaptic action potentials were paired to the presynaptic activation by
a rectangular pulse of current. Figure 5.8 shows the change in postsynaptic activity caused by the
pairing.

Constant input current Like in the case of the IAF neuron, when stimulated by a constant current
I = I0, a neuron responded by emitting spikes at regular intervals. The WOP was constructed only
for τ contained in the interval ]0,T [ with T the period of postsynaptic firing. Figure 5.9 shows the
changes in the postsynaptic activity caused by the pairing.
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Figure 5.6: The WOP obtained by varying the delay between pre- and post-synaptic spiking. An
IAF neuron connected to N = 1000 presynaptic neurons. The reset potential ur was modified. (A)
ur < 0. (B) ur > 0.

Input caused by presynaptic activity Like in the case of the IAF, a neuron received inputs on N
distinct afferents. The neuron was stimulated by randomly generated spike trains which were gen-
erated using a random-walk-like algorithm. The weights of the synapses were generated randomly
from the exponential distribution with 80 % excitatory whilst only 20% were chosen arbitrarily as
inhibitory. We chose the first synapse to monitor.

In the pairing between presynaptic spiking and postsynaptic activation some presynaptic spikes
can be paired with more than one postsynaptic activation. We therefore paired an input spike with
the first postsynaptic spike before –this corresponds to a negative τ, and with the first postsynaptic
spike after –which corresponds to positive values of τ (Figure 5.10).

5.4 A new implementation of TD learning

In this section we derive a more general and biologically plausible TD rule.

5.4.1 Analysis of the learning rule

We show how the synaptic weights of a neuron evolve under such a plasticity rule.

5.5 Predictive learning

In this section we address the problem of training a network of neurons by modifying the plastic
connections of the output neurons in order to bring their generated spikes closer to a given target.

5.5.1 Results

5.5.2 Simulation parameters

5.6 Analytical results for the integrate-and-fire neuron

32



33 5. Exploring the link between STDP and TD learning

A B

C D

Figure 5.7: The WOP obtained by varying the delay between pre- and post-synaptic spiking. An
IAF neuron stimulated by constant input current. The reset potential ur and ∆t were modified. (A)
∆t = 5 ms and ur < 0. (B) ∆t = 10 ms and ur < 0. (C) ∆t = 5 ms and ur > 0. (D) ∆t = 10 ms and
ur > 0.

5.6.1 Single input spike

Consider an IAF neuron stimulated by a single spike from some presynaptic neuron.

5.6.2 Constant input current

Consider an IAF neuron stimulated by a constant current of intensity I0, I (t ) = I0.

5.6.3 Pulsed input current

Consider an IAF neuron stimulated by a presynaptic spike which does not cause the membrane
potential to cross the threshold and emit a postsynaptic action potential. We therefore inject the
neuron with a rectangular pulse of current I which depolarises the membrane and causes the neu-
ron to fire an action potential.

5.7 Conclusion
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Figure 5.8: The WOP obtained by varying the delay between pre- and post-synaptic spiking. An
Izhikevich neuron stimulated by a transient pulse of current. The value of the parameter ∆t was
modified. (A) ∆t = 5 ms. (B) ∆t = 10 ms.

Figure 5.9: The WOP obtained by varying the delay between pre- and post-synaptic spiking. An
Izhikevich neuron stimulated by constant input current. The value of the parameter ∆t was modi-
fied. (A) ∆t = 5 ms. (B) ∆t = 10 ms.

In the case of the IAF neuron, through both analytical derivations and computer simulations
we have found that a TD learning rule reproduces a Hebbian STDP-like window of plasticity when
postsynaptic spikes are paired to presynaptic activation by a transient pulse of current and with a
positive reset potential. For the same pairing but negative reset potential, as well as for pairings
caused by constant input current (regardless of the reset potential), the resulting window of plastic-
ity was anti-Hebbian.

For the Izhikevich (2003) neuron we obtained Hebbian STDP-like windows of plasticity for pair-
ings caused by both constant and pulsed input current. There is a qualitative difference with respect
to the IAF case because the Izhikevich neuron incorporates the dynamics of the membrane poten-
tial during the onset of the action potential. By adding an action potential of non-zero duration
to the IAF model, the shape of the plasticity function changes significantly and becomes similar to
Hebbian STDP. This shows that the plasticity function resulted from TD learning depends critically
on whether the neuron adapts its synapses to learn the shape of its action potential or not. How-
ever, the shape of the action potential is commonly considered not to carry information. When we
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Figure 5.10: The WOP obtained by varying the delay between pre- and post-synaptic spiking. An
Izhikevich neuron connected to N = 1000 presynaptic neurons.

consider just the TD learning of the sub-threshold dynamics of the membrane potential, the shape
of the resulted learning function can loose its similarity with Hebbian STDP.

For both neural models, in the case of irregular synaptic input there was no clear relationship
between the plastic changes predicted by TD learning and the temporal delay between the pre- and
postsynaptic spikes. Moreover, the sign of these plastic changes did not depend uniquely on the
sign of the temporal delay.

We have also derived an alternative form of the TD based plasticity rule.
Using a very simple setup and IAF neurons we have verified that Hebbian STDP implemented

as a form of TD learning can be used to predict input sequences moments prior to their expected
arrival. Because Hebbian STDP provides a mixture of homeostatic equilibrium and synaptic com-
petition through its LTP and LTD components we have obtained a similar result by using a plasticity
rule that reproduces a plasticity window with only a causal LTP part used together with a homeo-
static plasticity mechanism in place of the anti-causal LTD part. In this context we have also shown
that the synaptic modifications are achieved in an optimal way when the plasticity functions are
correlated to the EPSPs caused by input spikes. Essentially, this result suggests that the prediction
capabilities of neurons as expressed in the present work and in Rao and Sejnowski (2001) are not the
specific consequence of a TD based plasticity rule but rather any rule that provides and STDP-like
causality and some intrinsic, homeostatic regulatory mechanism.
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CHAPTER 6

PATTERN DETECTION WITH STDP

Given a spiking neuron receiving input on a number of afferents, it has been shown (through com-
puter simulations) that Spike-timing Dependent Plasticity (STDP) enables the detection of spatio-
temporal patterns of activity embedded in its synaptic input (Masquelier et al., 2008, 2009). We an-
alytically derive a set of synaptic weights for the input connections which facilitate such a detection
mechanism. We also discuss the case of multiple input patterns.

6.1 Introduction

Previous studies (Masquelier et al., 2008, 2009) have shown that Spike-timing Dependent Plas-
ticity (STDP) facilitates the detection of spatio-temporal patterns of activity by spiking neurons.
Such precise spatio-temporal patterns of activity lasting from a few ms to several seconds have been
found both in vivo and in vitro (Frostig et al., 1990; Prut et al., 1998; Fellous et al., 2004) and were
connected to different behavioral states. To verify whether STDP provides a suitable framework
for the neuron to learn to respond to such patterns in an unsupervised manner, a given spatio-
temporal pattern was embedded into the synaptic input of a single spiking neuron. The neuron
received input on 1000 afferents over the time course of 14 s. The input consisted of randomly gen-
erated Poisson spike trains at varying frequencies. At random times, instead of the stochastically
firing patterns, a precise firing pattern present on about 50% of afferents was delivered to the spik-
ing neuron. The input was thus divided into two parts: a deterministic part given by the embedded
pattern and a stochastic distractor part (Figure 6.1). The repeated pattern has the same spike den-
sity as the stochastic distactor parts making it invisible in terms of firing rates (Figure 6.1 bottom).
This suggests that to enable the neuron to detect such repeating input patterns a mechanism which
takes into account spike times is required. The synaptic weights of the connections between the
input and the output neuron evolved according to a Hebbian STDP rule.

We essentially show that STDP enables the neuron to act as a coincidence detector and de-
rive analytically a set of weights that allows the neuron to respond selectively to embedded spatio-
temporal patterns. We also investigate what happens when multiple patterns are presented to the
neuron. In such a situation the neuron becomes randomly selective to one of the patterns. By
endowing the neuron with an Intrinsic Plasticity (IP) mechanism (Desai et al., 1999; Daoudal and
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Figure 6.1: Spatio-temporal spike pattern of activity. (top) A repeating 50 ms long firing pattern
(shown in red) which affects 150 of the 300 afferents shown. (bottom) The average firing rate of
each afferent.

Debanne, 2003; Turrigiano and Nelson, 2004; Lazar et al., 2007) we obtain that the neuron is able to
respond to more than one pattern.

6.2 Network description

We present the setup used.

6.3 Results

Initially, the neuron was not selective to the pattern and discharged almost periodically with a
period dependent on the strength of the connections between input and output. From this initial
behavior, the neuron learned to selectively spike only when the pattern was presented. STDP re-
inforced the connections which took part in the firing of the neuron and thus postsynaptic firing
became correlated with the input. Thus, SDTP detected correlations in the input and reinforced the
causal links while decreasing the ones who do not contribute to the postsynaptic firing. Figure 6.2
shows the behaviour of the neuron during the first and last 4 seconds of simulation.

When the neuron was presented with more than one pattern it became selective to only one of
them. The pattern was chosen randomly among the two (Masquelier et al., 2008). In Masquelier
et al. (2009) the results were extended such that multiple patterns are detected by using more than
one neuron. In a simple case in which the input featured only two patterns IP and STDP enabled a
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Figure 6.2: Detection of a single pattern by STDP. Initially the neuron fired regardless of pattern pre-
sentation. After a period of learning the neuron responded only when the patterns was presented.
During the last 4 s of simulation no spikes occurred outside of a pattern presentation.

single neuron to become selective to both of them (Figure 6.3).

6.3.1 Theoretical analysis

It is possible to analytically derive a set of synaptic weights which allows the neuron to detected
such embedded spatio-temporal patterns of activity. Using a discretized model of a spiking neuron
(for a detailed introduction, see Section 2.4.5 and Cessac (2008)) we show that such a configuration
exists. The dynamics of the output neuron are given by

uo(t +1) =
N∑

j=1
W j

t∑
l=s

γt−l W j (l ) ..=
N∑

j=1
W j I j (s, t ,η). (6.1)

Fix a spatio-temporal pattern of activity defined as a raster [η]t
t−R of width R. The input to the

neuron can be divided into two –one deterministic and one stochastic– parts

I (s, t ,η) = I (s, t −R,η)+ I (t −R, t ,η)

=
N∑

j=1
W j

t−R∑
l=s

γt−l η j ;l +
N∑

j=1
W j

t∑
l=t−R

γt−l η j ;l . (6.2)
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Figure 6.3: Detection of two patterns by STDP and IP. Initially the neuron fired regardless of pattern
presentation. After a period of learning the neuron responded only when the two patterns were
presented.

We denote the stochastic and deterministic parts by

S( j ) ..= I (s, t −R,η) (6.3)

∆( j ) ..= I (t −R, t ,η) (6.4)

respectively. To completely determine the distribution of the input S( j ) we compute the character-
istic function

ϕS(u) = E
[

e i u S( j )
]
= E

[
N∏

j=1

t−R∏
l=s

e i u W j γ
t−l η j ;l

]
, (6.5)

where E is the expected value of a random variable. Because the input spike patterns satisfy Poisson
statistics we obtain

ϕS(u) =
N∏

j=1

t−R∏
l=s

[
ρ e i uW j γ

t−l +1−q
]

=
N∏

j=1

t−R∏
l=s

[
ρ

(
e i W j γ

t−l −1
)
+1

]
. (6.6)
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There is a one-to-one correspondence between cumulative distribution functions and characteristic
functions. Knowing any of these allows the computation the probability density

fS(u) = F ′
S(u) = 1

2π

∫ ∞

−∞
e−i t uϕS(t )dt . (6.7)

From the probability density function of S( j ) the expected value

E [S] = ρ
N∑

j=1
W j

[
t−R∑
l=s

γt−l +
t∑

l=t−R
γt−l η j ;l

]
= θ, (6.8)

and variance

Var(S) = ρ (1−ρ)
N∑

j=1
W 2

j

t−R∑
l=s

γ2(t−l ) = ε. (6.9)

can be easily obtained. In order to force the output neuron to generate spikes during the presenta-
tion of the pattern and be silent during the stochastic distractor part the variance of the distribution
S( j ) needs to be minimal while the mean close to the threshold. We obtain the following Lagrange
problem

var(S)+λ E(S) =G(S). (6.10)

It follows that

∂G

∂W j
= 0, ∀ j ≤ N (6.11)

∂2G

∂Wi ∂W j
= 0, ∀i , j ≤ N . (6.12)

Eq. 6.11 is equivalent to

λ ρ
t−R∑
l=s

γt−l +2ρ (1−ρ) Wi

t−R∑
l=s

γ2(t−l ) +ρ
t∑

l=t−R
γt−l η j ;l . (6.13)

Finally, we obtain an expression for the synaptic weights

W j =−λ
[∑t−R

l=s γ
t−l +∑t

l=t−R γ
t−l η j ;l

]
ρ (1−ρ)

∑t−R
l=s γ

2(t−l )
. (6.14)

6.4 Conclusion

A neuron equipped with STDP was shown to find spatio-temporal patterns of activity embedded
into equally dense distractor parts of the input. In a Hebbian-like fashion, the learning mechanism
works by strengthening the connections that take part in the firing of the neuron and weakening
connections which feature uncorrelated spikes with the output. This enables the neuron to grad-
ually respond only to pattern presentations. We have analytically derived a set of weights which
enables such a detection of spiking patterns. The weights have been obtained by minimizing the
variance of the output spike firing distribution while keeping the mean close to the threshold during
the presentation of the patterns. Additionally, we extended the STDP-based learning mechanism to
incorporate additional input patterns by including a homeostatic plasticity mechanism. The pres-
ence of IP caused the neuron to respond to more than one pattern.
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Such a STDP-based, unsupervised detection mechanism is extremely desirable because, in con-
trast to other supervised learning approaches (Guetig and Sompolinsky, 2006; Florian, 2010a), it is
simple, computationally cheap and biologically plausible and in addition to that also allows a fast,
online implementation.
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CHAPTER 7

A MODEL OF TMS-INDUCED I-WAVES IN
MOTOR CORTEX

Transcranial Magnetic Stimulation (TMS) allows to manipulate neural activity non-invasively and
much research is trying to exploit this ability in clinical settings. But the details of how TMS in-
duces the high-frequency repetitive responses (I-waves) observed during epidural recordings re-
main poorly understood, which hampers targeted clinical application. In this chapter we present
a model that reproduces I-waves similar to those observed in epidural responses during in vivo
recordings of conscious humans. The model parsimoniously explains the mechanisms underlying
I-wave generation together with some of their basic properties such as frequency and timing.

The work presented in this chapter has been published and submitted as (Rusu et al., 2011a,b).

7.1 Introduction

Non-invasive brain stimulation techniques such as Transcranial Magnetic Stimulation (TMS)
have gained much attention in recent years after promising results in treating several neurologi-
cal disorders such as depression or stroke (Liepert et al., 2000; Loo and Mitchell, 2005). The ability
to influence brain activitiy non-invasively is very appealing, but it has been difficult to establish
how exactly TMS activates different types of neurons in cortical circuits. In a standard single-pulse
paradigm a TMS coil is placed over the motor cortex. The fluctuating magnetic field induces an
electric field which affects the excitability of central motor pathways and causes strong depolar-
ization of large neuronal populations. As a result, high-frequency (∼ 600 Hz) descending volleys of
activity can be observed by placing electrodes in the epidural space (Di Lazzaro et al., 1998b,a, 2000,
2001). The earliest wave that persists after cortical depression or after cortical ablation is thought
to be generated by direct stimulation of pyramidal tract neurons and is therefore termed D-wave.
The later waves are considered to have an indirect origin and are thought to be the result of action
potentials (APs) from presynaptic fibres impinging on the dendritic tree of pyramidal tract neurons.
They are therefore termed I-waves. In order to gain a better understanding of the biophysical ba-
sis underlying the magnetic stimulation and how cortical circuits give rise to D- and I-waves it is
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useful to develop a sufficiently detailed computational model to account for the effects of TMS at
the cellular level. Several theoretical mechanisms believed to be responsible for the generation of

Layer 2/3

L
a
y
e
r 

5

Inhibitory
Excitatory

Figure 7.1: The model used including a reconstructed dendritic tree of a L5 pyramidal cell. A total
of 300 excitatory and inhibitory L2/3 cells (ratio 4:1) project synapses on to the L5 cell.

I-waves have been proposed, but none of them has gained widespread acceptance (Ziemann and
Rothwell, 2000; Esser et al., 2005). Here we aim at uncovering mechanisms behind D- and I-wave
generation by investigating the effects of magnetic stimulation at the cellular level. We constructed
a model consisting of a complex compartmental layer 5 (L5) cell stimulated by a pool of layer 2
and 3 (L2/3) excitatory and inhibitory cells in a 4:1 ratio (Beaulieu and Colonnier, 1985) (see Figure
7.1). These cells project randomly onto the basal and apical dendrites of the L5 cell. Ion chan-
nel kinetics were modeled using a Hodgkin-Huxley formalism while neurotransmission is mediated
by excitatory voltage-independent and voltage-dependent channels together with inhibitory chan-
nels. The model explains the generation of D- and I-waves and accounts for their frequency and
timing. Specifically, the generation of I-waves is shown to be the product of intrinsic and extrinsic
factors. Sychronous volleys of excitatory and inhibitory post-synpatic potentials (EPSPs and IPSPs)
from L2/3 cells interact on the complex dendritic tree of the L5 cell. In response, the L5 cell’s spiking
mechanism generates brief trains of action potentials at typical I-wave frequencies. As shown in the
following, our model reproduces findings from a range of experiments including pharmacological or
behavioural modulation of I-waves and facilitation and inhibition effects observed in paired-pulse
stimulation protocols.

7.2 Results
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45 7. A Model of TMS-induced I-waves in Motor Cortex

7.2.1 L5 cell spiking at I-wave frequency in response to direct current injection

The simulated L5 cell is capable of firing spikes at I-wave frequencies. We simulated the direct in-
jection of rectangular current pulses into the soma of the L5 cell. Figure 7.2A shows a simulated
voltage trace recorded at the L5 cell axon exhibiting fast APs in response to a somatic current in-
jection of 1 nA for 50 ms. Figure 7.2B plots the number of APs generated during the first 10 ms of
stimulation as a function of the injected current, which was varied in steps of 0.1 nA. Indeed, with
sufficient stimulation, the neuron generates firing rates up to 600 Hz (6 spikes in 10 ms), matching
typical I-wave frequencies.

Figure 7.2: High-frequency firing of L5 cell in response to direct current injection. (A) Repetitive
axonal response evoked by injection of a rectangular current of 1 nA (horizontal bar). (B) Spike
count (measured in the first 10 ms after stimulation) vs. current amplitude.

7.2.2 L5 cell spiking at I-wave frequency in response to synchronous L2/3 input

After establishing that our model L5 cell can in principle generate AP trains at I-wave frequencies,
we next tested whether synchronous TMS-induced volleys of synaptic input from L2/3 cells could
also generate spike trains with I-wave frequencies in the L5 cell. The electric field induced by a TMS
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pulse causes the generation of APs across populations of cortical neurons. In the present model,
depending on the number of excited L2/3 neurons the L5 cell is capable of generating multiple out-
put spikes at I-wave frequencies. Specifically, we show how the number of such spikes depends on
the percentage of active presynaptic neurons and the balance between inhibition and excitation.
We assume that depending on the strength and orientation of the TMS pulse, different percentages
of inhibitory and excitatory L2/3 fibers get activated. Inhibitory fast spiking (FS) cells have smaller
somata compared to pyramidal regular spiking (RS) cells. Due to this and their different intrinsic
membrane properties (see Materials and methods and Pospischil et al. (2008) for more details), in-
hibitory cells are more excitable (Markram et al., 2004). Figure 7.3 shows output spikes recorded at
the level of the L5 cell axon for different fractions of active excitatory and inhibitory inputs. Depend-
ing on the balance between excitation and inhibition, many or few APs are generated. Interestingly,
identical numbers of APs can be produced by quite different stimulation conditions (compare, e.g.,
the trace corresponding to 10% excitation and 25% inhibition to the one for 30% excitation and
100% inhibition).

7.2.3 Modeling TMS-induced D- and I-waves

In vivo recordings of epidural responses typically show a D-wave followed by three or four larger I-
waves at peak intervals of about 1.4 ms with the D-wave clearly separated from subsequent I-waves.
Recordings from single neurons have shown that the delays between D- and I-waves form a contin-
uous distribution between 0.75 and 1.34 ms (Rosenthal et al., 1967). We model the measured D- and
I-waves as the superposition of spike trains from many instantiations of the L5 cell model. Large L5
pyramidal cells feature dendritic trees which span all layers of the cortex. This makes L5 cells tar-
gets for direct TMS activation (Silva et al., 2008). In the present model TMS elicits responses from
an L5 cell through both direct and indirect activation. Direct activation is modeled as a brief direct
current injection of variable strength into the L5 cell wich sometimes causes the appearance of a
single spike contributing to the D-wave. Indirect activation is caused by stimulation of presynaptic
L2/3 neurons which lead to a series of subsequent spikes in the L5 neuron contributing to I-waves.

To simulate D- and I-waves we pool the spiking responses of 1000 model instantiations with
different random synaptic connections drawn from log-normal distributions, different direct acti-
vation strengths drawn from a normal distribution, and different conductions delays between the
L5 cell soma and the site of the epidural recording also drawn from a normal distribution (see Ma-
terials and methods for details). Figure 7.4A shows the simulated D- and I-wave response to a TMS
pulse activating 100% of the excitatory and inhibitory L2/3 inputs. A smaller D-wave is followed
by 4 strong I-waves. Figure 7.4B shows an epidurally measured response adapted from Di Lazzaro
et al. (1998b) for comparison. Figure 7.4C shows how the number and size of I-waves changes when
different percentages of L2/3 fibers are activated by the TMS pulse. When the percentage of active
inhibitory and excitatory L2/3 fibers was increased from 25% and 10% to 75% and 30%, respectively,
the second I-wave gained in amplitude.

7.2.4 Pharmacological interventions

The administration of CNS active drugs with known modes of actions has been shown to enable
the use of TMS as a measure of cortical excitability (for a review see Ziemann (2004); Paulus et al.
(2008)). We set out to test if simulated changes to cortical excitability induced by pharmacological
interventions produce alterations to I-waves similar to those observed during in vivo experiments.
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Figure 7.3: L5 cell response to different amounts of excitatory and inhibitory drive. TMS pulses may
activate different percentages of inhibitory (I) and excitatory (E) L2/3 fibers. The timing of the TMS
pulse is 20 ms. Spikes were measured at the level of the L5 cell axon.

7.2.5 Paired-pulse stimulation

In a final set of simulations, we tested whether our model can also explain findings from so-called
paired-pulse stimulation protocols.
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Figure 7.4: Epidural response to a TMS pulse. (A) Simulated epidural recording consisting of a small
D-wave followed by 4 larger I-waves. For clarity the distributions of spike timings in the L5 cells
corresponding to each epidural response are also shown. (B) Epidural recording of the response
generated by the human motor cortex (adapted from Di Lazzaro et al. (1998b)). (C) Simulated re-
sponses for different TMS strengths show that in the presence of increased excitation the second
I-wave increased in size. The vertical bar indicates the timing of the TMS pulse.

7.3 Conclusion

Our goal was to develop a simple computational model capable of explaining the phenomena
of D- and I-waves. There is still a debate on the exact mechanisms which facilitate the production
of I-waves in the motor cortex with several theoretical models proposed over the years (Ziemann
and Rothwell, 2000). Although each of these models elegantly captures different features of I-waves,
none is fully satisfactory. Of the ones proposed, the model in which TMS induces a large activation
of L2/3 cells which fire according to their intrinsic membrane properties and act as a resonating cir-
cuit directly activating the L5 neurons (Phillips, 1987) is especially relevant for our discussion. Such
a model has been argued to require a second generation of spikes in L2/3 cells triggered indirectly
by TMS. By using a detailed compartmental model with a rich dendritic tree we showed that such
second spikes are not necessary. Our model is fully feed-forward featuring no lateral connections
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or loops. Depending on synaptic receptor kinetics and synapse position a spike generated in L2/3
arrives at the soma of the L5 cell with a certain delay. These dendritic inputs interact with the in-
trinsic membrane properties to cause the generation of periodic I-waves. Another relevant model
proposes that TMS activates a chain of inhibitory and excitatory neurons providing waves of acti-
vation and inhibition to L5 (Patton and Amassian, 1960; Amassian et al., 1987). Again, our model
shows that such chains are not required to explain the basic phenomena of D- and I-waves.

Our model was also shown to reproduce the effects of pharmacological interventions on the
size and number of I-waves. Such effects were modeled as changes in GABAA and AMPA channel
conductance. Furthermore, paired-pulse stimulation protocols were modeled. We assumed a lower
activation threshold for inhibitory neurons compared to excitatory neurons and short-term synap-
tic depression of synaptic connections from L2/3 to L5. We showed that under these conditions
a paired-pulse stimulation protocol consisting of a sub-threshold TMS pulse followed by a supra-
threshold activation caused depression of epidural responses at short ISIs and facilitation at large
ISIs, in agreement with what was reported in the literature (Hanajima et al., 1998).

Our models shares many similarities with a previous model presented by Esser et al. (Esser et al.,
2005). Impressively, this model simulated a complex multi-layerd cortex but it only used point neu-
ron models, neglecting the complex dendritic tree structure of L5 cells. It also required the assump-
tion of an ad hoc refractory mechanism to explain the frequency of I-waves. In our model this is a
result of the intrinsic membrane properties of L5 cells and their complex anatomical structure. In a
complementary line of research, theoretical studies (Kamitani et al., 2001; Silva et al., 2008; Pashut
et al., 2011) have also focused on modeling the effects of TMS on pyramidal cells with arbitrary
morphology but without specifically modeling epidural responses.

Our current model has made a large number of simplifications. First, we have very much simpli-
fied cortical anatomy in our model. For example, we only modeled one type of fast spiking interneu-
ron despite the large diversity observed in cortex. We have also placed excitatory and inhibitory
synapses randomly on the L5 cell dendritic tree. A more careful placement based on anatomical
data would be desirable. Furthermore, we have completely neglected recurrent connectivity — ei-
ther within L2/3 or between L2/3 and L5. Adding such features to our model would certainly make
it more realisitc. Beyond these issues, our future work will focus on modeling the induction of long-
term plasticity with TMS protocols. Our hope is that this will pave the way for optimizing such
protocols for specific clinical applications.

7.4 Materials and methods

7.4.1 The model

We present the model of the L5 cell used.

7.4.2 Simulating TMS pulses

We present a simple model of TMS pulses.

7.4.3 Simulating epidural recordings

We present a simple model of epidural recordings.
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7.4.4 L5 cell active conductances

7.4.5 L5 Cell active ionic currents
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CHAPTER 8

CONCLUSIONS

We were interested in studying how artificial spiking neural networks process temporal information.
In this context, our goal was on one side to study the functional role of synaptic plasticity and exci-
tatory and inhibitory neurons and on the other to develop analytical tools which enable the analysis
of the neural code in order to decipher what information is encoded in the sequences of action po-
tentials exchanged by neurons. Such studies are especially relevant in the context of robotic control
where the choice of neural code is crucial to agent performance and one usually needs to bench-
mark different neural models and architectures. Overall, our findings presented in this Thesis might
lead to a better design of artificial intelligent systems controllers and can be used to measure neu-
ron synchrony, neural response variability and reliability and finally in the study of how information
might be represented in the brain.

We have succinctly reviewed the major characteristics of the two basic computational units of
neural microcircuits –neurons and synapses– and how they are reflected in state of the art com-
putational models. Most of our understanding of neural dynamics stems from large simulation of
artificial networks (Brunel, 2000; Wielaard et al., 2001; Shelley et al., 2002; Delorme and Thorpe,
2003; Mehring et al., 2003; Hill and Tononi, 2005). We have presented several simple spiking neu-
ron models which capture basic properties of complex biologic models at a low computational cost.
Such models are argued to offer a balance between computational efficiency and biological resem-
blance and are thus suitable for simulations of large networks and analytical treatment. A short
comparison of artificial neural networks from the viewpoint of their biological relevance to realistic
microcortical circuits was also presented.

We have presented the Liquid State Machine (LSM) (Maass et al., 2002b) and Echo State Network
(ESN) (Jaeger, 2001b) computational paradigms for universal, online computing on continuous in-
put streams. They have a number of interesting computational properties such as short term mem-
ory, parallel processing and high resistance to noise and were successfully applied to path planning,
object tracking, motion prediction and control of autonomous robotic agents. In this context, we
have developed “Robby”, a framework for distributed robotic control by spiking neural networks.
The framework offers support for different robotic devices and several types of spiking neurons and
plasticity rules. We have also presented Particle Swarm Optimization (PSO), an evolutionary opti-
mization technique, which was successfully used to solve a number of optimization problems. We
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have shown how PSO could be used to solve such problems and also proposed how it could be
applied to increase LSM performance by either optimizing its computational properties such as the
separation property (Huang et al., 2009) or its topology in order to maximize the mutual information
passed to the readout layer (Chapter 3; Rusu (2011); Rusu and Ahn (2011)).

The distance between two spike trains reflects their similarity. Spike train measures were suc-
cessfully used in classification of neural recordings in response to different stimuli in an attempt
to predict the presented stimulus, to measure the variability of neural responses to same stimu-
lus across multiple recordings and to quantify the degree of synchrony between neurons. We have
introduced a new class of spike train measures inspired by the Pompeiu-Hausdorff distance. The
measures are sensitive to the precise timing of differences across spike trains with each individual
spike considered to be carrying information. Depending on a kernel H the measures exhibit differ-
ent behaviors. On one side the kernel served the purpose of providing a local perspective, around
each point in a spike sequence while on the other it may be regarded as a magnifying glass to be
used to focus on one specific area of the spike trains. From a strictly mathematical point of view H

can be just about any function because the generated metrics are commensurable. Some, however,
will have a lesser physiological interpretation than others. Because the metrics generate the same
topologies regardless of the choice of kernel, topological properties are the same across all spike
train spaces. In simple simulations, a single spike either inserted or shifted in a spike train, the in-
troduced measures were shown to depend on the precise timing of the spike in contrast to popular
metrics such as Victor & Purpura and van Rossum (Chapter 4; Rusu and Florian (2010)).

Rao and Sejnowski (2001) have shown that Temporal Difference (TD) learning in the case of a
complex biophysical model of a cortical neuron leads to a Hebbian-like Spike-timing Dependent
Plasticity (STDP) rule. For simple neural models, such as the integrate-and-fire (IAF) and Izhike-
vich neurons we have shown the precise conditions under which TD learning leads to a Hebbian
STDP-like window of plasticity. Essentially, we have found that TD learning does not lead to Heb-
bian STDP. In a simple setup, using IAF neurons we have also verified that such a spike-timining
based plasticity mechanism implemented as a form of TD learning can be used to predict input se-
quences moments prior to their expected arrival. Because STDP provides a mixture of homeostatic
equilibrium and synaptic competition through its LTP and LTD components we obtained a similar
result by using a plasticity rule that reproduces a plasticity window with only a causal LTP part used
together with a homeostatic plasticity mechanism in place of the anti-causal LTD part. In this con-
text, we have also shown that the synaptic modifications are achieved in an optimal way when the
plasticity functions are correlated to the EPSPs caused by input spikes. Essentially, this result sug-
gests that the prediction capabilities of neurons as expressed here and in Rao and Sejnowski (2001)
are not the specific consequence of a TD based plasticity rule but rather any rule that provides and
STDP-like causality and some intrinsic, homeostatic regulatory mechanism (Chapter 5; Rusu (2008,
2009); Florian and Rusu (2009); Rusu and Florian (2009)).

When equipped with STDP a single spiking neuron receiving input on several afferents was
shown to be capable of detecting spiking activity patterns (Masquelier et al., 2008, 2009). The spatio-
temporal patterns of activity were embedded into equally dense distractor parts of the input thus
making them invisible in terms of firing rate. We have analytically derived, under weak assump-
tions, a set of weights which enables such a detection of spiking patterns. In addition, it was shown
that when a single neuron was presented with more than one embedded input pattern it randomly
became selective to one (Masquelier et al., 2008). To this end, we have shown that in the presence
of a homeostatic plasticity mechanism a single neuron was able to learn to respond to two patterns.

52



53 8. Conclusions

The case of multiple neurons and input patterns was studied in Masquelier et al. (2009) where it
was shown that lateral connections between neurons ensured a competitive learning mechanism
which forced neurons become selective to different patterns. We were however interested in the
prediction capabilities of a single neuron. In contrast to similar results which hold in the context of
supervised learning (Guetig and Sompolinsky, 2006; Florian, 2010a), such a STDP-based, unsuper-
vised detection mechanism is extremely desirable since it is not only simple, computationally cheap
and biologically plausible but also allows a fast, online implementation (Chapter 6).

Transcranial Magnetic Stimulation (TMS) allows to manipulate neural activity non-invasively
and has been hypothesized to improve learning, facilitate stroke rehabilitation, treat depression,
schizophrenia, chronic pain, or addictions such as alcoholism. Despite recent success in clinical
treatments little is known about the cellular mechanisms underlying such stimulation techniques
or the nature of the high-frequency repetitive responses (I-waves) they induce along descending
motor pathways. Moreover, assessing the nature of I-waves or establishing the biophysical basis
underlying magnetic stimulation in purely experimental settings remains difficult given the scarce
recording opportunities and high variability of results across healthy subjects. There is still a de-
bate on the exact mechanisms which facilitate the production of I-waves in the motor cortex with
several theoretical models proposed over the years (Ziemann and Rothwell, 2000). Although each
of these models elegantly captures different features of I-waves, none is fully satisfactory. We have
introduced a model consisting of a complex compartmental layer 5 (L5) pyramidal cell stimulated
by a pool of inhibitory and excitatory layer 2/3 (L2/3) fast- and regular-spiking cells. In our model,
I-waves essentially appeared as a result of action potentials from the L2/3 cells impinging onto the
dendritic tree of L5 cells. Our model reproduced I-waves similar to those observed in epidural re-
sponses during in vivo experiments on conscious humans and explained their formation, frequency,
and timing. Furthermore, our model reproduced findings from a range of experiments with differ-
ent stimulation protocols and pharmacological interventions (Chapter 7; Rusu et al. (2011a,b)).
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