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Summary

In Part 1 of this work, I will present my research activity after the defense of my PhD
dissertation in 2001. Since then, I have continued to investigate several aspects concerning
qualitative properties of the solutions of certain ODEs or systems of ODEs and to work
on further research subjects, publishing 35 papers either in mathematical journals or in
proceedings of international conferences, a monograph, one paper is accepted, and another
paper is submitted for possible publication. My interest has focused on the following two
main research directions: qualitative properties of solutions of some classes of second
order ODEs with applications to damped nonlinear oscillators and qualitative properties
of solutions of some classes of systems of second order ODEs with applications to coupled
damped nonlinear oscillators. The papers published in the first direction are presented in
Chapter 1 and the results obtained in the second direction are described in Chapter 2.

The main problems I investigated concern the stability of equilibria of specific systems
formed by either a single nonlinear oscillator or several coupled nonlinear oscillators,
for the sake of a consistent investigation of the large-time behavior of the dynamics of
these mechanical systems. After an Introduction, wherein the main elements that will be
used in this thesis are briefly specified, I will present in Chapter 1 the results obtained
regarding qualitative properties of solutions of second order ODEs. At first, I investigated
the stability of the equilibrium of a nonlinear oscillator whose dynamics is described by
the second order ODE (E) ẍ + 2f (t) ẋ + β(t)x + g (t, x) = 0, t ∈ R+. This research
originated in the paper of T.A. Burton and T. Furumochi [32], wherein the authors have
introduced a new method to study the stability of the null solution x = ẋ = 0 of this
equation with β (t) = 1, ∀t ∈ R+, based on the Schauder fixed point theorem. In [81]
we provided stability results in the same case β (t) = 1, ∀t ∈ R+, by using relatively
classical arguments, and in [82] we proved certain stability results for the null solution of
this ODE under more general assumptions, which required more sophisticated arguments.
I will also present a new stability result, which has not been published yet, by using a
classical method based on a suitable Lyapunov function. The approach allows extensions
to both the vector case and the case t ∈ R. In fact, an ongoing problem that I have
investigated over time concerns the existence of solutions of certain ODEs or systems of
ODEs on the whole real line, publishing a series of results in this direction. The results
I will present in Section 1.1 improve the results from [82] and [81]. In Section 1.2 I will
provide a result about the stability of the null solution of (E) and will also show that for
any solution x of the equation, we have x (+∞) = ẋ (+∞) = 0, for small initial data,
in the case when the uniqueness of solutions is not guaranteed. The proofs are based on
a generalized form of the Schauder–Tychonoff fixed point theorem. If the uniqueness of
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solutions is ensured, I will present a stability result for the same equation, based on the
Banach fixed point theorem on Fréchet spaces. Much work from this section is found in
[113], but the present section contains improvements to the results from [113], and also
extends the previous results from [19].

In [26] (wherein we considered the case β (t) = 1, ∀t ∈ R) and [114], we proved the
existence of homoclinic solutions of (E) under certain hypotheses on the coefficients. For
this purpose, we used a method mainly based on differential inequalities and classical
qualitative analysis of the solutions of ODEs. The material in Section 1.3 is mostly found
in those papers, but contains significant improvements. In [115] I discussed the existence
of solutions x of (E), which are not identically 0 and which have the limits x (+∞) =
ẋ (+∞) = 0, using the Lyapunov’s method and differential inequalities. That approach
allowed extension to the case t ∈ R, the existence of homoclinic solutions being thus
deduced. Section 1.4 contains improvements to the results from [115] and also generalizes
the result from [21]. In [22] we considered a general second order ODE on the real
line and presented an existence result for solutions x satisfying the boundary conditions
x(−∞) = x(+∞) and ẋ(−∞) = ẋ(+∞). Our proof is mainly based on the application
of the Bohnenblust–Karlin fixed point theorem for multivalued mappings. The material
in Section 1.5 is taken from that paper.

The second research direction was suggested by Gheorghe Moroşanu and in Chapter
2 I will present the results we obtained concerning the dynamics of coupled nonlinear
oscillators.

In [84] we investigated the stability of the null solution of systems modelling the motion
of two coupled nonlinear oscillators, both being under the action of some external forces.
Under certain assumptions, we derived some stability results. The material in Section 2.1
is mostly found in [84], but it also contains improvements to our results from that article.
In Subsection 2.1.2 we will consider the case of two coupled damped nonlinear oscillators.
Subsection 2.1.3 is devoted to the case of two coupled nonlinear oscillators with partial lack
of damping which we investigated in [83]. The hypotheses we will assume on the damping
coefficients and the external forces are new compared to the ones in [83] and the results
are more general. The case of two coupled undamped nonlinear oscillators is treated in
Subsection 2.1.4. Each of these three cases will be studied by two approaches based on
classical arguments, by using differential inequalities and the Lyapunov’s method.

In [85] we reconsidered the mechanical system of two coupled damped nonlinear osci-
llators and investigated the stability of the null solution of the system of ODEs describing
the motion. We proved that for any solution (x, y) of the system, x (+∞) = ẋ (+∞) =
y (+∞) = ẏ (+∞) = 0, for small initial data, in the case when the uniqueness of solutions
is not guaranteed. Our proofs are mainly based on a generalized form of the Schauder–
Tychonoff fixed point theorem. The results provided in Section 2.2 are very similar to
those from [85], but they also contain improvements.
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In [86] we investigated nonlinear systems of second order ODEs describing the dynam-
ics of two coupled nonlinear oscillators of a mechanical system of vibration reduction. We
obtained, under certain assumptions, some stability results for the null solution. Also,
we showed that in the presence of a time-dependent external force, every solution (x, y)
starting from sufficiently small initial data and its derivative are bounded or have the
limits x (+∞) = ẋ (+∞) = y (+∞) = ẏ (+∞) = 0, provided that suitable conditions are
satisfied. The work from Section 2.3 is taken from that article.

Almost all the theoretical results presented in Chapters 1 and 2 are confirmed by
numerical simulations obtained using Matlab.

I have also been working on research topics not directly related to the main research
directions described in this thesis. At the and, in Part 4, I will give details regarding
the results I obtained on the fixed point theory and its applications to the existence of
solutions or asymptotically stable solutions of some classes of nonlinear integral equations
and systems of nonlinear integral equations.

Part 2 contains plans for the evolution and development of my scientific and academic
careers. Some open problems that could complete the results obtained until now and
which I consider useful for my further scientific research are described. Finally, a research
plan to approach these problems and also a plan for my academic career, with likely ways
of practical implementation, are presented.

In Part 3 the most important bibliographical references studied for the preparation of
this thesis are presented. All these references are cited in the first two parts of the work.


