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Abstract

Classical Hall algebras associated with discrete valuation rings were introduced by Steinitz

and Hall to provide an algebraic approach to the classical combinatorics of partitions. The

multiplication is given by classical Hall polynomials which play an important role in the

representation theory of symmetric groups and general linear groups (see [42]). In 1990

Ringel de�ned Hall algebras for a large class of rings, namely �nitary rings, including in

particular path algebras of quivers over �nite �elds. In general these Ringel-Hall algebras

are not commutative, in contrast with the classical ones (which correspond to the one-loop

quiver in this context). In case of Ringel-Hall algebras associated to quivers we know due to

Ringel in [57] and Green in [30] that the so called composition subalgebra generated by the

simple modules is up to a minor modi�cation the positive part of the corresponding Drinfeld-

Jimbo quantum group, the compatibility relation between the described multiplication and

comultiplication being expressed by the famous Green's formula (see in [30]).

Ringel proved that in case of Ringel-Hall algebras corresponding to Dynkin quivers the

structure constants of the multiplication are again polynomials in the number of elements of

the base �eld. We call them Hall polynomials. The existence of Hall polynomials in this case

uses Gabriel's theorem which states that indecomposables corresponds to positive roots via

their dimension, so modules can be treated �eld independently via roots. In his famous paper

[51] Ringel listed these Dynkin type Hall polynomials associated to indecomposable modules.

It turns out that they can have degree up to 5, so they are not just 0 or 1 as the classical ones

corresponding to indecomposables.

The �rst explicit results on tame Ringel-Hall algebras were formulated in the Kronecker

case (which is the easiest tame case) by Zhang in [80] and Baumann-Kassel in [5]. Completing

and expanding these results in his PhD thesis, the author described explicitly the structure of

the Ringel-Hall algebra in the Kronecker case, obtaining all the formulas for the Hall numbers

and constructing various Poincaré-Birkho�-Witt (PBW) type of bases for the composition

subalgebra. Using Kac's theorem (which is a generalization of Gabriel's theorem) we can

see that all the tame indecomposable modules can be treated �eld independently (via their

positive real root dimensions or quasi top and quasi-length) excepting the so called regular

homogeneous indecomposables. The author in his PhD thesis showed a method in the Kro-

necker case how to group these regular homogeneous modules into classes such that up to

these classes we can prove the existence of Hall polynomials.
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Hubery in [35] generalized the author's previous results in the Kronecker case observing

that these regular homogeneous classes are in fact Segre classes and proved (up to Segre

classes) the existence of tame Hall polynomials. However we do not know them explicitly and

as we will see it is very di�cult to obtain them. Knowing these tame Hall polynomials would

help us in various contexts: as mentioned above, they are the structure constants of quantum

groups, they are used in the theory of cluster and quantum cluster algebras (via Grassmannian

cardinalities) and they can also be used successfully to investigate the structure of the module

category (via the Gabriel-Roiter measure).

If we drop the �niteness condition on the �eld k, we can use instead of the Ringel-Hall

product the so called extension monoid product introduced by Reineke in [47]. In this way

we lose the counting part for a speci�c extension, but we can still control the existence or

non-existence of it. And this over an arbitrary �eld, not only over �nite �elds. As we will see

in some applications (for example in matrix pencil theory) it is more important to be able to

work over arbitrary �elds.

The present habilitation thesis records the progresses made by the author in the last ten

years regarding tame Hall polynomials and Kronecker extension monoid products and their

various applications.

The �rst chapter is a preliminary one serving as a comprehensive survey of the main

notions and tools used throughout the thesis. It covers combinatorics, representations of

tame quivers, re�ection functors, Scho�eld sequences, Ringel-Hall algebras, extension monoid

products and some specializations of these notions.

The second chapter is dedicated to tame Hall polynomials. We will describe all the

tame Ringel-Hall products involving indecomposables of absolute defect not higher than 1.

More precisely we will present explicit formulas for three types of Ringel-Hall products. These

results were published mainly in [66] and partially in [75]. Finally we will obtain some special

Hall polynomials of the form F δδ−aa (where a is a positive real root of arbitrary negative defect

and δ the minimal radical vector), which will be applied in the next chapter. These results

appear in [67].

In the third chapter we will apply our knowledge on Hall polynomials in the theory of

Gabriel-Roiter measures. The Gabriel-Roiter measure (GR measure for short) was introduced

by Gabriel in order to give a combinatorial interpretation of the induction scheme used by

Roiter in his proof of the �rst Brauer-Thrall conjecture. Ringel used it as a foundation tool for

the representation theory of Artin algebras. First of all we will prove that the GR inclusions

in preprojective indecomposables and homogeneous modules of dimension δ as well as their

GR measures are �eld independent. A similar result for Dynkin quivers was obtained by

Ringel in [52]. As an application of the theorems above we will prove using Hall polynomials

a result by Bo Chen in [13] in a more general context: our result is valid also for the case Ẽ8

(this case is missing from [13]) and it is �eld independent (in [13] k is algebraically closed).

More precisely we prove that a GR submodule P of a homogeneous module R of dimension

δ has defect −1. These results appear in [67].

In the fourth chapter we determine cardinalities of Kronecker quiver Grassmannians via

Ringel-Hall numbers. We consider Grassmannian varieties of �xed dimensional submodules of

indecomposable Kronecker modules. In [12] Caldero and Zelevinsky described (using Schubert
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cells) explicit combinatorial formulas for the Euler-Poincaré characteristics of these Grass-

mannians using them in cluster theory. Using the Ringel-Hall algebra approach and re�ection

functors we obtain speci�c recursions for the Grassmannian cardinalities. We also prove a

q-analogue of a combinatorial identity due to Nanjundiah. Combining these two results we

deduce explicit combinatorial formulas for the cardinalities of the Grassmannians above. We

realize in this way a quanti�cation of the formulas by Caldero and Zelevinsky, with applica-

tions in quantum cluster theory. All these results were published in [68].

The �fth chapter describes the extensions of Kronecker modules. Although extensions

of arbitrary tame modules are �eld dependent, it turns out that in the Kronecker case the

extensions are �eld independent up to Segre classes, so the extension monoid products can be

described in a purely combinatorial way. We will describe explicitly these products in many

cases using a generic version of Green's formula and partition combinatorics. We obtain in

this way a generic, �eld independent version of the Kronecker type Ringel-Hall product list

obtained in the author's PhD thesis. The �nal section of this chapter surveys the sometimes

di�cult combinatorics related with the extensions and embeddings of decomposable preinjec-

tive modules (or dually preprojective ones). As we will see in the �nal chapter, these results

published in [69, 70, 71] can and will be applied in matrix pencil theory.

The main subject of the sixth chapter is the following problem, called Modular Challenge:

characterize the embedding of Kronecker modules via their Kronecker invariants. This will

lead us towards the description of the submodule category of the Kronecker algebra (see [58])

and also towards the solution of the following (unsolved) problem in matrix pencil theory

(see the next chapter for details), called Pencil Challenge: �nd a necessary and su�cient

condition (in terms of classical Kronecker invariants) for a pencil to be a subpencil of an

another one; moreover construct the completion of the smaller pencil to the bigger one (see

[41]). The chapter is dedicated to the solution of the Modular Challenge, splitting the modules

into smaller components and using results on extensions of Kronecker modules listed in the

previous chapter. As a consequence we can see that as the extensions the embeddings of

Kronecker modules are also �eld independent up to Segre classes. The results of this chapter

were published in [72].

In the seventh chapter the results presented in the previous chapters on extensions and

embeddings of Kronecker modules are applied in the theory of matrix pencils. We will see that

pencils correspond to Kronecker modules so in this way a modular approach is possible to all

the problems in pencil theory. In particular we will show how to solve the Pencil Challenge via

the solved Modular Challenge (see the previous chapter). As a �rst application we will give

a short modular proof for the codimension formula of a matrix pencil (see Demmel, Edelman

[17]). Finally we will present a short explicit solution to the Pencil Challenge involving pencils

determined only by minimal indices for columns (respectively for rows). These results were

published in [73] and [74].

The last chapter gives a brief account of the author's future research plans.
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